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Abstract

In Psychology it is common to conduct studies involving the observation of humans
undertaking some task. The sessions are typically recordedon video and used for sub-
jective visual analysis. The subjective analysis is tedious and time consuming, not only
because much useless video material is recorded but also because subjective measures of
human behaviour are not necessarily repeatable. This paperpresents a HMM framework
for content based video analysis to facilitate the automated parsing of video from one such
study involving Dyslexia. The framework relies on implicitmeasures of human motion
that can be generalised to other applications in the domain of human observation.
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1 Introduction

Visual content analysis technology applied to surveillance applications is well established [1,
2]. Less explored is a class of human observational applications related toscientific study.
The field of Psychology contains many such applications which may admit solutions from
the visual content analysis domain. In surveillance applications, the behaviour of the people
involved is not strongly constrained. This poses a challenge to understanding in that context. In
scientific applications, it is likely that the behaviour being observed is restricted in some way
in order to make measurements or other inferences. In Psychology this may be in a controlled
environment or a particular set of movement/behaviours are being observed in a natural setting.
This implies that content analysis could bridge the semantic gap more easily in thatdomain.

Previous work in Psychology has asserted a connection between reflexmovement in chil-
dren and a Specific Learning Disability (Dyslexia) [7]. To investigate this connection Psycholo-
gists at Trinity Collegewww.dysvideo.org have designed a set of experiments that attempt
to quantify this relationship in a study based on 150 children. The central idea is that children
with a propensity to develop Dyslexia are unable to execute particular movements without
some unavoidable associated reflex. Figure 1 shows an example of one such movement. The
experimenter rotates the head of a child right and left. While doing so any involuntary bend in
the arms is noted. The idea is that the presence of that reflex is in some way correlated with the
presence of Dyslexia.

Work presented in Joyeux et al[3] reports on theDysVideo project at Trinity College that
was set up to observe the development of 150 children between ages 4-7years. Video record-
ings are made of children observed though 3 sessions, each of 20 mins duration, and 6 months
apart. Unfortunately, in each recording of 20 mins, less than 5 mins is useful material. Chil-
dren may take a long time to settle down and may need to be cajoled through each session. The



Figure 1: A demonstration of the ATNR exercise

Dysvideo project exploits automated content based audio and video analysis to allow Psychol-
ogists to index directly the useful portion of the video. Preliminary work on automated parsing
was presented in Joyeux et al[3]. The focus there was the framework design and algorithms for
coarse parsing and encoding of metadata by exploiting the audio stream. Theparsing provided
was good enough such that the estimated index points were guaranteed to contain the useful
visual information. The size of the indexed portion typically contained about20 seconds of
material before the start and after the end of the actual useful motion experiment itself. This
was adequate for the psychologists to browse quickly to the start of the useful recordings and
perform the subjective motion measurement.

Recall that the point of the programme is to measure the presence of certain motion based
reflexes in children. Currently for psychologists the only reliable way of doing this is for a
human to assess the degree to which the child cannot hold a particular position. It is true that
motion tracking equipment exists for this purpose, but magnetic based tracking is expensive,
while visual marker based tracking would require the cooperation of the child in wearing the
markered suit and not damaging the markers for future use. Quantitative visual motion mea-
sures can be designed by estimating the motion of the particular limb in the field of view.
The important observation here is that this is only possible by ensuring that the motion mea-
surement of the correct limb portion is being made and starts at the right time. Therefore for
quantitative assessment of motion a finer granularity of parsing is needed.Work in this context
was presented recently by Kokaram et al [4]. There the idea was to usean explicit measure of
rotational motion to index measurable episodes directly. This work proposesinstead a more
robust framework for inference based on motion using the Hidden Markov model. The idea is
to train HMMs to detect the specific type of motion required. This work also improves upon
the range of motion features used and proposes the use of a novel feature for parsing: the curl
of the estimated motion field.

The next two sections provide background for the reader that is useful in appreciating the
context of the parsing algorithms developed. Section 5 the introduces the new features and the
remaining sections present the use of the HMM framework.

2 Overview

Fig 2 shows the difference between the markers provided by audio parsing [3] and the exact
start and end of a particular session, Test 10. The audio parsing is achieved by allowing the user
to insert a specific audio tone into the recording using a handheld PC (PalmPilot). Postprocess-
ing the audio signal [3] allows DTMF audio tones to be detected . The figure illustrates the
importance and reliability of using audio markers to reject unwanted content. In this Test, the
experimenter firmly rotates the head of the child while the child is on all fours. The hypothesis
is that in children with aretained reflexone of the arms will bend at the elbow involuntarily
during the motion of the head. To isolate the relevant content for analysis it isnecessary to i)
locate arms during that motion and ii) identify video portions during which the head is rotated.
For some time before the start of the actual experiment, the child is coached and may undergo
a few trials, in addition the child may move around and simply not be in the field of view.
During the relevant video portions, the arm location will be more stable, and the rotation of the
head more coherent. Therefore these features can be used to index thevideo with increased
granularity. The starting point is an estimate of body location.



Figure 2: An example of content throughout a typical recording of 60 mins. The location of
the audio markers coarsely delineates the relevant video for one Test. This is shown at mins
13 and 14. The actual useful content lies inside this period, indicated by two typical frames.
The paper focuses on using motion based features for delineating this exact start and end of
the experiment within the coarse audio marker period. Note that the idea of coarse indexing is
to quickly reject the outlier content e.g. when the child is not in view, not cooperating, or not
assuming the start position.

3 Body Localisation

Head and arm localisation is facilitated by skin detection. This is achieved by a simple colour
segmentation process. The requirement is to configure a label fieldl(x) that is 1 at pixel sites
x containing skin and0 otherwise. The algorithm is as follows.

1. Candidate pixels expressing skin (l(x) = 1) are detected by colour thresholding (from
[8]) using the following criterion

l(x) =
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(1)

The various parameters used in delineating the colour region were determined from the
lighting used in the pictures recorded. This is the same throughout 100 hoursof record-
ing. The first two criterion delineate skin colour, while the last one rejects false alarms
due to pixels that are near grey or near yellow.

2. The label fieldl(x) is post-processed to smooth the surface. This is achieved using
morphological closing with a dilation element of 3 pixels and a erosion element of4
pixels.

As shown in figure 1, the arms are generally the largest area of skin exposed in the view.
In addition they are near vertical. Hence a vertical sum (integration) of thelabel field yields
modes corresponding to the horizontal position of the arms. Given the detection field l(x) the
vertical projection is defined aspv[h] =

∑

k l(h, k). Noise inpv[h] is removed by filtering
with a Gaussian filter with 9 taps and variance 1.5. To detect modes inpv[h] the two most
significant maxima are selected that are at least 50 pixels apart in PAL videos. This allows
robustness to false alarms within a single arm segment. Figure 3 clearly showsthe correlation
between lobes and horizontal arm location for 2 different recordings of 2 different children.
Note the false alarms due to poorly detected skin in the background (due to strangely coloured
walls) are rejected with this process.

Locating the hands is achieved through the horizontal projection of the label field ph[k] =
∑

h l(h, k). The first maxima corresponds roughly to the middle of the hand position because
of the orientation of the child in the view. This is shown in Figure 3. The very first non-zero
projection corresponds to the start of the hand location. The hand size is estimated to be the
width of the lobes corresponding to each arm,D. The wrist location is hence taken to be1.5D.



Figure 3: Example frames from different sequences showing the resultsof skin detection and
hence body localisation. The detected skin pixels are coloured in red. Thehorizontal and
vertical projections of the label field are shown in green along the left andbottom edges of
each frame. This illustrates that the lobes in vertical projection correspondto arm location.
The first mode in vertical projection corresponds to arm location.

In addition, the average forearm length is approximately2.5 times the hand width in this view,
hence the location of the elbow can be roughly delineated vertically. This enables a bounding
box to be placed that contains the hand and arm locations. The process is found to be better than
99% accurate in these sequences, provided the child adopts the correctposition. Typical results
are shown in Figure 3. For video examples, see www.sigmedia.tv/research/indexing/dyslexia/.

The location of the arms is used to bound the head location horizontally. Therefore, head
location is assumed to be contained within a column of the image bounded by the left and right
arm locations. Unfortunately, detection of the head using projections is notreliable because in
horizontal projection the face and arms of the experimenter can often cause ambiguity.

4 Motion Based Parsing: Features

The ultimate aim is to detect the contiguous sequence of frames showing rotationof the head.
Given the delineation of a region containing the head, it is possible to estimate directly that
rotation, and that can be used to attempt parsing as in [4].

For each frame, gradient based motion estimation [5] was performed wherethe previous
frame and motion vectors were stored. Motion vectors either side of the located arms were
removed for improvement in the information about the child since only those vectors were
applicable. Using the motion vectors themselves and plotting there perpendicular lines in an
accumulator array resulted in finding an approximate centre of rotation. Thisis based on the
principle that a perpendicular to a tangent of a circle will always pass through the centre of the
circle. The central four images in figure 4 shows a selection of accumulatorarrays ranging over
a head rotation sequence. The distance between the centre’s of rotation from frame to frame
was consistently small and stable when rotation was occurring. This was used as a feature to
indicate rotation.

In this work, the use of the curl of the motion vector field is also exploited to yieldan
implicit measure of rotation. Given a motion vector at sitex is specified asd = [d1(x), d2(x)],
where the horizontal and vertical displacements ared1 andd2 , the curl of the motion at that
siteC is given as below

C(d1, d2,x) =
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The curl therefore is a vector pointing out of the image plane with a length thatis propor-
tional to the amount of rotation at that site. The bottom four images in figure 4 show a selection
of the curl matrices ranging over a head rotation sequence.



Figure 4: The top four images show a selection of frames used to demonstratea sequence of
head rotation. The central four images show the same sequence for the accumulator array and
the bottom four images show the sequence for the curl matrix. All of the above images have
been zoomed in on to improve clarity.

As can be seen in the central images in figure 4, the peaks in the curl correspond well to
centre of rotation and there is stability in position during rotation. The distance between the
maximum peaks from frame to frame indicates the level of stability and it can be observed that
there is relatively little motion of the maximum peak during rotation. The distance measure
between frames for the maxima was used as a feature. It is also observablethat the peak value
of the curl rises and falls relatively smoothly with rotation. The derivative of the graph of peak
values was also used as a feature.

Figure 5: Example frame used to demonstrate watershed segmentation of the curl surface.

The main mass of the maximum peak during rotation are observed to be reasonably con-
stant. To use this information, it is necessary to segment out the main mass of thecurl surface.
This is done with watershed segmentation [6] on that inverted curl surface, as demonstrated in
figure 5. The masses of the maximum peak for each frame was used as a feature in our HMM
models.

It was also found that the graph of the peak masses was consistently risingand falling
during rotation. The derivative of the graph of the area under the maximumpeak for the entire
sequence was also considered to contain useful information and was so used as a feature vector.

The set of features used for motion based parsing can be summarised as follows:

1. The distance from maximum peak to maximum peak of the accumulator array from
frame to frame. See figure 4 for illustration of process.

2. The distance from maximum peak to maximum peak of the curl surface fromframe to
frame.

3. The value of the maximum peak of the curl surface.
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Figure 6: An example set of feature vectors to be used in the training of an HMM. The red
marking represent manual segmentation markers. Figure (a) & (b) represents the distance
between the maximum peaks in the accumulator array and curl matrix from frameto frame
respectively. Figure (c) is the graph of the maximum peak values in the curlmatrix and figure
(d) is area under the peak surface. Figure (e) & (f) are the derivatives of the graphs of figure
(c) & (d) respectively.

4. The area under the maximum peak surface, as segmented by the watershed algorithm on
the curl surface.

5. The derivative of the graph of the maximum peaks of curl surface for the entire sequence.

6. The derivative of the graph of the area for the maximum peaks of curlsurface for the
entire sequence.

This feature vectorfn, containing these 6 measures, is measured for each frame in the sequence.
Figure 6 shows the evolution of each component over a an entire exercisesequence.

5 Motion Based Parsing: Modelling

The HMM is a well established framework for time series modelling and has beenvery suc-
cessful in speech recognition [9]. The idea here is to use two HMMs to model the evolution of
the multidimensional feature vectorfn. One HMM models the non-rotation segments and the
other models the rotation segments. Given a manually labelled training set, the parameters of
each HMM can be established. These models are used in parsing new examples. The use of
HMMs for modelling video features is a relatively recent idea, exploited successful for sports
by Rea et al [10].

Fig 5 shows the structure of the HMM used in this framework. It is a four stateHMM with
the ability to transit from any state to any other state. Note the difference fromthe standard left
to right models employed in speech recognition applications. The HTK SpeechRecognition
Toolkit was used to initialise and train the statistical parameters of our HMM models. Gaussian
distributions were assumed with single mixtures per state distribution. A total of 23videos were
selected from session 1, 16 to be used for training and 7 for testing. The criterion used to select
the videos was based on arm separations. An example of training data is shown in in figure 6.
The performance of the resulting models is presented in section 6.



Figure 7: A 4 state HMM Model with possible transitions in all directions. This was the model
used for both the rotational and non-rotational HMM’s. Although with differing transition
probabilities and feature statistics.

6 Results

Video selection was difficult because the quality of the child’s motion was essential. The main
goals of the video recordings were the ability for direct analysis by the psychologists, secondary
was our analysis of the videos. As such the demonstrator focused more onjust recording the
exercise for human evaluation as opposed to improved conditions requiredfor our evaluation.
So if the size of the child is too small relative to the frame the motion of child will be too small
relative to the larger motion of the experimenter which would be clearly visible in ashot of
wide angle. Arm separations are a clear indicator as to the size of the child relative to the frame
size i.e. zoom factor. The selection of 23 videos were chosen to best represent the exercise on
the bases that they were the videos with the largest visible children.

The 23 videos had to be manually segmented. The frame numbers for the startand end
of any rotational occurrence were noted for each sequence. Thesemanual segmentations were
compared with the outputs generated by the HMM models. The analysis of the manual seg-
mentation markers versus the HMM markers had to take into account the human error. It can
seen for individual video comparisons that there is a difference between the two markers of a
couple of frames. Human observations follow the exercise start and finishmore so than the
rotational occurrences. Taking into account that human observations are more subjective, an
error of 12 frames was deemed acceptable. The results below reflect thisadaptation.

Recall =
Correct

Correct + Missed
Precision =

Correct

Correct + False

Recall Precision
Test Video 1 81.7109 86.8339
Test Video 2 77.7778 82.3529
Test Video 3 47.2603 50.4263
Test Video 4 62.7525 64.4617
Test Video 5 55.9361 77.044
Test Video 6 62.6935 68.1818
Test Video 7 63.6879 72.1865

Results to date have been extremely promising. By modelling the described features with
the HMM framework the detection of rotational occurrences has been improved significantly
over data thresholding, which was the previous method of data analysis. The performance of
test video 3 is poor and may be attributable to poor motion vectors from the original data. This
will be further investigated.



7 Final Comments

Future work includes trying to gain a better understanding of the contributionof the features
to the recognition framework. Refining the manual segmentations to only take intoaccount
actual rotations and not other motion. Adapting the algorithm to poorer quality videos, i.e.
ones where the child appears small in the frame. These refinements will hopefully improve the
HMM Models and accuracy of detection.
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