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T
he case for automated video information access systems has been made repeatedly by numerous
researchers since the early 1990s. Finding important episodes in nontext media like video and
audio is made difficult because the same material means different things to different people.
Therefore, manually tagging data with textual keywords as a means of facilitating access is not
necessarily reliable for this type of media. This is a crucial point. Information retrieval as a task is

really only defined in the context of the user. This article considers one such context: sports media. In that
context, there is a salient structure to the media as well as a series of definable user requirements. Sport
broadcasting is certainly of high commercial importance [1]. All national and international news broadcasts
contain specific regular segments devoted to sports. Consumers themselves are increasingly acting as genera-
tors of sport media as it becomes easier for parents and coaches to record school sports games, for instance. 

From a broadcaster’s point of view, efficient archiving of media facilitates later reuse in the creation of
highlights packages or specialized DVDs. Manual keywording of events is feasible but time consuming and
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also cumbersome for games archived long ago. The consumer,
meanwhile, is faced with a large quantity of sports channels, and
the usefulness of recording is limited in the sense that the whole
event must be manually browsed for creating a semblance of a
highlights package. Even more interesting, as broadcasters seek
to cover more and more sports events to fill available program
time, there is less manpower available to create highlights pack-
ages. Therefore, the consumer often has no option but to manu-
ally browse an event to create a virtual highlights effect. The
longer the game, the more difficult manual browsing becomes.

These difficulties have resulted in growing research interest in
automated content-based video analysis targeted at sports events.
Since it is more natural for human operators to operate at a
semantic level, algorithms that can understand how low-level fea-
tures relate to semantic concepts must be created. Within the
sports context, the semantic gap can be bridged since an under-
standing of the structure of the event and the user are both attain-
able. Hence, usable automated sports media access is feasible. 

This article sets out to expose trends in sports-based index-
ing and retrieval work. In so doing, it discusses the essential
building blocks for any semantic-level retrieval system and acts
as a case study in content analysis system design. While there
has been a huge amount of activity in sports retrieval, and this
article cannot attempt to be exhaustive, the reader is given an
organized snapshot of current work in the area.

A STRUCTURE FOR SPORTS MEDIA
An overview of previous work and a consideration of the manner in
which different sports are broadcasted show that two broad classes of
sports can be identified:  court/table sports (e.g., badminton, tennis,
table tennis, snooker/pool, volleyball, and basketball) and field sports
(e.g., soccer, football, baseball, cricket, and hockey). Surprisingly,
this is not a useful classification in terms of content analysis.

In sports like tennis, badminton, cricket, and snooker,
there is one camera view that dominates the broadcast (e.g.,
the full court in tennis) and contains almost all the semanti-
cally meaningful elements required to analyze the game. Yet in
sports like football, soccer, baseball, hockey, basketball, and
volleyball, there is no such well-defined camera view that dom-
inates the course of play. In football, for instance, the full-field
shot is almost never shown and camera views tend to flow
from position to position showing portions of the field in
which action is ongoing. Since it is the image representation
that is subject to analysis, sports analysis systems tend to
reflect these distinctions in their design. These classes can be
defined as dominant semantic view (DSV) and multiple view
semantics (MVS) sports. Figure 1 illustrates this idea with
frames from different events.

An alternate viewpoint is generated by considering that
games are generally time driven or point driven. Sports like
football, basketball, and soccer are time driven in the sense that
there is a loose structure in the progress of the game punctuat-
ed only by a few time periods e.g., four in basketball and two in
soccer. In these sports, high-information events occur sparsely
and randomly. In sports like tennis, snooker, and cricket,
though, the progress of the game is point driven. In those
sports, the structure of the game is highly formulaic and based
around regular events and stylized actions that yield points. This
implies that for point-driven games, it is likely that a high level
of semantics can be extracted up to the very real possibility of
generating a table of contents automatically. However, for time-
driven games, it is more difficult to access semantics. The point-
driven sports are typified by strong camera and domain models
and are likely to be DSV, while the time-driven sports are MVS.

There is, of course, a wide variety of athletic sports (e.g., swim-
ming, track and field, shooting, and skiing) that on first considera-

[FIG1] Typical content-rich views from a selection of sports, showing the playing area that is usually targeted for detection. (a) DSV
sports: (a) tennis, (b) snooker, (c) badminton, and (d) cricket. MVS sports: (e) soccer, (f) American football, (g)–(h) baseball, and (i) sumo.
Almost all the game semantics in DSV sports can be extracted via playing area detection and motion estimation in the views shown.
Event detection for both types of sports can be made by analyzing edit sequences. A base-steal attempt in baseball (especially from the
first base) is typically captured from a special camera angle, and thus an algorithm is able to distinguish it from a regular pitch. 

(a) (b) (c) (d)

(e) (f) (g) (h) (i)
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tion appear to contain elements of both classes above. On a closer
examination however, they are generally DSV sports and are typified
by stylized movement as well as heavily structured broadcasting.

FEATURE EXTRACTION
Most games tend to employ rules about the play within a playing
area. For instance, in snooker play takes place on a green table.
In tennis, soccer, and football, the ball must be kept within set
bounds. All sports analysis systems therefore tend to contain
some element of playing area localization. Both camera motion
and local player or object motion are also key information bear-
ing features. Camera motion can be used to make inferences
about the direction of play in soccer and cricket, while local
motion of players and the ball are perhaps the most vital seman-
tic features. The temporal broadcast format also contains infor-
mation that can be exploited. For instance, replays tend to follow
important events in the game, so detection of replays helps to
infer those events. More sophisticated editing structure can also
be exploited. Even though this kind of information tends to be
very broadcaster, and even culturally, specific, it is still worth
considering as it could shortcut much of the pain of object
understanding. It is the extraction of this kind of information
that motivates the choice of features for sports analysis systems. 

VIEW CHARACTERIZATION
All sports analysis system design begins with the characteriza-
tion of the views available and the identification of those views
that contain the most information [2]–[8]. Classifying views

allows information to be extracted more efficiently by allowing
different processes to analyze each view. For instance, a close-
up view would yield player identity information more readily
than a long-field view, which in turn may yield game-related
player motion more readily.

In court sports, views in which the entire playing area is visi-
ble contain almost all the semantic information of the game.
Therefore, those analyzing court sports tend to attempt to parse
the sequence in terms of those views. These kinds of shots in
tennis and snooker have been called global views [6]. Field
sports contain different kinds of coverage. Xu et al. [9] label
shots in soccer as close up, medium, or long shot according to
ratio of grass-colored pixels in the shot. 

Classifying the shot type in sports can be achieved in court
sports simply by locating the playing area. It is also feasible to
model the temporal evolution of low-level image features (e.g.,
dominant color or shape moments [4]) across a shot. Denman
et al. [3] use the hidden Markov model (HMM) to parameterize
the temporal evolution of shape descriptors for each frame
across a shot (see Figure 4). Babaguchi et al. [10] detect live
and replay views by comparing dominant color distribution of
the key frames and by calculating the count of field lines.

THE PLAYING AREA
Figure 1 shows a single frame of the playing area from a selec-
tion of sports as they would appear in broadcast footage. In most
sports, the color content of frames containing the playing sur-
face differs significantly from other views. Figure 2 illustrates

[FIG2] A scatter plot of the average color of each frame from snooker and tennis broadcasts. The vertical axis is normalized red
r/(r + g + b) and the horizontal is normalized green g/(r + g + b).  An example frame from each type of shot is given a colored border
that corresponds to the color used for plotting the points corresponding to that shot. In general, the clusters show a marked correlation
with view type, but the principal content rich frames in each sport lie within a well organized (Gaussian), compact cluster indicated in
green. This justifies the use of color as a key component in many sports analysis systems.
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this point. Detection of a dominant color therefore leads to a
simple mechanism for isolating shots of the playing area. Ekin
et al., for instance, use the modes of the color distribution [8] to
find shots containing the playing area in soccer, while Dahyot et
al. [4], [11] employ other sta-
tistics like mean and vari-
ance for snooker and tennis. 

In most sports, the play-
ing area needs to be cali-
brated in some way, i.e., by
finding court markings.
For DSV sports, this is key
for semantic content
extraction since many events are correlated to player posi-
tion. Sudhir et al. [12] were perhaps the first to detect/ana-
lyze the exact court geometry in each frame of tennis using
edge and corner detection combined with a three-dimen-
sional (3-D) camera model. A much simpler approach was
applied by Kijak et al. [6] in which the Hough transform was
used to locate lines in tennis. A generic mechanism for sum-
marizing shape was developed by Denman et al. [3] and used
in tennis and snooker. The idea was that, given a simple
dominant color-based segmentation of each frame, the shape
of that segmentation mask completely characterizes the view
in sports. Figure 3 shows the significant difference between
the Hough transform of different views of the segmented
table in snooker. The geometric moment of the Hough/

Radon transform therefore changes with the view. Figure 4
shows how the eighth order moment changes with time in a
sequence. It is clear that different shots, and particularly the
table view, can be characterized this way. 

Given the detection of
frames in which the play-
ing area is in view and the
lines delineating the play-
ing area, it is then possible
to calibrate any rectangu-
lar area in the view plane.
This can be done without
the need for 3-D models

and is based on the knowledge that the diagonals of a rectan-
gle intersect at the center regardless of the view angle [3].
Figure 5 shows the successful detection of the playing area
for several types of games. 

In soccer, Ekin [8] identifies three classes of playing area
geometry: 1) long shots, 2) in-field medium shots, and 3)
out-of-field and close-up shots. The ratio of grass-colored pix-
els (hue values between 65 and 85º) to all pixels in a frame is
used to characterize each type (see Figure 5). Because only
spatial features are used, a shot type can ideally be deter-
mined from a single key frame. In some applications, only
detection of long shots may be of interest, so the problem
reduces to two-class pattern recognition. Although it is usu-
ally correct to assume that a long shot contains more grass

[FIG3] View detection by implicit scene geometry. (a) Different views of the snooker table during play. (b) Hough transform of the
segmentation mask (indicating all green areas) of respective views showing selected areas of the transform corresponding to the a
priori knowledge of rough table geometry. Each Hough transform is distinctive and so can be used to classify views (see Figure 4).
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pixels than a medium shot, it is generally difficult to find a
clear threshold value to separate medium and long shots.
Therefore, other distinguishing features are considered. One
such feature is the object size and count in each shot. In long
shots, many players cover only a small portion of the field,
while in a medium shot, only a couple of players appear in
the shot and they occupy most of the frame area.

MOTION
It is through the motion of the camera that the essential
game elements are kept in view. It therefore stands to rea-
son that the motion of the camera contains semantic infor-

mation. In cricket, Kokaram et al. [13] show that the
motion of the camera can be used to detect when a play is
about to start, the duration of the play, and the direction of
the ball after it is hit. Action in soccer [14] can also be char-
acterized in this manner. Local motion information con-
tains the motion of the players and, hence, is directly
relevant to the play. Local/global motion segmentation can
be crudely achieved by citing areas with large motion-com-
pensated frame difference (after global motion estimation)
as local motion. Local motion, and in particular motion
activity, can then also be used as a powerful feature for
sequence classification [15].

[FIG4] 8th order geometric moment for snooker footage showing keyframes corresponding to each view episode. The moment varies
with view, and can be modeled with two state HMMs. Different HMMs characterize different kinds of shots (e.g., player close up,
corner pocket view and so on). The HMM that best describes the temporal feature evolution therefore identifies the shot type.
Classifying shots in this way is made feasible only through the use of shot detection processes that separate shots using shot cut or
special effect detectors.
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[FIG5] Calibration of playing area in snooker, tennis, and soccer. (a) and (b) show superimposed lines on a snooker table and a tennis
court after correct calibration in the field of view without 3-D information (after Denman et al.). (c) and (d) show different views in
soccer indicating playing area detection (grass pixel detection) and delineation of the field (after Ekin et al. [3]). The view in soccer is
first classified as long, medium, or close-up using the grass color ratio in the quadrants indicated.
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The motion of players and the ball is crucial for an under-
standing of any game. Object/player identification is typically
achieved using some contextual color-based segmentation [8],
[12], [16]. Subsequent tracking/position information is then pos-
sible either simply by identifying
the same object in successive
frames (e.g., [12]) or explicit track-
ing (e.g., [8], [16], [17]).

In court sports, explicit player
and object tracking is instigated
after playing area localization.
Color segmentation is typically
used to detect the object once the
relevant view is confirmed. Having
located the object, tracking can
begin. Both Ekin [18] and Rea et
al. [16], [17] have proposed
schemes based on tracking color
histograms. Ekin employed a
deterministic strategy that operat-
ed on a grid of blocks in each frame, tracking being performed
by connecting blocks yielding close matches to the prototype
histograms of color for the player and referee. Rea et al.
employed a framework based on the particle filter. They were
also able to incorporate information about perspective (extract-
ed from the previous step of playing area delineation) to
improve tracking robustness (see Figure 6). Pitié et al. [19]
have recently proposed a new scheme based on presegmenta-
tion of candidate locations for objects.

SOUND
Audio features extracted from sports events can be connected with
the excitement level of the audience (e.g., whistling [20]), charac-
teristics of the energy envelope, and loudness [6], [14]. More

sophisticated processing employs
cepstral coefficients [21] and the
normalized power spectrum [22]. 

TEXT
Text is available from closed cap-
tions [10] during broadcasting and
can be used for extracting score
and player information. Of more
interest is the rich source of live
textual commentary that is associ-
ated with many sports, including
cricket, tennis, and baseball.
Cricket in particular is often broad-
casted over the Internet in textual
form, detailing all player actions.

This kind of commentary could be exploited at the semantic
level of game understanding but has yet to be fully explored. 

LOW-LEVEL EVENT DETECTION
The next stage of analysis in most proposed sports systems com-
bines extracted features to detect events or objects that are
semantically relevant. Camera views themselves are often con-
sidered to be events since a particular temporal sequence of
views is indicative of certain semantics, e.g., goals or replays.

[FIG6] (a) Tennis player. (b) Snooker ball tracking. In both cases, a particle filter tracker is instantiated after court calibration and player
detection. It uses the color distribution of the object for tracking. The images in (a), (b), and (c) show the detected bounding boxes of
the player as he moves through the court. A red box is the first position, and a green box is the last. The end  picture in both rows
shows a GUI used to train an HMM to detect the play that is occurring by modeling the tracks. In tennis, for instance, aces and baseline
rallies can be detected while in snooker, “snookers’’ can be detected.
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Direct low-level event detection may take the form of detection
of object disappearance (e.g., in snooker/pool [3]) or detection of
impacts by fusing audio and video data [11], [22]. Impact detection
(Figure 7) can be immediately connected with semantic events in
tennis (racket hits) and cricket (batsman shots) for example. 

Replays in sports broadcasts are indicators of important
events in the game. Replay detection techniques exploit editing
effects [23], detection of frame repetitions (via interframe dif-
ferences) [24], and compressed domain manipulation.
Detection in the compressed domain uses the fact that when
frame repeats occur during slow motion, the direction of frame
prediction changes. Furthermore, the bit rate increases rapidly
when a frame with new content follows repeated frames. 

BRIDGING THE SEMANTIC GAP
It is in the last stage of content analysis that events from the
previous level can be articulated to convey semantic meaning

at higher levels of the information pyramid. Figure 8 illus-
trates the hierarchy of information in a tennis match as an
example. Positions, player/ball motion, or particular
sequences of events can be used to infer high-level semantics
[16], [25], [26]. Sports is a unique domain in the sense that
many low-level events correspond immediately with elements
of game semantics. For instance, the racket hit detector dis-
cussed above can be used immediately to detect rallies.

Motion is a key feature here. In [13], a shot in cricket was
detected by a strong horizontal pan in the camera motion,
while in [12] and [16], the motion of objects themselves is used
to classify an entire play sequence in tennis and snooker.
Statistical modeling of motion content has also been proposed
for classification of sequences in different sport videos, such as
skating and athletics [15].

Scene sequencing, however, depends crucially on the
broadcasting edit style and has been exploited in [5], [7], [8],

[FIG7] (a) An audio signal from a tennis rally of five racket hits followed by crowd noise. (b) The spectrogram of the signal is computed
on 40-ms windows with 20-ms overlap. PCA analysis on the spectrum of prototype racket hits yields a cloud of points in frequency
space indicating the class of importance. (c) The distance of each spectral window from that space. Four racket hits are detected by
thresholding that distance. The corresponding images (zoom) are presented below the distance plot. The ball and the racket in rapid
motion are not always visible. On the fifth racket hit, the player lost the point because the ball could not be returned properly; hence,
the sound was atypical and it was not detected. 
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and [27]. In baseball, for instance, based on whether or not a
pitch is immediately followed by a camera break that results
in a field scene, it is possible to distinguish a pitch with field
action (a hit in most cases) from a pitch without field action
(a ball or a strike in most
cases) [28]. It is sensible
to presume that analyz-
ing intrinsic motion of
objects is a more robust
approach to the problem.
However, given the com-
putational cost of motion
estimation in general, scene sequencing can be used effective-
ly for lower-cost practical systems.

Affective content analysis (measuring the emotional
reaction of the audience) of these semantic-level events
can bring another dimension to content-based access [29],
[30]. The article by Hanjelic et al. gives a good overview of
this topic.

In general, though, the use of machine learning frame-
works is the only feasible approach to extracting game
semantics. The HMM has been the most popular tool adopted
in this area. It has been used both for modeling the temporal
evolution of low-level features for view classification (e.g.,
Dahyot/Denman et al. [3], [4], [22] (see Figure 4), Li et al.
[31], Xie et al. [32], [33]) and for modeling the temporal suc-
cession of events for different types of game semantics, e.g.,
Kijak et al. [6] (shot sequence modeling) and Rea et al. [16],
[34] (object motion modeling) (see Figure 8). In essence, the
technique requires that an HMM be created and trained for
each possible game semantic, e.g., a point in tennis or a play

in baseball. The appropriate semantic is extracted by choos-
ing the model that maximizes the likelihood of an observa-
tion sequence among the set of all models available. Figure 6
shows a GUI used to train an HMM in tennis and snooker

for object-level motion
analysis.

Independently gener-
ated rich textual game
data may be synchro-
nized with video event
segments  to  enab le
semantic access. Sports-

Ticker (www.sportsticker.com) is a textual service covering
professional and college sports in the United States. Li et al.
[28] consider automatic synchronization of the textual play-
by-play data for football and baseball. The algorithm uses
dynamic programming to articulate text and video features to
achieve synchronization. 

SPORTS VIDEO SUMMARIZATION
The goal of most of the work cited thus far was to create a
summary of a sports event useful for streaming media to low
bandwidth devices  [3], [14], [18], [20]. Each low-level event
detected (e.g., racket hit in tennis, ball pot in snooker, goal in
soccer) can yield an automated index for a sports game.
Summaries can either be condensed or selective representa-
tions of a game. The condensed summary attempts to give a
well-balanced summarized view of the whole video content. It
requires a hierarchical temporal segmentation of the video and
usually applies to sports exhibiting a clear structure, regarding
both their own rules (typically, point-driven sports like tennis)

[FIG8] (a) The information pyramid for tennis. Feature extraction and low-level event detection yield information in the bottom two
levels. Inference at the higher semantic level is typically attained by temporal modeling of the evolution of features and events,
generally with an HMM. (b) A typical HMM hierarchy for tennis, modeling evolution of shot events (rally, service) at the bottom and
higher-level events at the top (points, breaks, etc). 
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and broadcasting style. In contrast, the selective approach tar-
gets sequences that convey by themselves the highest interest
(to be specified according to the application). A selective sum-
mary of a soccer match will contain only the goals for
instance, while for a cricket game it would contain only the
wickets. The article by
Xiong et al. [54] consid-
ers generic problems in
summarization.

The creation of a
condensed summary
requires two stages: an
off-line learning stage
and a supervised recognition step. The creation of a selective
summary mainly relies on an unsupervised detection of
events. Condensed summaries tend to achieve inference with
HMMs [6], [14], [31], [35], [36]. Much of this has been dis-
cussed in the previous section. In contrast, in time-driven
team sports like soccer or rugby, interesting events (e.g., goal
scores or tries) are usually rare compared to the duration of
the game. Also, they may occur with very different visual
aspects. Thus, it is difficult to obtain a sufficient number of
diverse examples for reliable training of the HMMs attached
to each considered event, and unsupervised techniques tend
to be more dominant here.

Leonardi et al. have designed a cross-modal (audio/video)
method to detect goals in soccer games [14]. It exploits HMMs
to classify each pair of successive shots as “goals,’’ “corner
kicks,’’ and four other classes. Audio loudness is used to rank
the detected goal shots. Petkovic et al. [37] include pause rate
in the audio features combined with word spotting and video
analysis (text, motion, and color analysis) to detect highlights
in Formula 1 TV programs. Their method is based on a dynam-
ic Bayesian network (DBN). Audio/visual fusion allows Coldefy
et al. [38] to select events for summarization based on a com-
bination of detection of increase in audio pitch and volume,
with image color and large camera motion detection. In con-
trast to methods applied only to game sequences, this method
is able to select the relevant highlights within the complete
broadcast TV program including studio shots, interviews, and
commercials. In their work, over 20 hours of footage was ana-
lyzed (World Cup’98 and French League Cup), having four dif-
ferent commentator teams. Out of a possible 17 goals, 15 were
detected. A missed goal was due to a dramatic drop of the
audio gain control. The summary duration created for each 2
h, 45-min long program was about 3 min and 45 s long, i.e.,
4.5% of the total game duration and about 2.25% of the overall
TV program.

EMERGING AREAS

RETRIEVAL IN SPORTS VIDEO
The identification of semantic-level events enables direct
retrieval of those events [22]. However, by constructing a
kind of domain-specific language for the game description,

it is possible to give the user more flexible access to the sys-
tem, which would possibly allow the retrieval of events that
were not specifically marked [18]. The issue of describing
the events or features extracted from sports remains open.
The database community has acknowledged for some time

the importance of  a
description language
that allows the descrip-
tion of  a  video to be
manipulated in a for-
malized way. In current
database systems, the
only video access is

through a binary large object (blob), a black box where bits
can be stored without any interpretation or processing of
these bits. More appropriate “multimedia algebras”’ that
acknowledge the temporal nature of video streams have
been derived from the work of Allen et al. [39], [40]. XML
databases are promising, as they allow encapsulation of
more flexible data than relational DBMS. But despite the
fact that XML allows the encapsulation of numerical
descriptors and signal data itself, the high dimensionality of
that kind of description remains a problem. 

In contrast, the languages defined by the media processing
community are more description oriented. MPEG’7
(http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-
7.htm) contains a long list of descriptor definitions, description
schemes to combine these descriptors, and a language (DDL) to
define these elements. Unfortunately it is too general to provide
an efficient description for particular programs and languages
like TV anytime (http://www.tv-anytime.org/) have been specifi-
cally designed for TV program descriptions. As yet, there is no
such standardized description for sports.

A final issue in the design of language descriptors is coping
with multimodal description arising from multimodal analysis
of the stream as discussed in previous sections [41]. The two key
issues are 1) coping with contradictory information from differ-
ent streams and 2) coping with the different sampling rate of
audio (44 KHz), video (25 Hz), and text. There are three differ-
ent approaches to a solution. Audio and video analysis can be
cascaded, so for instance audio is used to detect interesting seg-
ments, then video is used to identify the events occurring [42],
[43]. Secondly, the audio and video data can be combined into a
single feature vector, which implies a synchronization require-
ment for both data streams [44]. Finally, the results of separate
analysis can be fused [45]. 

The collaboration between description languages and signal
analysis is just emerging in the sports analysis domain. This is
because the signal analysis tools are reaching maturity. It
remains to be seen whether generic sports description is feasible
or even desirable.

CONTENT-BASED SPORTS VIDEO COMPRESSION
Streaming of visual information over low-bit-rate networks is
a challenging problem. For instance, when a soccer video is
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encoded at low bit rates with uniform quality, the quality
degradation may be so severe that the ball and players are not
visible and pitch lines are lost in the most important scenes
(e.g., goals). The goal of content-adaptive sports video com-
pression is to ensure acceptable visual quality in semantically
important shots, while offering best effort quality in the other
shots [46], [47]. Coding
in this manner poses
some new technical chal-
lenges. Aside from the
problem of event detec-
tion in the video itself,
one key problem is to
quantify the relationship
between the target bit rate and assigned importance measures
in each segment. Details are outside the scope of this article,
but the reader is directed to [48] for more information.

COMMERCIAL SYSTEMS
Adding value to sports broadcasts through innovative use of
graphics is a well established exercise. Orad (www.orad.tv) has
been responsible for in-screen advertising and object-attached
labels for some time, while Dartfish (www.dartfish.com) is super-
imposing player/athletes with video histories in the same view.
Many in the mobile phone industry have recognized the potential
for sports to improve the market for new video-enabled mobile
phones. Nokia (www.nokiausa.com/sports/nba.html) and  3
(www.three.co.uk/indexcompany.omp) offer sports packages for
mobile phones. These packages include highlights and video
updates. However, it is unclear whether these packages are offered
by exploiting automatic sports analysis technology. Certainly, at
least one company—IBIS (Integrated Broadcast Information
Systems Ltd.) (www.ibistv.com)—is offering a product that facili-
tates manual compilation of sports highlights packages.

Two exceptions are Sharp Labs, United States, and Hitachi,
Japan. Hitachi has introduced Prius Navistation3 software for its
Prius line of personal computers. Navistation3 is claimed to
summarize baseball and soccer broadcast videos. The user
chooses one of the prespecified percentages for time reduction
factor of the summary. It is reported that the Hitachi software

uses crowd cheer as a fea-
ture. Navistation3 does
not attempt to detect
plays or exciting events.

Sharp Laboratories of
America has created
HiMPACT Sports and
HiMPACT Coach software

packages. HiMPACT Sports detects, in real-time, key events in
baseball and football, and replays are labeled. The technology
also supports sumo wrestling, where each bout is detected, and
soccer. Automatic synchronization with SportsTicker (or any
other structured data) is also implemented. 

A screen shot from the Sharp system is shown in Figure 9 for
American football. Users are able to retrieve event clips from dif-
ferent games stored in the database according to their queries,
e.g., using a favorite player’s name. The system can generate
event-based summaries of recorded games and it allows nonlin-
ear browsing. HiMPACT Coach uses a real-time automatic seg-
mentation algorithm (exploiting HMMs [49]) that segments
football coaching videos.

FINAL COMMENTS
This article set out to review work in sports content retrieval
and unify the various approaches under a simple framework.
The interest in this area is widespread, as evidenced not only
by the large research activity but also by reports cited in the
popular media [50]–[53]. It is interesting that one of the
major benefits of digital media and digital television in par-
ticular has been that the user will be provided with more
choices and a more interactive viewing experience. However,
with the vast amount of data provided to viewers, particularly
via the many available digital channels, the freedom to
choose has in fact manifested as the freedom to choose from
the options the broadcaster provides. It is only through the
use of automated content-based analysis that sports viewers
will be given a chance to manipulate content at a much deep-
er level than that intended by broadcasters, and hence put
true meaning into interactivity.
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