© ® N o o A w N

11
12

13

14
15

16

17

18

19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Online Submission ID: 5

Accelerated Entry Point Search Algorithm for Real-Time Ray-Tracing

Figure 1. Four of the scenes used for testing purposes. From the IBfiry Forest” from the Utah 3D Animation Repository, Legofem
the Ompf forum model repository and Marko Dabrovic’'s Spotzaum and Sibenik Cathedral

Abstract -

38
Traversing an acceleration data structure, such as thed@ayixol-
ume Hierarchy or kD-tree, takes a significant amount of thal to |
time to render a frame in real-time ray tracing. We presemia t
phase algorithm based upon MLRTA for finding deep entry psomt
in these tree acceleration data structures in order to sgetdver-
sal. We compare this algorithm to a base MLRTA |mplementat|o
Our results indicate an across-the-board decrease indifiredtthe
entry point and an increase in entry point depth. The oveﬂlﬂ
formance of our real-time ray-tracing system shows an aszén
frames per second of up to 36% over packet-tracing and 18% ove
MLRTA. The improvement is algorithmic and is therefore amﬂ
ble to all architectures and implementations.

48

49
CR Categories: 1.3.7 [Three-Dimensional Graphics and Re;
alism]: Raytracing, Beam Tracing.— [I.3.6]: Methodologgda .,
Techniqgues—Graphics data structures and data types.

Keywords: real-time ray-tracing, MLRTA, BVH, kD-tree, traver-52
sal algorithm

53
54

1 Introduction 55

56

The naive ray-tracing algorithm involves the tracing ofgié rays *
through every object in the scene database to determinentitie i %
section nearest to the ray origin [Appel 1968] [Whitted 1]9&bok *°
et al. 1984]. Modern ray-tracers use an acceleration datetste, ©
such as the BVH or kD-tree, to reduce the candidate set ferset- *
tion from N objects taog N [Glassner 1989]. Up to 60% of total®
rendering time is spent traversing these accelerationstiatetures
[Benthin 2006]. The simple tracing of single rays throughaan
celeration data structure, such as the kD-tree or Boundaignve

Hierarchy, which we refer to as “mono-tracing”, was first noyed

upon by traversing multiple rays at once [Havran and BitR@£10].

Packet-tracing [Wald et al. 2001] [Wald 2004] [Benthin 2D&6
a technique that groups coherent rays (that is, rays wittively

similar directional vectors and origin point componentgjdther to
trace them through the acceleration data structure simediasly.
Highly coherent ray packets will tend to traverse the treabé@same
fashion. By leveraging the SIMD capabilities of modern CRU a-

64
65
66
67
68
69
70
7

chitectures, several or all the rays in a packet can be aubmat at
once.

2 MLRTA

The Multi Level Ray-Tracing Algorithm (MLRTA) [Reshetov at.
2005] further extends the concept of packets to a more gecasa

by using aray proxy frustum This frustum is typically composed
of the corner rays of a large packet. It acts as a proxy for ttags

lie inside the frustum, regardless of whether or not thegs have
actually been generated yet. At its simplest, the ray prougtéim
may be used for trivial rejects against the axis-alignednbdng
box (AABB) of the scene geometry. We may, for example, form a
ray proxy frustum that bounds a set of primary rays corregjpon

to a tile on the image plane. If the ray proxy frustum does not
intersect the AABB, we can conclude that all rays inside toe r
proxy frustum do not intersect it either.

2.1 Entry Points

Itis possible that a ray proxy frustum may traverse the trebend

up wholly in a single leaf. For example, when traversing atké,
the ray proxy frustum may not overlap any splitting planes.tide
frustum serves as a proxy for any rays in the frustum, lobjicahy
one of these rays traversing the kD-tree will end up in theesam
single leaf. Therefore, as we know the ray will end up in a gjwec
leaf, there is no need to traverse the tree at all. We may gimpl
intersect the ray with any objects in the leaf. We therefanethat
the traversal algorithm enters the tree at that leaf nodee I&af
node is ouentry pointinto the tree.

The above illustrates an extreme case where the ray progtufru
does not overlap any split planes and hence no other leakrsmle
that the entry point is at a leaf node, requiring no travelsed case
where the ray proxy frustum overlaps two leaf nodes comgini
objects, both children of a common parent, the entry poithés
parent node as rays inside the ray proxy frustum may terminat
either node. If one of the leaf nodes contained no objects ag m
safely ignore it as no intersections will occur in that |€Hfie entry
point is then the other leaf node.

Expanded to the general case, we define the entry point as:

73
74

75

76

7
78
79
80
81

82
83

84

85
86
87

88

89
90

91

92
93
94

95

96
97
98
99
100

101

102

103

104
105
106
107

108

109

110

111

112
113
114

115

116

117
118
119
120
121

122

Online Submission ID: 5

“the common ancestor node in the tree of all leaves that dantas

objects overlapped fully or partially by the ray proxy frust” 124
125
2.2 Entry Point Search 126
127
MLRTA is implemented using the following procedure: 128

129

of the acceleration data structure by rays which the frugtuox-
ies. Deeper entry points are also beneficial on GPUs whetkssta
are difficult to implement due to hardware constraints [fFaad
Sugerman 2005]. As the stack size required for a full traldrem
entry point to leaf isll — de, wheredl is the leaf depth ande the
depth of the entry point, by increasinlg, we lower memory re-
quirements and the possibility that stack restarts areinedjwhen

e Prepare a stack data structure capable of holding kD-tsee using a GPU tree traversal algorithm with a limited stacle §iorn

nodes and the corresponding AABB of the node in the
kD-tree together in a single stack element. This is termed th
bifurcation stack. 132

133

134
e Starting at the root node, begin traversing the kD-tree with

the ray proxy frustum. s

o If the ray proxy frustum must traverse both children of the

et al. 2007].

By finding the entry point faster, we accelerate the traversthe
kD-tree, yielding more CPU time for triangle intersectiomahad-
ing, ultimately culminating in an increase in renderer tigloput.

3.1 Phasel

Phase one of our algorithm prepares an entry point candiate

current node, the current node and current AABB are pushed in a similar fashion to MLRTA. We traverse the ray proxy fiust

onto the bifurcation stack. 138

139

e The kD-tree is traversed using the ray proxy frustum unél tﬁ

first occupied leaf is found. o

143

e The bifurcation stack is now frozen. No further entries mdy

be added to it. The current leaf is marked as the current etitry

point candidate.

146

through the kD-tree, adding nodes where both children meisteb
versed to the candidate list. As there is a high probabitiat & ray
proxy frustum reaching a leaf node does not actually inténséh
any object in that leaf node [Reshetov 2007], we do not frekeee
candidate list until the ray proxy frustum has reached aifeahich
it actually overlaps objects stored in the leaf. In contrdftRTA
stops when it reaches any full leaf node, regardless of venetie
ray proxy frustum overlaps objects stored in that leaf or not

Frustum Culling

e For each node on the bifurcation stack, mark the node, as | order to ascertain whether the ray proxy frustum has msheh

a possible candidate and investigate if the tree branch pot
previously taken below that node contains an occupied leaf

overlapped by the ray proxy frustum. If so, the possiple

candidate is marked as the new entry point. o

152

o Continue until the bifurcation stack is empty. 188

154

155

e Return the current entry point as the entry point into the tre

for all rays proxied by the frustum. The AABB stored og

the bifurcation stack with the entry point is also returned fss
kD-tree traversal.

159

3 Accelerated Entry Point Search Algorithm
161

MLRTA's entry point search algorithm may be broken down inte
two phases, namely: 163
4

1. Traverse the tree with the ray frustum proxy, preparinnga

. . . 5
candidate list of entry points. 1o

167
2. Investigate the candidate list, returning the bestry point.
169
170
We enhance both of these phases, returning deeper entig jioin
phase 1 and visiting fewer nodes in phase 2. As the kD-tredexect
ation data structure is a binary tree, finding an entry pairt mode 172
deeper into the tree reduces the number of nodes under the ent
point (assuming a complete binary tfe@y half, therefore in the

best case halving the number of nodes visited during theitsal 175
176

1We define the best entry point as the node which the minimumbeam?
of traversal steps are necessary for all in the rays in theypiustum to 17s
reach a leaf node containing objects. 179
2A binary tree in which all leaf nodes are at the same depth. 180

leaf in which it overlaps an object, we employ a simple plaased
test. If all of an object’s triangles are on the outer side pfane
formed by a frustum face, it is not intersected by the ray prfoxs-
tum. A dot product is used to test if all of a triangle’s vegcare
on the same side of a plane. If the signs of the dot productadlf e
vertex are the same then the triangle does not overlap tme.pla
Using SIMD, we are able to concurrently test all four planethe
ray proxy frustum. The normals of the frustum planes areadlye
pre-calculated in order to cull kD-tree nodes and thus trete-
tle overhead to this test. This phase is similar to the shaling
techniques presented in [Dmitriev et al. 2004].

3.2 Phase?2

The candidate list contains the nodes on a traversal fromtmo
overlapped leaf where the ray proxy frustum possibly oyextaoth
child sub-trees of that node. The candidate nodes are treref-
dered by depth. Candidate nodes at lower levels exist inrags-of
higher nodes. Therefore, if we can ascertain that both ofididate
entry point’'s sub-trees contain leaves overlapped by theraxy
frustum, we know that any entry point below the current eptint
will not encompass all of the sub-trees of the current caatdidWe
can therefore cull all entry points in a candidate list atee tlepth
below any point found with both sub-trees containing leavih
overlapped objects .

As investigating each potential entry point involves ad¢raal from
that point to an occupied leaf, by not having to test everyyent
point we greatly decrease the nodes traversed and thethéotiene
required to perform such traversals. As the AcceleratedyEdint
Search Algorithm (AEPSA) performs tests in a top-down manne
from the highest potential entry point, when it is known that
entry point cannot be deeper in the tree than the current,pea
may reject any nodes remaining in the list. MLRTA performs a
bottom-up test of entry point candidates and thereforeiregieach
candidate node be tested in turn.

181
182
183
184
185
186

187

188
189
190
191
192
193
194

195

196
197

198

199

Online Submission ID: 5

The candidate list/bifurcation stack is populated by a todeaf 2s
traversal of a tree witm nodes, therefore it will contain at leasto
one node (the leaf the traversal terminates in) and at @3t 2a
nodes (each node visited in the traversal, if the ray prougtém
overlaps both child nodes). The number of possible entmtpoi
in the list/stack can therefore be written @dog n) where p is a
“branching factor” and) < p < 1.

During phase 2, in a candidate list/stack witantries, MLRTA will

visit k(log n) nodes. This is because each entry in the stack requires
a traversal from that candidate entry point to a leaf. AEPSIA w
visit z(logn), wherez < k as AEPSA can exit early as soon as it
encounters a candidate with a child with an overlapped, medu
leaf. The bounds of arel < z < logn. We can therefore prove
that AEPSA will at worst spend the same time as MLRTA seaighin
for the entry point and at no point will it spend longer.

By using this entry point test procedure, we yield the sameyen
points as MLRTA when considering the same candidate list but
without requiring the entire candidate list search.

3.3 Algorithm Outline

AEPSA is implemented using the following procedure:

e Prepare a queue data structure capable of holding AABBs
and tree nodes together in a single stack element. This is
termed the entry point candidate queue.

e Starting at the root node, begin traversing the kD-tree with
the ray proxy frustum.

o If the ray frustum must traverse both children of the current
node, the current node and current AABB are added to the
entry point candidate queue.

e The kD-tree is traversed using the ray proxy frustum unél th
first occupied leaf is found that contains objects inteesgct
by the ray proxy frustum

e The entry point candidate queue is now frozen. No further
entries may be added to it.

e Take the first candidate from the queue and set it as the
candidate entry point. Investigate if the kD-tree branch no
previously taken below that candidate entry point node con-
tains an occupied leaf overlapped by the ray proxy frustuth.
If so, return the current entry point. The AABB stored with

the entry point is also returned for kD-tree traversal. 248
244

245

e |f necessary, continue until the queue is empty.
246

247
Figure 2 illustrates the full algorithm and compares it vativiL- s
RTA entry point search into the same kD-tree. A traversal by Mas
RTA from root to the first occupied leaf in this instance wiield 250
the bifurcation stack [2,1,0] (Node 2 being at the top of tteels 2
and 0 at the bottom). After testing node 2, 1 and 0, MLRTA wd}
return O as the entry point into the tree as an occupied leabBo 2
overlapped by the ray proxy frustum. AEPSA on its searchHer f.
first occupied leaf containing triangles overlapping thge peoxy 2ss
frustum will yield the candidate queue [9]. As this is theyoohn- 2ss
didate in the queue, we return 9 as the entry point. AEPSAi# th
case has produced an entry point 3 levels deeper into tharcbess

instead of entering all rays proxied by the frustum at the,ren-
ters them at a leaf node meaning that no traversal is requied
Appendix A for a pseudo-code implementation of AEPSA.

(b)

@ Interior Node
® MLRTA Candidate

/0 iE @ AEPSA Candidate
@:@ B Occupied Leaf
e B Empty Leaf
gﬁ\< i il
HH

©

Figure 2: (a) A simple scene formed by eight triangles inclined at
a 45 ° angle to the XY plane. (b) A visualisation of the leaf nodes
formed by a kD-tree compiler using a termination criterioheo
maximum of 2 triangles per leaf. Also shown is an example ray
proxy frustum that enters the scene from the left, penegdgaf
node 2, but missing the triangles in the leaf. The ray prougtirm
continues on, finally penetrating two triangles in leaf n@déc) A
layout of the kD-tree compiled in (b).

4 Comparison with MLRTA

We begin our comparisons of AEPSA to MLRTA by considering
two extreme cases. We compare the number of nodes visited by
both.

Case one (see Figure 3) consists of a complete balancedekD-tr
containing N nodes in which all leaf nodes contain objects. The
ray proxy frustum fully overlaps the entire tree and therefevery
object in all leaves. The common ancestor of all interseoteml-
pied leaves is then the root node. The traversal from rodteditst
occupied leaf add®g N candidates to the bifurcation stack and
in the case of AEPSA, the entry point candidate queue. Tokchec
each candidate entry point, a traversal of the tree from tmelie
date node to a leaf is performed. Each traversal will Visit NV
nodes. As MLRTA will perform a traversal for each node on the b
furcation stack, the number of visited nodes\is Given that each
leaf is fully overlapped by the ray proxy frustum, during pa&2

of AEPSA, a fully overlapped node will be found testing thestfir

259
260

261

Online Submission ID: 5

@ Interior Node

® MLRTA Candidate
B Occupied Leaf

B Empty Leaf

X Unvisited Node

@ Interior Node

® AEPSA Candidate
B Occupied Leaf

B Empty Leaf

X Unvisited Node

/ 285

286

288

b 289

() 290
Figure 3: A comparison of the visited nodes in a tree where the fay
proxy frustum fully overlaps each leaf. (a) MLRTA: a trawifsom **
the root node 0 to the first occupied leaf 3 adds the nodesdptd,
the bifurcation stack. 3 is popped and marked as a potentidye

point. Node 1 is then popped and investigated. As a travénall 204
to 4 finds an occupied leaf, the candidate entry point is noiwdde

293

@ Interior Node
® Candidate

M Occupied Leaf
B Empty Leaf

X Unvisited Node

Figure 4: A comparison of the visited nodes in a tree where the
ray proxy frustum fully overlaps leaves 3, 4 and 5. Leaf 6 is no
overlapped by the ray proxy frustum.

The traversal from root to the first occupied leaf (also thg omer-
lapped leaf) addeg N candidates to the bifurcation stack or, in the
case of AEPSA, the entry point candidate queue. MLRTA wiltkna
the leaf as a potential entry point and test all the leavesetion
the leaf again yieldingpg N log N nodes visited. As AEPSA starts
testing at the highest node in the list, it will need to tebeatries

in the list before it reaches the lowest candidate which ésléaf
node that is the correct entry point. AEPSA therefore in taise
visits the same number of nodes as MLRTA as it can not exiyearl

5 Evaluation

0 is then popped. A traversal from node 0 passes through noee 2We collect the following data on a per-scene basis for botiRVA
to an occupied leaf at 5. Node 0 is then marked as the candidate and AEPSA:

entry point. As the stack is now empty the current entry piist
returned. (b) AESPA: a traversal from the root node 0 to thet fi”’
occupied overlapped leaf 3 adds the nodes [0,1,3] to the ickael **
queue. The first entry (and highest in the tree) 0 is invetgitja,,
and a traversal from 0O to leaf 5 yields an occupied overlaplead. .,
Node 0 is returned as the entry point.

301
302
303

candidate (the tree root node) in the candidate queue. #\ptint, _
AEPSA will return the root node as the entry point after a ing,
log N traversal.

306
307
Case two (see Figure 4) consists of a complete balanceddeD-tr
containing N nodes, in which 50% of all leaf nodes contain of;
jects. The ray proxy frustum overlaps two empty leaf nodesan

single occupied leaf node. The common ancestor of all iatees! .,
occupied leaves is therefore the leaf node itself. MLRTAqrens .,
a traversal from the root node 0 to the first occupied leaf 3aaiu$,,,
the nodes [3,1,0] to the bifurcation stack. Node 3 is poppeatl a,
marked as a potential entry point. Node 1 is then popped aedin,,,
tigated. As a traversal from 1 to 3 finds an empty leaf, the icktd .,
entry point is still leaf 3. Node 0 is then popped and invesgd. .,
A traversal from the candidate 0 along the right sub-treésvia

e The average depth of the entry point in the tree
e The average time to find the entry point

e The average number of nodes visited by rays entering the tree
at the found entry point

These averages are calculated from all ray proxy frustured irs
the scene. In the event that a ray proxy frustum penetragescne
fully without intersecting any objects, we count this ragxy frus-

tum as having entered the scene at the average depth.

5.1 Implementation Details

Our real-time ray-tracer employs SIMD packet tracing [Wetlchl.
2001][Wald 2004] of kD-trees. Incoherent packets are ttace
ing an omni-directional traversal algorithm [Reshetov @&00We
employ a fastO(N log N) kD-tree compiler [Havran 2005] [Ben-
thin 2006] biased towards the early cutoff of empty volumés o
space [Hurley et al. 2002]. kD-Tree build termination is dzhs
on the well-known SAH cost metric [MacDonald and Booth 1990]
[Havran 2000]. Our MLRTA implementation is based on work-pre

order, the nodes 2, 5 and 6. As leaf 5 is empty and leaf 6 is hot sented in [Benthin 2006] and [Reshetov et al. 2005].

overlapped, the candidate entry point is still leaf node 8 bifur-

cation node is now empty, therefore node 3 is returned asntng e
point. AEPSA performs a traversal from the root node 0 to trs fie
occupied overlapped leaf 3 and adds the nodes [0,1,3] tcattndi-c 320
date queue. The first entry (and highest in the tree) 0 isiligated 3
and traverses in order, the nodes 2, 5 and 6. As there is ntapyer
AEPSA has not yet found an entry point. Node 1 is then takem fre

the queue. As node 4 is empty, AEPSA has not yet found the entry

point. The final node 3 is taken from the queue. As it is the last
entry in the queue and is occupied, it is by definition ovegrtabby a2
the ray proxy frustum and is returned as the entry point a5

All results are generated on a dual Intel Xeon E5335 at 2.00GH
We render to a 512 x 512 viewport with a single light sourcated

at the eye-point. For timing purposes, we use the cyclerateu
RDTSC instruction [Intel 2006] on Intel's x86 Core 2 Arctitare.

5.2 Test Scenes

In order to fully test AEPSA, our test suite consists of 14nese
with discrete triangle counts ranging from 240 to over 1 il
The scenes differ in complexity and form. Several of thene (th

Online Submission ID: 5

Scene Tris Leaves | %Empty | AvgDepth
Sponza 79076 137427 | 35.57 21.62
Buddha 1087716 | 78344 | 43.37 20.72
Jagd 69399 107030 27.19 21.81
Dw Truck | 125691 | 90734 | 33.62 21.39
Legocar 10882 25319 | 32.78 20.01
Sculpture | 50772 84840 | 37.36 21.93
Dragon 849890 | 129048 | 46.11 22.4
Deol0Ok 20000 86026 | 30.81 21.14
Bunny 69452 156525 | 37.91 24.03
Kitchen 181745 | 130265| 36.14 23.15
Room 240 620 36.13 11.24
FairyForest| 174118 | 111419 37.75 23.45
Scene6 805 2588 28.44 16.94
Sibenik 76651 114724 | 34.84 22.81

Table 1: kD-tree compiler statistics for our test scene database.

From left to right, the scene name, number of triangles irgenem-
etry, number of leaves, percentage of leaves that are emphei
final tree and average depth of all leaves are given.

326

Stanford Models [Stanford]) are the output of laser scagiaind
contain mostly non-axis aligned triangles of a relativeiyitar
size. Others are architectural models exhibiting the oppahar-
acteristics. Four of these scenes are illustrated in Figurie ad-

dition to this, we provide statistics for the kD-trees gexted from
these scenes in Table 1.

327
328
329
330
331

6 Results

332

sz We will now discuss the results obtained using our method.

6.1 Phasel

334

335

Phase 1 (preparation of the entry point candidate list)asexton
its ability to generate candidate lists containing deepémygoints
than previously found. All of our test scenes present a naidev-
erage increase in depth (see Figure 5). It is important teneoer
though that a depth increase of one level in the tree has tpahe
tential to reduce the number of nodes under the entry poihialfy
Mean extra depth achieved was 2.54% with a standard deviatio
1.96%. Maximum extra depth achieved was 6.24%.

336
337
338
339
340
341

342

6.2 Phase?2

343

344

Phase 2 (returning the best entry point in the candidajadistored

on its speed to find the entry point. Our results (see Figuia-6) !

345
346

347

a standard deviation of 40.75%. No scene exhibits a slowdagnss
predicted in Section 3.2. This is a result of the decreaseatheu of s
nodes visited due to not needing to scan the entire candidate

348

349 360

361

362
w0 6.3 Overall Performance 263
364
In order to test the overall performance of our new algoritina 3%
measure the frames per second achieved by our real-tinteaesr
using basic packet-tracing, MLRTA and AEPSA across our tgst

scene database. Results show an across-the-board gamder-es:

351
352
353
354
355

s speedup of up to 18% over MLRTA (see Figure 7).

369

Extra Depth Achieved
(higher is better)

% Increase in Depth

seano I

counoo eots I
poec I

soruL M3 |

eupore I
woses N

sorooo N

roung [

VR [|

wooy N

soroaties I

Jeooﬁa’\ -
omaires I
susals [|

geudds |

PN ezuos [

saudv envots

Scene

Figure5: Percentage of extra depth achieved over MLRTA. That is,
(Ad—Md)/Md=100, whereAd and M d are the average depths of

the entry points in the kD-Tree returned by the MLRTA and AEPS
algorithms, respectively.

Entry Point Search Times
(lower is better)

B MLRTA
B AEPSA

Time (in microseconds)

0 il‘

-L.L.--.--
L 2 58 2 5 9 2 g & z 2 3 8 ¢
<) =X =y Q 2 2 2 5 51 2 23 ® g
- 2 8 =T %9 B 2 3 2 FH 3 2
o D S) = > 3 > =) o =

= o f‘%

@,

Scene

Figure6: Speedups achieved over MLRTA in finding the entry point
in phase 2. In order to compare the second phase times more ac-
curately, we use MLRTA phase 1 for both algorithms. Thisressu
that both algorithms have the same number of candidate nades
check and that both algorithms return the same entry point.

7 Discussion

dicate speedups up to 144%, with a mean speedup of 57.68% and

Our tests indicate that in certain cases MLRTA is detrimetata
rendering speeds. Two scenes, “Jagd” and “DW Truck” exhibit
slowdowns under MLRTA. AEPSA shows slowdowns on neither
of these scenes. The entry point search time (see Figure bptfio

of these scenes under AEPSA is on the order of one half the time
MLRTA takes, indicating that too long of an EP search timemata
weigh any benefits gained. In all cases the performance ofSXEP

is greater than or equal to the rendering speed exhibitedliyTA.

Using a Pearson Product-Moment Correlation we find no signif
icant simple linear correlation between the tree charesties in

ing speed using AEPSA of up to 36% over packet-tracing ang a table 1 and overall speedup, indicating that if such a caticn

exists, it may be a non-linear function of one or more vagabl

370

392

Online Submission ID: 5

Absolute FPS 403

B Without EP Search B MLRTA [J AEPSA
) 405
0
406
407
408
409

150 410

| T

@ 9

Frames Per Second

412

413

414

415

v

5t
& 416

zu04S
eupP
123069—‘
fuung
uaudM
wood
xseloj/\l‘ei E]
gguaDS

417

oL M
a,\ﬂ\d\“Ug
uobel

V\O‘Oa(\

418

w
&
@
>
)

419

420

Figure 7: Using basic packet tracing as a baseline, we compare the

overall performance of our real-time ray-tracer using AEP&d **
MLRTA. In all cases AEPSA produces a speedup. @

8 Further Work ”

427

428
As we use culling techniques in our leaf nodes during theyent,

point search, it may be beneficial to skew the kD-tree compilg

VWHI LE NOT enpty(stack) DO
node = pop(stack)
| F traverse_to_l| eaf (frustum n)
along path to | eaf not taken
overl aps non-enpty | eaf THEN
RETURN W TH n
ENDI F
ENDWHI LE

RETURN W TH NULL
ENDPRCC

PRCC fi nd_candi dat es(node,
| F node IS | eaf THEN
i = intersect(frustum
IF i == TRUE THEN
st ack. push(node) ;
RETURN W TH i ;
ENDI F
ENDI F

frustum stack)

| eaf);

s = find_candi dates(Il eft(node)
OR find_candi dates(right(node));

IF s == TRUE THEN
push(stack, node)
ENDI F

towards creating leaves of larger volume. Such a skewing may ENDPROC

make it easier to cull leaf nodes as the ray proxy frustum bl
more likely to pass through leaves without intersecting geyme-
try stored in the node. We intend to investigate tuning treation
to leverage our algorithm’s strengths.

433

Entry point search algorithms have been used with othelaece
tion data structures [Wald et al. 2006]. We intend to ingzde the .
use of AEPSA with bounding volume hierarchies and the bawgdi

interval hierarchy [Wachter and Keller 2006] [Waechte®2D

434

436
437

438

9 Conclusion

439
We have presented a two-phase extension to MLRTA for findjpng
deep entry points in acceleration data structures such aseds ,,,
or BVHs for real-time ray-tracing. We have compared thisoalg
rithm to the state-of-the-art entry point search algoritimwhich 4z
we base our work. Our results indicate a decrease in time do £in
the entry point and an increase in entry point depth acrés$ alir
tested scenes. The overall performance of our real-timéraayng s
system showed an increase in frames per second of up to 36%.

10 Acknowledgements

This section purposely withheld for review purposes.
450

451

A AEPSA pseudo-code

452
The following is a simplified implementation using a recuvesi,;,
function to find the candidates. Our actual implemetions &f M,
RTA and AEPSA are completely iterative functions with scftes
stacks for performance. 455

456

PRCC aepsa(tree, frustun)
stack //hol ds candi dates
find_candi dates(root(tree),
frustum stack)

457

458
459

460

References

APPEL, A. 1968. Some Techniques for Shading Machine Ren-
derings of Solids. IFAFIPS 1968 Spring Joint Computer Canf.
vol. 32, 37-45.

BENTHIN, C. 2006. Realtime Ray Tracing on current CPU Ar-
chitectures PhD thesis, Computer Graphics Group, Saarland
University.

Cook, R. L., PORTER T., AND CARPENTER L. 1984. Dis-
tributed ray tracing. InComputer Graphics (SIGGRAPH '84
Proceedings)vol. 18, 137-45.

DmITRIEV, K., HAVRAN, V., AND SEIDEL, H.-P. 2004. Faster
Ray Tracing with SIMD Shaft Culling. Research Report MPI-
1-2004-4-006, Max-Planck-Institut fr Informatik, Saaiiloken,
Germany, December.

FOLEY, T., AND SUGERMAN, J. 2005. KD-tree Acceleration
Structures for a GPU Raytracer. HWWS '05: Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS conference on Graph-
ics hardware ACM Press, New York, NY, USA, 15-22.

GLASSNER, A. S., Ed. 1989 An introduction to ray tracing Aca-
demic Press Ltd., London, UK, UK.

HAVRAN, V., AND BITTNER, J. 2000. Lcts: Ray shooting using
longest common traversal sequences.Ptaceedings of Euro-
graphics (EG’00) 59-70.

HAVRAN, V. 2000. Heuristic Ray Shooting Algorithm#&h.d. the-
sis, Department of Computer Science and Engineering, facul
of Electrical Engineering, Czech Technical University nague.

HAVRAN, V., 2005. On The
tion Algorithms with Surface
http://ompf.org/forum/viewtopic.php?t=19.

Kd-tree Construc-
Area Heuristics.

Online Submission ID: 5

%1 HORN, D.R., SJGERMAN, J., HOUSTON, M., AND HANRAHAN,

462 P. 2007. Interactive k-d Tree GPU Raytracing. I8D '07:

463 Proceedings of the 2007 symposium on Interactive 3D graphic
464 and gamesACM Press, New York, NY, USA, 167-174.

sws HURLEY, J., KAPUSTIN, A., RESHETOV, A., AND SOUPIKOV, A.
466 2002. Fast Ray Tracing for Modern General Purpose CPU. In
467 Proceedings of GraphiCon 2002

w8 INTEL. 2006. Intel 64 and IA-32 Architectures Software Devel-
460 oper’'s Manual Volume 2B: Instruction Set Reference,. ¥ 4,
470 246-247.

an MACDONALD, D. J.,AND BOOTH, K. S. 1990. Heuristics for ray
an tracing using space subdivisiokis. Comput. 63, 153—-166.

a3 RESHETOV A., SOUPIKOV, A., AND HURLEY, J. 2005. Multi-
a4 level ray tracing algorithm. I'SIGGRAPH '05: ACM SIG-
475 GRAPH 2005 PapersACM Press, New York, NY, USA, 1176—
476 1185.

a7 RESHETOV, A. 2006. Omnidirectional ray tracing traversal algo-
a78 rithm for kd-trees. Inn Proceedings of the IEEE Symposium on
479 Interactive Ray Tracing, page57-60.

w0 RESHETOV A. 2007. Faster ray packets - triangle intersection
481 through vertex culling. I'SIGGRAPH '07: ACM SIGGRAPH
482 2007 postersACM, New York, NY, USA, 171.

a3 STANFORD. The Stanford 3d scanning repository.
aga http://graphics.stanford.edu/data/3Dscanrep.

s WACHTER, C., AND KELLER, A. 2006. Instant Ray Tracing:
486 The Bounding Interval Hierarchy. IRendering Techniques
487 2006 (Proc. of 17th Eurographics Symposium on Rendering)
488 T. Akenine-Mboller and W. Heidrich, Eds., 139-149.

s WAECHTER, C. 2007.Quasi-Monte Carlo light transport simula-

490 tion by efficient ray tracingPh.d. thesis, University of UIm.
w1 WALD, |., BENTHIN, C., WAGNER, M., AND SLUSALLEK, P.
492 2001. Interactive rendering with coherent ray tracing. In

493 Computer Graphics Forum (Proceedings of EUROGRAPHICS
404 2001, Blackwell Publishers, Oxford, A. Chalmers and T.-M.
ass Rhyne, Eds., vol. 20, 153-164. available at graphics.és.un
496 sb.de/ wald/Publications.

w7 WALD, I., I1zE, T., KENSLER, A., KNOLL, A., AND PARKER,

498 S. G. 2006. Ray tracing animated scenes using coherent grid
499 traversal. INSIGGRAPH '06: ACM SIGGRAPH 2006 Papers
500 ACM Press, New York, NY, USA, 485-493.

s WALD, |. 2004. Realtime Ray Tracing and Interactive Global
502 lllumination. PhD thesis, Computer Graphics Group, Saarland
503 University.

sa WHITTED, T. 1980. An improved illumination model for shaded
505 display. Communications of the ACM 28 (June), 343—-349.

