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Abstract

This article proposes an original method to estimate a

continuous transformation that maps one N-dimensional

distribution to another. The method is iterative, non-linear,

and is shown to converge. Only 1D marginal distribu-

tions are used in the estimation process, hence involving

low computation costs. As an illustration this mapping is

applied to colour transfer between two images of different

contents. The paper also serves as a central focal point

for collecting together the research activity in this area and

relating it to the important problem of Automated Colour

Grading.

1. Introduction

The principle of example-based rendering is probably

the simplest and most effective approach to rendering real-

istic images. The idea is to transfer the statistics of a target

dataset (the example) to a source dataset. After transfer, the

re-rendered source dataset has the same look and feel as the

target one. The recent breakthrough in texture synthesis [4]

is probably one of the most significant examples of this idea.

By simply sampling from the neighbouring distribution of

a seed example texture, it is possible to synthesise bigger

pictures that look similar. The success of realistic rendering

thus relies on the transfer of real data statistics.

The idea of transfer of statistics encompasses an entire

range of possibilities from the simple match of the mean and

variances of both datasets to the exact transfer of the whole

probability density function (pdf) of the samples. This pa-

per considers the general problem of finding a continuous

mapping that transforms the source samples into a new en-

semble of samples that exhibits the same pdf as the target

samples. Finding a mapping for one-dimensional (1D) sam-

ples is a simple task that can be solved in the same way as

grayscale picture equalisation [5]. The difficulty resides in

extending the method to higher dimensions.

There are a wide range of applications for the notion of

exact transfer of pdf’s for multidimensional datasets. In

the transfer of colour between two images, it is known as

exampled-based colour transfer [14]. In digital restora-

tion [12] the idea is to recolour paintings that have been

faded by smoke, dust etc. If the target pdf is uniform, the

process can also be used for colour image equalisation for

scientific data visualisation [13] or simply used for non-

realistic rendering. In particular, a major problem in the

post production industry is matching the colour between

different shots possibly taken at different times in the day.

This process is part of the large activity of film grading in

which the film material is digitally manipulated to have con-

sistent grain and colour. The term colour grading will be

used specifically to refer to the matching of colour. Colour

grading is important because shots taken at different times

under natural light can have a substantially different ‘feel’

due to even slight changes in lighting. Currently these are

fixed by experienced artists who manually tune parameters.

This is a delicate task and the method presented in this pa-

per succeeds in automating this painstaking process even

when the lighting conditions have dramatically changed, as

shown in figure 4.

This paper proposes a simple method that performs an

exact transfer of a pdf, based on the iterative use of the

one-dimensional pdf transfer. The method is guaranteed to

converge to the target pdf and a mathematical proof is pre-

sented. The advantage of the method is that the pdf transfer

operates in 1D which means that the overall algorithm has

a linear computational complexity of O(M), where M is

the number of samples processed. This implies also that

it is possible to have more bins in the histogram and thus

achieve higher accuracy in the colour mapping.
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2. Related Work

Transfer of Colour Statistics. One popular method [14]

matches the mean and variance of the target image to the

source image. The transfer of statistics is performed sep-

arately on each channel. Since the RGB colour space is

highly correlated, the transfer is done in the less correlative

colour space lαβ which has been proposed to account for

human-perception [15]. But the method is limited to linear

transformations and some example-based recolouring sce-

narios actually require non-linear colour mapping. Figure 1

shows exactly this problem and the method fails to transfer

any useful statistics.

The problem of finding a non-linear colour mapping is

addressed in [13] for colour equalisation (like for grayscale

histogram equalisation). The paper proposes to deform the

tessellation meshes in the colour space to fit to the 3D his-

togram of uniform distribution. This method can be seen

as being related to warping theory which is explicitly used

in [10] where the transfer of the 2D chromatic space is per-

formed directly by using a 2D-biquadratic warping.

Without having to invoke image warping, an extension

of the 1D case is to find the mapping via linear program-

ming [11] and the popular Earth-Mover distance. The ma-

jor disadvantage of the method is that 1) the mapping is not

continuous and 2) pixels of same colours may be mapped to

pixels of different colours, which require random selection.

Furthermore the computational cost becomes intractable if

a very fine clustering of the colour space is desired.

Dealing with Content Variations. One important aspect

of the colour transfer problem is the change of content be-

tween the two pictures. For example the target picture

may present more sky than the source picture. Since all

colour transfer algorithms are sensitive to the variations of

the colour cluster sizes, they risk overstretching the colour

mappings and thus producing unbelievable renderings.

To deal with this issue a simple solution [14] is to man-

ually select swatches in both pictures and thus associate

colour clusters corresponding to the same content.

One automated solution is to invoke the spatial informa-

tion of the images to constrain the colour mapping [7]. The

extreme case is colouring grayscale pictures. Retrieving the

missing chrominance channels values can be done by taking

advantage of similarities between spatial neighbourhoods of

the two pictures [16, 6].

Another automated method is to restrict the variability

on the colour mapping. For example in [1], the pixels of

both images are classified in a restricted set of basic colour

categories, derived from psycho-physiological studies (red,

blue, pink. . . ). The colour transfer ensures that blue-ish pix-

els remain blue-ish pixels. This gives a more natural trans-

formation but limits the range of possible colour transfers.

target image original image Reinhard

Figure 1. Example of Colour transfer using
Reinhard [14] Colour Transfer. The transfer

fails to resynthesise the colour scheme of the

target image. To be successful the method
would require human interaction.

By contrast our method is able to map shades of green to

shades of orange in the first row of figure 4.

Novelty. The work presented in this paper addresses many

of the shortcomings of previous efforts in this area. Firstly,

it is computationally attractive as it uses just 1D pdf match-

ing in an iterative scheme which is shown to converge. Sec-

ondly, the method is completely non-parametric and is very

effective at matching arbitrary distributions. The paper also

serves as a central focal point for collecting together the re-

search activity in this area and relating it to the important

problem of Automated Colour Grading which has not been

previously specifically addressed in this community.

3. N-Dimensional pdf Transfer

Denote f(x) and g(y) the pdf of X and Y , the orig-

inal and target N -dimensional continuous Random Vari-

ables respectively. For example in colour transfer, the

samples xi of X encapsulate the three colour components

xi = (ri, gi, bi). The goal is to find a continuous mapping

function t that transforms f in g.

Dimension N = 1. This is a well known problem [5]

which offers a simple solution:

t(x) = C−1
Y (CX (x)) (1)

where CX and CY are the cumulative pdfs of X and Y . This

can be easily solved using discrete lookup tables.

Dimension N ≥ 2. The idea is to reduce the problem

from N dimensions to the 1-dimensional case. For example

consider a 1D axis. The projections of the N-dimensional

samples for X and Y are computed along the axis. Match-

ing these two marginals using the previous 1D pdf matching

scheme results in a 1D mapping. This mapping can be ap-

plied along the axis to transform the original N-dimensional

samples. The new distribution of the transformed original
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Algorithm 1 pdf transfer algorithm

1: Initialisation of the data set source x and target y. For example in colour transfer, xj = (rj , gj , bj) where rj , gj, bj are

the red, green and blue components of pixel number j.

k ← 0 , x
(0) ← x

2: repeat

3: take a rotation matrix R and rotate the samples: xr ← Rx
(k) and yr ← Ry

4: project the samples on all axis i to get the marginals fi and gi

5: for each axis i, find the 1D transformation ti that matches the marginals fi into gi

6: remap the samples xr according to the 1D transformations. For example, a sample (x1, . . . , xN ) is remapped into

(t1(x1), . . . , tN (xN )), where N is the dimension of the samples.

7: rotate back the samples: x
(k+1) ← R−1

xr

8: k ← k + 1
9: until convergence on all marginals for every possible rotation

10: The final one-to-one mapping t is given by: ∀ j ,xj �→ t(xj) = x
(∞)
j

samples is proved to be actually closer to the target distri-

bution than before transformation. The main point of this

paper is to observe that iterating this simple procedure for

different set of axes is sufficient to eventually transform the

original samples into a distribution that is identical to the

target distribution.

The algorithm operates as follow. At iteration k, the sam-

ples involved are the iterated samples of X(k) (the trans-

formed image) and the samples from Y (the target image).

The first step of the iteration is to change the coordinate sys-

tem by rotating both the samples of X(k) and the samples

of Y . In a second step the samples of both distributions

are projected on the new axes which gives the marginals

f1 . . . fN and g1 . . . gN . Then it is possible using equation

(1) to find for each axis i the mappings ti : ∀j xj → ti(xj)
that transfers the marginals from fi to gi respectively. The

resulting transformation t maps a sample (x1, . . . , xN ) into

t(x1, . . . , xN ) = (t1(x1), . . . , tN (xN )). The iteration is

completed with a rotation of the samples by R−1 to return

in the original coordinate system.

The iteration leaves the samples from g unchanged and

transforms the pdf f (k) into f (k+1). The algorithm is shown

to converge to f (∞) = g if the operation is repeated for

enough different rotations (taking random rotations is suf-

ficient to converge). The full algorithm in presented in a

separate figure on this page and is simple to implement as it

requires no extra parameters.

The outline of the method presents some resemblance

with an iterative algorithm of gaussianization of data pre-

sented in [9]. However this method investigates a much

wider range of transformations as it proposes to match not

only gaussians distributions but any kind of distribution.

Moreover a mathematical proof of the method is presented,

whereas in [9] the validity of the method is limited to nu-

merical experiments.
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Figure 2. Example of 2D pdf transfer. Note
the decrease of the measure of the Kullback-

Leibler distance.

Softening the pdf Transfer. The algorithm proposed per-

forms an exact transfer of the pdf. To account for the pos-

sible change of content in the data and thus avoid excessive

stretching of the mapping functions, we introduce a way of

reducing the magnitude of the stretching. The modification

is done on the 1D pdf matching scheme. Instead of consid-

ering the marginals fk and gk, the pdf transfer will actually

match f
(1/m)
k and f

(1/m)
k , with m ∈ [1; 6]. This operation

reduces the relative variations of the marginals and thus the
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mapping function get closer to the identity mapping if m
increases. Such a modification slows down the convergence

of the algorithm but it is often required since the content of

the pictures rarely match exactly.

4. Proof of the Method

Proof. Consider the operation T which describes one itera-

tion of our algorithm (ie, rotate, transform and rotate back

the samples): the target distribution g is of course station-

ary for T since T (Y ) = Y and T transforms f (k) in f (k+1)

with X(k+1) = T
(
X(k)

)
.

The Data Processing Theorem [8, pp. 18-22] — which is

fundamental in Information Theory — states that no statisti-

cal processing of the data can increase the Kullback-Leibler

distance. Thus the Kullback-Leibler distance between f (k)

and g decreases for each iteration k, and this for every pos-

sible rotation and initial distributions.

D
(
f (k) ‖ g

)
≥ D

(
T

(
f (k)

)
‖ T (g)

)
(2)

D
(
f (k) ‖ g

)
≥ D

(
f (k+1) ‖ g

)
(3)

The sequence D
(
f (k) ‖ g

)
is monotonically non-

increasing non-negative and must therefore have a limit.

The limit is actually 0 if the stationary distribution g is

unique (see [3, pp. 33-35]). It is then sufficient to prove

that g is the unique stationary distribution to show the

convergence of the sequence f (k) to f (∞) = g.

This can be done by invoking a geometrical argument.

Let h be another stationary distribution. By definition of

the algorithm, for every rotation of the axis, the projections

(or marginals) of h match the projections of g. Thus the

N -dimensional Radon Transforms of h and g are identical.

Since the Radon transform admits a unique inverse, we have

h = g and thus g is the only stationary distribution.

Numerical Experiences. The measure of the KL distance

is performed via the kernel density approximation of the

density. We implemented a kernel density estimation with

variable bandwidth to account for the sparseness of sam-

ples. A clear outline of the bandwidth selection is available

in [2]. The numerical Kullback-Leibler distance or relative

entropy can be computed as follow:

DKL(f ‖ g) =
1

N

∑
i

ln




∑
j K

(
xi−xj

h

)

∑
j K

(
xi−yj

h

)

 (4)

where K is the Epanechnikov kernel. As expected by the

theory, the KL distance decreases with the iteration n (see

figure 2).

Figure 3. Convergence rate depending on the

rotation selection strategy. If the random

strategy (in solid blue) performs poorly in the
first iterations it eventually outperforms our

deterministic strategies.

Choice of the Rotation Matrices. From the proof we can

state that the algorithm has to take marginals for every pos-

sible rotation, where there is an infinite number of possible

rotations. The simplest way of addressing this is to spread

the angle values over the whole angular spectrum and sam-

ple the angles of the rotation matrix from a uniform distrib-

ution.

The convergence rate of the random selection strategy

has been tested against 3 deterministic strategies. The first

strategy is a monotonic increase of the rotation angles, the

second strategy is a ping-pong between two fixed rotations

(0 and π/4) and the third strategy explores angles in a di-

chotomous way (0, π/4, 0, π/8, π/4, 0, π/16, 2π/16 . . . ).

The third method tries to emphasise the harmonics of the

angular spectrum. Figure 3 shows that, on average over

50 experiences, the random sampling of rotation outper-

forms eventually the deterministic schemes. In particular

the monotonic scheme seems almost to stall.

5. Application to Image Recolouring

The last two pages show some results from the colour

transfer technique proposed in the paper. Figure 4 displays

some examples of colour transfer. For instance the origi-

nal Alpine mountain picture in (b) is used as a target colour

scheme for the Scottish landscape image in (a) the first col-

umn. The result of the transfer appears in the last column.

The figure presents also examples of Colour Transfer for

matching lighting conditions. On the second row, the colour

properties of the sunset are used to synthesise the ‘evening’

scene depicted at sunset. On the last row, the colour trans-

fer allows correction of the change of lighting conditions

induced by clouds. A unavoidable limitation of colour grad-

ing is the clipping of the colour data: saturated areas cannot

be retrieved (for instance the sky on the golf image can-

not be recovered). A general rule is to match pictures from

higher to lower range dynamics.

The figure 5 displays examples colour restoration of
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faded movies. The idea is similar to colour grading as we

want to recreate different atmospheres. The target pictures

used for recreating the atmosphere are on the second row.

6. Conclusion

This paper has proposed an original algorithm for trans-

ferring N -dimensional pdfs. The method is guaranteed to

converge at low computation costs. We have shown the ef-

ficiency of the algorithm for colour transfer. Future works

will look at its application to other areas of computer vision

involving pdfs matching.
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(a) Original (b) Target Recolouring (a) using (b)

Figure 4. Examples of Colour Transfer. On the first row the Scottish landscape is recoloured to match
the palette of the Alpine scenery. On the second row, the colour properties of the sunset are used

to synthesise the ‘evening’ scene depicted at sunset. On the third row, the colour transfer allows to

correct the change of lighting conditions induced by clouds.

Original Frame 70’s atmosphere pub atmosphere

Figure 5. Example of Colour Transfer for Image and Video Restoration. It is possible to recreate

different atmospheres. Here an old faded film is transformed to match the colour scheme of a movie
from the 70’s and an pub ambiance.
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