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Abstract

In Psychology it is common to conduct studies involving thservation of humans
undertaking some task. The sessions are typically recasdeddeo and used for sub-
jective visual analysis. The subjective analysis is tesliand time consuming, not only
because much useless video material is recorded but alsodmsubjective measures of
human behaviour are not necessarily repeatable. This papsents a HMM framework
for content based video analysis to facilitate the autochpsesing of video from one such
study involving Dyslexia. The framework relies on impliciteasures of human motion
that can be generalised to other applications in the donfdinrman observation.
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1 Introduction

Visual content analysis technology applied to surveillance applicationsligstablished [1,
2]. Less explored is a class of human observational applications relasmetatific study.
The field of Psychology contains many such applications which may admit swufiom
the visual content analysis domain. In surveillance applications, the ioginaf the people
involved is not strongly constrained. This poses a challenge to undeirsgdn that context. In
scientific applications, it is likely that the behaviour being observed is resirio some way
in order to make measurements or other inferences. In Psychology thisemiaalzontrolled
environment or a particular set of movement/behaviours are being @olsera natural setting.
This implies that content analysis could bridge the semantic gap more easily dothatn.

Previous work in Psychology has asserted a connection betweenmefl@ment in chil-
dren and a Specific Learning Disability (Dyslexia) [7]. To investigate thisieation Psycholo-
gists at Trinity Collegewwv. dysvi deo. or g have designed a set of experiments that attempt
to quantify this relationship in a study based on 150 children. The centaalsdbat children
with a propensity to develop Dyslexia are unable to execute particular motemwéhout
some unavoidable associated reflex. Figure 1 shows an example ofdnmeuement. The
experimenter rotates the head of a child right and left. While doing so anlimesy bend in
the arms is noted. The idea is that the presence of that reflex is in some malpisa with the
presence of Dyslexia.

Work presented in Joyeux et al[3] reports on BysVideo project at Trinity College that
was set up to observe the development of 150 children between aggsats/ Video record-
ings are made of children observed though 3 sessions, each of 20 mati®duand 6 months
apart. Unfortunately, in each recording of 20 mins, less than 5 mins islusatarial. Chil-
dren may take a long time to settle down and may need to be cajoled through ssioh s€he
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Figure 1: A demonstration of the ATNR exercise

Dysvideo project exploits automated content based audio and videoianalgiow Psychol-
ogists to index directly the useful portion of the video. Preliminary work doraated parsing
was presented in Joyeux et al[3]. The focus there was the framewsitgrdand algorithms for
coarse parsing and encoding of metadata by exploiting the audio streanparBiveg provided
was good enough such that the estimated index points were guaranteedaio toe useful
visual information. The size of the indexed portion typically contained aB6wteconds of
material before the start and after the end of the actual useful motiomirmepe itself. This
was adequate for the psychologists to browse quickly to the start of tid useordings and
perform the subjective motion measurement.

Recall that the point of the programme is to measure the presence of cert&n tresed
reflexes in children. Currently for psychologists the only reliable wayaihgl this is for a
human to assess the degree to which the child cannot hold a particular pokitotiue that
motion tracking equipment exists for this purpose, but magnetic based waskéxpensive,
while visual marker based tracking would require the cooperation of tihe ichwearing the
markered suit and not damaging the markers for future use. Quantitéival motion mea-
sures can be designed by estimating the motion of the particular limb in the fieldvaf vie
The important observation here is that this is only possible by ensuring thatdtion mea-
surement of the correct limb portion is being made and starts at the right tinezefdre for
guantitative assessment of motion a finer granularity of parsing is neéel.in this context
was presented recently by Kokaram et al [4]. There the idea was @nuseplicit measure of
rotational motion to index measurable episodes directly. This work propostesd a more
robust framework for inference based on motion using the Hidden Marladel. The idea is
to train HMMs to detect the specific type of motion required. This work also irggapon
the range of motion features used and proposes the use of a novet fisatparsing: the curl
of the estimated motion field.

The next two sections provide background for the reader that islieedppreciating the
context of the parsing algorithms developed. Section 5 the introduceswhieatires and the
remaining sections present the use of the HMM framework.

2 Oveview

Fig 2 shows the difference between the markers provided by audio gdaBjiand the exact
start and end of a particular session, Test 10. The audio parsingésediby allowing the user
to insert a specific audio tone into the recording using a handheld PC (PalmPdstprocess-
ing the audio signal [3] allows DTMF audio tones to be detected . The figusirdiies the
importance and reliability of using audio markers to reject unwanted contetttisl Test, the
experimenter firmly rotates the head of the child while the child is on all fours.hpothesis
is that in children with aetained reflexone of the arms will bend at the elbow involuntarily
during the motion of the head. To isolate the relevant content for analysisecisssary to i)
locate arms during that motion and ii) identify video portions during which thd featated.
For some time before the start of the actual experiment, the child is coactiedagnundergo
a few trials, in addition the child may move around and simply not be in the field of. vie
During the relevant video portions, the arm location will be more stable, abthtion of the
head more coherent. Therefore these features can be used to indedethevith increased
granularity. The starting point is an estimate of body location.
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Figure 2: An example of content throughout a typical recording of 60 milie location of
the audio markers coarsely delineates the relevant video for one Tdstis®nhown at mins
13 and 14. The actual useful content lies inside this period, indicated dyypical frames.
The paper focuses on using motion based features for delineating tleisstaxdt and end of
the experiment within the coarse audio marker period. Note that the ideaisfecimdexing is
to quickly reject the outlier content e.g. when the child is not in view, not ecatpng, or not
assuming the start position.

3 Body Localisation

Head and arm localisation is facilitated by skin detection. This is achieved inypdescolour
segmentation process. The requirement is to configure a label figldhat is 1 at pixel sites
x containing skin an@ otherwise. The algorithm is as follows.

1. Candidate pixels expressing skii) = 1) are detected by colour thresholding (from
[8]) using the following criterion

(R > 95)&(G > 80)&(B > 40)
1 ifq &R >G—15)&(R > B)
&((R —min(G, B)) > 10)
0 Otherwise

l(x) = 1)

The various parameters used in delineating the colour region were detdrrinethe
lighting used in the pictures recorded. This is the same throughout 100 dfoesord-
ing. The first two criterion delineate skin colour, while the last one rejetss farms
due to pixels that are near grey or near yellow.

2. The label field/(x) is post-processed to smooth the surface. This is achieved using
morphological closing with a dilation element of 3 pixels and a erosion eleme#t of
pixels.

As shown in figure 1, the arms are generally the largest area of skirsedpo the view.
In addition they are near vertical. Hence a vertical sum (integration) dftied field yields
modes corresponding to the horizontal position of the arms. Given thetidetéeld /(x) the
vertical projection is defined g8’'[h] = >, I(h, k). Noise inp“[h| is removed by filtering
with a Gaussian filter with 9 taps and variance 1.5. To detect modg$//if the two most
significant maxima are selected that are at least 50 pixels apart in PALsviddos allows
robustness to false alarms within a single arm segment. Figure 3 clearly dt®wasrelation
between lobes and horizontal arm location for 2 different recordifgsdfferent children.
Note the false alarms due to poorly detected skin in the background (duarngely coloured
walls) are rejected with this process.

Locating the hands is achieved through the horizontal projection of theflataep” [k] =
> n U(h, k). The first maxima corresponds roughly to the middle of the hand positiorubeca
of the orientation of the child in the view. This is shown in Figure 3. The vesf fion-zero
projection corresponds to the start of the hand location. The hand sigérsated to be the
width of the lobes corresponding to each afth, The wrist location is hence taken to bé D.



Figure 3: Example frames from different sequences showing the reddkén detection and
hence body localisation. The detected skin pixels are coloured in red.hdfimontal and
vertical projections of the label field are shown in green along the leftoatidm edges of
each frame. This illustrates that the lobes in vertical projection corresfwoadn location.
The first mode in vertical projection corresponds to arm location.

In addition, the average forearm length is approxima2eltimes the hand width in this view,
hence the location of the elbow can be roughly delineated vertically. Thidesna bounding
box to be placed that contains the hand and arm locations. The procassddd be better than
99% accurate in these sequences, provided the child adopts the positicin. Typical results
are shown in Figure 3. For video examples, see www.sigmedia.tv/resedeetifig/dyslexia/.
The location of the arms is used to bound the head location horizontally. folerbead
location is assumed to be contained within a column of the image bounded by thed eifylat
arm locations. Unfortunately, detection of the head using projections izlable because in
horizontal projection the face and arms of the experimenter can oftea aausiguity.

4 Motion Based Parsing: Features

The ultimate aim is to detect the contiguous sequence of frames showing ratbticnhead.
Given the delineation of a region containing the head, it is possible to estimatglylithat
rotation, and that can be used to attempt parsing as in [4].

For each frame, gradient based motion estimation [5] was performed Wieprevious
frame and motion vectors were stored. Motion vectors either side of the dbaaies were
removed for improvement in the information about the child since only thosenrgewere
applicable. Using the motion vectors themselves and plotting there perpendiicesain an
accumulator array resulted in finding an approximate centre of rotation.iShased on the
principle that a perpendicular to a tangent of a circle will always passigifirthe centre of the
circle. The central four images in figure 4 shows a selection of accumalatyrs ranging over
a head rotation sequence. The distance between the centre’s of rotatiofrdme to frame
was consistently small and stable when rotation was occurring. This wdsaasefeature to
indicate rotation.

In this work, the use of the curl of the motion vector field is also exploited to yaeld
implicit measure of rotation. Given a motion vector at sitis specified asl = [d;(x), d2(x)],
where the horizontal and vertical displacementsdarandds , the curl of the motion at that
siteC is given as below

& =
S

dy
dy dp
= (G + ) )

The curl therefore is a vector pointing out of the image plane with a lengthistipabpor-
tional to the amount of rotation at that site. The bottom four images in figurew alselection
of the curl matrices ranging over a head rotation sequence.



Figure 4: The top four images show a selection of frames used to demorstetgience of
head rotation. The central four images show the same sequence foctimwdator array and
the bottom four images show the sequence for the curl matrix. All of theeaimoages have
been zoomed in on to improve clarity.

As can be seen in the central images in figure 4, the peaks in the cursponekwell to
centre of rotation and there is stability in position during rotation. The distaeteelen the
maximum peaks from frame to frame indicates the level of stability and it candeswda that
there is relatively little motion of the maximum peak during rotation. The distanceureeas
between frames for the maxima was used as a feature. It is also obsehzitife peak value
of the curl rises and falls relatively smoothly with rotation. The derivativime graph of peak
values was also used as a feature.

Figure 5: Example frame used to demonstrate watershed segmentation af theface.

The main mass of the maximum peak during rotation are observed to be relysooa:
stant. To use this information, it is necessary to segment out the main massuoflteerface.
This is done with watershed segmentation [6] on that inverted curl sydaaEmonstrated in
figure 5. The masses of the maximum peak for each frame was used &sra feaur HMM
models.

It was also found that the graph of the peak masses was consistently aiginfalling
during rotation. The derivative of the graph of the area under the maxipaak for the entire
sequence was also considered to contain useful information and wesdasia feature vector.

The set of features used for motion based parsing can be summaristidas:f

1. The distance from maximum peak to maximum peak of the accumulator aamy fr
frame to frame. See figure 4 for illustration of process.

2. The distance from maximum peak to maximum peak of the curl surfaceffeone to
frame.

3. The value of the maximum peak of the curl surface.
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Figure 6: An example set of feature vectors to be used in the training ofMi.H he red
marking represent manual segmentation markers. Figure (a) & (b)smpsethe distance
between the maximum peaks in the accumulator array and curl matrix from frafreme
respectively. Figure (c) is the graph of the maximum peak values in thenairix and figure
(d) is area under the peak surface. Figure (e) & (f) are the demdstif the graphs of figure
(c) & (d) respectively.

4. The area under the maximum peak surface, as segmented by the acedggirithm on
the curl surface.

5. The derivative of the graph of the maximum peaks of curl surfacidéoentire sequence.

6. The derivative of the graph of the area for the maximum peaks ofscuidce for the
entire sequence.

This feature vectof,,, containing these 6 measures, is measured for each frame in the sequence
Figure 6 shows the evolution of each component over a an entire exsegjgence.

5 Motion Based Parsing: Modelling

The HMM is a well established framework for time series modelling and has \mgrsuc-
cessful in speech recognition [9]. The idea here is to use two HMMs to Intteelevolution of
the multidimensional feature vectfy. One HMM models the non-rotation segments and the
other models the rotation segments. Given a manually labelled training set, &megbers of
each HMM can be established. These models are used in parsing newlexairie use of
HMMs for modelling video features is a relatively recent idea, exploitedessful for sports
by Rea et al [10].

Fig 5 shows the structure of the HMM used in this framework. It is a four $t&4&1 with
the ability to transit from any state to any other state. Note the differencethestandard left
to right models employed in speech recognition applications. The HTK Spgeecbgnition
Toolkit was used to initialise and train the statistical parameters of our HMM mo@Balsgssian
distributions were assumed with single mixtures per state distribution. A totahafi@8s were
selected from session 1, 16 to be used for training and 7 for testing.riféiéon used to select
the videos was based on arm separations. An example of training datavis ishio figure 6.
The performance of the resulting models is presented in section 6.



Figure 7: A 4 state HMM Model with possible transitions in all directions. This W@ model
used for both the rotational and non-rotational HMM's. Although with diffg transition
probabilities and feature statistics.

6 Resaults

Video selection was difficult because the quality of the child’s motion wasyéaterhe main
goals of the video recordings were the ability for direct analysis by thehydggists, secondary
was our analysis of the videos. As such the demonstrator focused mgust@acording the
exercise for human evaluation as opposed to improved conditions redoiiredr evaluation.
So if the size of the child is too small relative to the frame the motion of child will be oalls
relative to the larger motion of the experimenter which would be clearly visiblesihoa of
wide angle. Arm separations are a clear indicator as to the size of the dhtide¢o the frame
size i.e. zoom factor. The selection of 23 videos were chosen to bestegy the exercise on
the bases that they were the videos with the largest visible children.

The 23 videos had to be manually segmented. The frame numbers for therstarnhd
of any rotational occurrence were noted for each sequence. Taagal segmentations were
compared with the outputs generated by the HMM models. The analysis of theahssay-
mentation markers versus the HMM markers had to take into account the huroantcan
seen for individual video comparisons that there is a difference battheetwo markers of a
couple of frames. Human observations follow the exercise start and fimisb so than the
rotational occurrences. Taking into account that human observatiema@e subjective, an
error of 12 frames was deemed acceptable. The results below refleatiéiitation.

Recall Correct Precisi Correct
ecall = recision =
Correct + Missed Correct + False

Recall | Precision
Test Video 1| 81.7109| 86.8339
Test Video 2| 77.7778| 82.3529
Test Video 3| 47.2603| 50.4263
Test Video 4| 62.7525| 64.4617
Test Video 5| 55.9361| 77.044

Test Video 6| 62.6935| 68.1818
Test Video 7| 63.6879| 72.1865

Results to date have been extremely promising. By modelling the describetbfeaith
the HMM framework the detection of rotational occurrences has been wegrsignificantly
over data thresholding, which was the previous method of data analysspeFformance of
test video 3 is poor and may be attributable to poor motion vectors from theardgte. This
will be further investigated.



7 Final Comments

Future work includes trying to gain a better understanding of the contribafitime features
to the recognition framework. Refining the manual segmentations to only takadgotunt
actual rotations and not other motion. Adapting the algorithm to poorer quadigos, i.e.
ones where the child appears small in the frame. These refinements willlippaprove the
HMM Models and accuracy of detection.
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