
Online Submission ID: 5

Accelerated Entry Point Search Algorithm for Real-Time Ray-Tracing

Figure 1: Four of the scenes used for testing purposes. From the left: “Fairy Forest” from the Utah 3D Animation Repository, Legocar from
the Ompf forum model repository and Marko Dabrovic’s SponzaAtrium and Sibenik Cathedral

Abstract1

Traversing an acceleration data structure, such as the Bounding Vol-2

ume Hierarchy or kD-tree, takes a significant amount of the total3

time to render a frame in real-time ray tracing. We present a two-4

phase algorithm based upon MLRTA for finding deep entry points5

in these tree acceleration data structures in order to speedup traver-6

sal. We compare this algorithm to a base MLRTA implementation.7

Our results indicate an across-the-board decrease in time to find the8

entry point and an increase in entry point depth. The overallper-9

formance of our real-time ray-tracing system shows an increase in10

frames per second of up to 36% over packet-tracing and 18% over11

MLRTA. The improvement is algorithmic and is therefore applica-12

ble to all architectures and implementations.13

CR Categories: I.3.7 [Three-Dimensional Graphics and Re-14

alism]: Raytracing, Beam Tracing.— [I.3.6]: Methodology and15

Techniques—Graphics data structures and data types.16

Keywords: real-time ray-tracing, MLRTA, BVH, kD-tree, traver-17

sal algorithm18

1 Introduction19

The naı̈ve ray-tracing algorithm involves the tracing of single rays20

through every object in the scene database to determine the inter-21

section nearest to the ray origin [Appel 1968] [Whitted 1980] [Cook22

et al. 1984]. Modern ray-tracers use an acceleration data structure,23

such as the BVH or kD-tree, to reduce the candidate set for intersec-24

tion from N objects tolog N [Glassner 1989]. Up to 60% of total25

rendering time is spent traversing these acceleration datastructures26

[Benthin 2006]. The simple tracing of single rays through anac-27

celeration data structure, such as the kD-tree or Bounding Volume28

Hierarchy, which we refer to as “mono-tracing”, was first improved29

upon by traversing multiple rays at once [Havran and Bittner2000].30

Packet-tracing [Wald et al. 2001] [Wald 2004] [Benthin 2006] is31

a technique that groups coherent rays (that is, rays with relatively32

similar directional vectors and origin point components) together to33

trace them through the acceleration data structure simultaneously.34

Highly coherent ray packets will tend to traverse the tree inthe same35

fashion. By leveraging the SIMD capabilities of modern CPU ar-36

chitectures, several or all the rays in a packet can be operated on at37

once.38

2 MLRTA39

The Multi Level Ray-Tracing Algorithm (MLRTA) [Reshetov etal.40

2005] further extends the concept of packets to a more general case41

by using aray proxy frustum. This frustum is typically composed42

of the corner rays of a large packet. It acts as a proxy for raysthat43

lie inside the frustum, regardless of whether or not these rays have44

actually been generated yet. At its simplest, the ray proxy frustum45

may be used for trivial rejects against the axis-aligned bounding46

box (AABB) of the scene geometry. We may, for example, form a47

ray proxy frustum that bounds a set of primary rays corresponding48

to a tile on the image plane. If the ray proxy frustum does not49

intersect the AABB, we can conclude that all rays inside the ray50

proxy frustum do not intersect it either.51

2.1 Entry Points52

It is possible that a ray proxy frustum may traverse the tree and end53

up wholly in a single leaf. For example, when traversing a kD-tree,54

the ray proxy frustum may not overlap any splitting planes. As the55

frustum serves as a proxy for any rays in the frustum, logically, any56

one of these rays traversing the kD-tree will end up in the same57

single leaf. Therefore, as we know the ray will end up in a specific58

leaf, there is no need to traverse the tree at all. We may simply59

intersect the ray with any objects in the leaf. We therefore say that60

the traversal algorithm enters the tree at that leaf node. The leaf61

node is ourentry pointinto the tree.62

The above illustrates an extreme case where the ray proxy frustum63

does not overlap any split planes and hence no other leaf nodes so64

that the entry point is at a leaf node, requiring no traversal. In a case65

where the ray proxy frustum overlaps two leaf nodes containing66

objects, both children of a common parent, the entry point isthe67

parent node as rays inside the ray proxy frustum may terminate in68

either node. If one of the leaf nodes contained no objects we may69

safely ignore it as no intersections will occur in that leaf.The entry70

point is then the other leaf node.71

Expanded to the general case, we define the entry point as:72

1



Online Submission ID: 5

“the common ancestor node in the tree of all leaves that contain73

objects overlapped fully or partially by the ray proxy frustum”74

2.2 Entry Point Search75

MLRTA is implemented using the following procedure:76

• Prepare a stack data structure capable of holding kD-tree77

nodes and the corresponding AABB of the node in the78

kD-tree together in a single stack element. This is termed the79

bifurcation stack.80

81

• Starting at the root node, begin traversing the kD-tree with82

the ray proxy frustum.83

84

• If the ray proxy frustum must traverse both children of the85

current node, the current node and current AABB are pushed86

onto the bifurcation stack.87

88

• The kD-tree is traversed using the ray proxy frustum until the89

first occupied leaf is found.90

91

• The bifurcation stack is now frozen. No further entries may92

be added to it. The current leaf is marked as the current entry93

point candidate.94

95

• For each node on the bifurcation stack, mark the node as96

a possible candidate and investigate if the tree branch not97

previously taken below that node contains an occupied leaf98

overlapped by the ray proxy frustum. If so, the possible99

candidate is marked as the new entry point.100

101

• Continue until the bifurcation stack is empty.102

103

• Return the current entry point as the entry point into the tree104

for all rays proxied by the frustum. The AABB stored on105

the bifurcation stack with the entry point is also returned for106

kD-tree traversal.107

108

3 Accelerated Entry Point Search Algorithm109

MLRTA’s entry point search algorithm may be broken down into110

two phases, namely:111

1. Traverse the tree with the ray frustum proxy, preparing a112

candidate list of entry points.113

114

2. Investigate the candidate list, returning the best1 entry point.115

116

We enhance both of these phases, returning deeper entry points in117

phase 1 and visiting fewer nodes in phase 2. As the kD-tree acceler-118

ation data structure is a binary tree, finding an entry point one node119

deeper into the tree reduces the number of nodes under the entry120

point (assuming a complete binary tree2) by half, therefore in the121

best case halving the number of nodes visited during the traversal122

1We define the best entry point as the node which the minimum number
of traversal steps are necessary for all in the rays in the proxy frustum to
reach a leaf node containing objects.

2A binary tree in which all leaf nodes are at the same depth.

of the acceleration data structure by rays which the frustumprox-123

ies. Deeper entry points are also beneficial on GPUs where stacks124

are difficult to implement due to hardware constraints [Foley and125

Sugerman 2005]. As the stack size required for a full traversal from126

entry point to leaf isdl − de, wheredl is the leaf depth andde the127

depth of the entry point, by increasingde, we lower memory re-128

quirements and the possibility that stack restarts are required when129

using a GPU tree traversal algorithm with a limited stack size [Horn130

et al. 2007].131

By finding the entry point faster, we accelerate the traversal of the132

kD-tree, yielding more CPU time for triangle intersection and shad-133

ing, ultimately culminating in an increase in renderer throughput.134

3.1 Phase 1135

Phase one of our algorithm prepares an entry point candidatelist136

in a similar fashion to MLRTA. We traverse the ray proxy frustum137

through the kD-tree, adding nodes where both children must be tra-138

versed to the candidate list. As there is a high probability that a ray139

proxy frustum reaching a leaf node does not actually intersect with140

any object in that leaf node [Reshetov 2007], we do not freezethe141

candidate list until the ray proxy frustum has reached a leafin which142

it actually overlaps objects stored in the leaf. In contrast, MLRTA143

stops when it reaches any full leaf node, regardless of whether the144

ray proxy frustum overlaps objects stored in that leaf or not.145

Frustum Culling146

In order to ascertain whether the ray proxy frustum has reached a147

leaf in which it overlaps an object, we employ a simple plane-based148

test. If all of an object’s triangles are on the outer side of aplane149

formed by a frustum face, it is not intersected by the ray proxy frus-150

tum. A dot product is used to test if all of a triangle’s vertices are151

on the same side of a plane. If the signs of the dot products of each152

vertex are the same then the triangle does not overlap the plane.153

Using SIMD, we are able to concurrently test all four planes of the154

ray proxy frustum. The normals of the frustum planes are already155

pre-calculated in order to cull kD-tree nodes and thus thereis lit-156

tle overhead to this test. This phase is similar to the shaft culling157

techniques presented in [Dmitriev et al. 2004].158

3.2 Phase 2159

The candidate list contains the nodes on a traversal from root to160

overlapped leaf where the ray proxy frustum possibly overlaps both161

child sub-trees of that node. The candidate nodes are therefore or-162

dered by depth. Candidate nodes at lower levels exist in sub-trees of163

higher nodes. Therefore, if we can ascertain that both of a candidate164

entry point’s sub-trees contain leaves overlapped by the ray proxy165

frustum, we know that any entry point below the current entrypoint166

will not encompass all of the sub-trees of the current candidate. We167

can therefore cull all entry points in a candidate list at a tree depth168

below any point found with both sub-trees containing leaveswith169

overlapped objects .170

As investigating each potential entry point involves a traversal from171

that point to an occupied leaf, by not having to test every entry172

point we greatly decrease the nodes traversed and thereforethe time173

required to perform such traversals. As the Accelerated Entry Point174

Search Algorithm (AEPSA) performs tests in a top-down manner175

from the highest potential entry point, when it is known thatan176

entry point cannot be deeper in the tree than the current point, we177

may reject any nodes remaining in the list. MLRTA performs a178

bottom-up test of entry point candidates and therefore requires each179

candidate node be tested in turn.180

2



Online Submission ID: 5

The candidate list/bifurcation stack is populated by a rootto leaf181

traversal of a tree withn nodes, therefore it will contain at least182

one node (the leaf the traversal terminates in) and at mostlog n183

nodes (each node visited in the traversal, if the ray proxy frustum184

overlaps both child nodes). The number of possible entry points185

in the list/stack can therefore be written asp(log n) where p is a186

“branching factor” and0 < p ≤ 1.187

During phase 2, in a candidate list/stack withk entries, MLRTA will188

visit k(log n) nodes. This is because each entry in the stack requires189

a traversal from that candidate entry point to a leaf. AEPSA will190

visit x(log n), wherex ≤ k as AEPSA can exit early as soon as it191

encounters a candidate with a child with an overlapped, occupied192

leaf. The bounds ofx are1 ≤ x ≤ log n. We can therefore prove193

that AEPSA will at worst spend the same time as MLRTA searching194

for the entry point and at no point will it spend longer.195

By using this entry point test procedure, we yield the same entry196

points as MLRTA when considering the same candidate list but197

without requiring the entire candidate list search.198

3.3 Algorithm Outline199

AEPSA is implemented using the following procedure:200

• Prepare a queue data structure capable of holding AABBs201

and tree nodes together in a single stack element. This is202

termed the entry point candidate queue.203

204

• Starting at the root node, begin traversing the kD-tree with205

the ray proxy frustum.206

207

• If the ray frustum must traverse both children of the current208

node, the current node and current AABB are added to the209

entry point candidate queue.210

211

• The kD-tree is traversed using the ray proxy frustum until the212

first occupied leaf is found that contains objects intersected213

by the ray proxy frustum214

215

• The entry point candidate queue is now frozen. No further216

entries may be added to it.217

218

• Take the first candidate from the queue and set it as the219

candidate entry point. Investigate if the kD-tree branch not220

previously taken below that candidate entry point node con-221

tains an occupied leaf overlapped by the ray proxy frustum.222

If so, return the current entry point. The AABB stored with223

the entry point is also returned for kD-tree traversal.224

225

• If necessary, continue until the queue is empty.226

227

Figure 2 illustrates the full algorithm and compares it witha ML-228

RTA entry point search into the same kD-tree. A traversal by ML-229

RTA from root to the first occupied leaf in this instance will yield230

the bifurcation stack [2,1,0] (Node 2 being at the top of the stack231

and 0 at the bottom). After testing node 2, 1 and 0, MLRTA will232

return 0 as the entry point into the tree as an occupied leaf 9 is also233

overlapped by the ray proxy frustum. AEPSA on its search for the234

first occupied leaf containing triangles overlapping the ray proxy235

frustum will yield the candidate queue [9]. As this is the only can-236

didate in the queue, we return 9 as the entry point. AEPSA in this237

case has produced an entry point 3 levels deeper into the treeand238

instead of entering all rays proxied by the frustum at the root, en-239

ters them at a leaf node meaning that no traversal is required. See240

Appendix A for a pseudo-code implementation of AEPSA.241

Z

Y
X

(a)

5 12

7

9

2

4

F

11

(b)

(c)

Figure 2: (a) A simple scene formed by eight triangles inclined at
a 45 ◦ angle to the XY plane. (b) A visualisation of the leaf nodes
formed by a kD-tree compiler using a termination criterion of a
maximum of 2 triangles per leaf. Also shown is an example ray
proxy frustum that enters the scene from the left, penetrating leaf
node 2, but missing the triangles in the leaf. The ray proxy frustum
continues on, finally penetrating two triangles in leaf node9. (c) A
layout of the kD-tree compiled in (b).

4 Comparison with MLRTA242

We begin our comparisons of AEPSA to MLRTA by considering243

two extreme cases. We compare the number of nodes visited by244

both.245

Case one (see Figure 3) consists of a complete balanced kD-tree246

containingN nodes in which all leaf nodes contain objects. The247

ray proxy frustum fully overlaps the entire tree and therefore every248

object in all leaves. The common ancestor of all intersectedoccu-249

pied leaves is then the root node. The traversal from root to the first250

occupied leaf addslog N candidates to the bifurcation stack and251

in the case of AEPSA, the entry point candidate queue. To check252

each candidate entry point, a traversal of the tree from the candi-253

date node to a leaf is performed. Each traversal will visitlog N254

nodes. As MLRTA will perform a traversal for each node on the bi-255

furcation stack, the number of visited nodes isN . Given that each256

leaf is fully overlapped by the ray proxy frustum, during phase 2257

of AEPSA, a fully overlapped node will be found testing the first258

3



Online Submission ID: 5

(a)

(b)

Figure 3: A comparison of the visited nodes in a tree where the ray
proxy frustum fully overlaps each leaf. (a) MLRTA: a traversal from
the root node 0 to the first occupied leaf 3 adds the nodes [3,1,0] to
the bifurcation stack. 3 is popped and marked as a potential entry
point. Node 1 is then popped and investigated. As a traversalfrom 1
to 4 finds an occupied leaf, the candidate entry point is now 1.Node
0 is then popped. A traversal from node 0 passes through node 2
to an occupied leaf at 5. Node 0 is then marked as the candidate
entry point. As the stack is now empty the current entry point0 is
returned. (b) AESPA: a traversal from the root node 0 to the first
occupied overlapped leaf 3 adds the nodes [0,1,3] to the candidate
queue. The first entry (and highest in the tree) 0 is investigated
and a traversal from 0 to leaf 5 yields an occupied overlappedleaf.
Node 0 is returned as the entry point.

candidate (the tree root node) in the candidate queue. At this point,259

AEPSA will return the root node as the entry point after a single260

log N traversal.261

Case two (see Figure 4) consists of a complete balanced kD-tree262

containingN nodes, in which 50% of all leaf nodes contain ob-263

jects. The ray proxy frustum overlaps two empty leaf nodes and a264

single occupied leaf node. The common ancestor of all intersected265

occupied leaves is therefore the leaf node itself. MLRTA performs266

a traversal from the root node 0 to the first occupied leaf 3 andadds267

the nodes [3,1,0] to the bifurcation stack. Node 3 is popped and268

marked as a potential entry point. Node 1 is then popped and inves-269

tigated. As a traversal from 1 to 3 finds an empty leaf, the candidate270

entry point is still leaf 3. Node 0 is then popped and investigated.271

A traversal from the candidate 0 along the right sub-tree visits in272

order, the nodes 2, 5 and 6. As leaf 5 is empty and leaf 6 is not273

overlapped, the candidate entry point is still leaf node 3. The bifur-274

cation node is now empty, therefore node 3 is returned as the entry275

point. AEPSA performs a traversal from the root node 0 to the first276

occupied overlapped leaf 3 and adds the nodes [0,1,3] to the candi-277

date queue. The first entry (and highest in the tree) 0 is investigated278

and traverses in order, the nodes 2, 5 and 6. As there is no overlap,279

AEPSA has not yet found an entry point. Node 1 is then taken from280

the queue. As node 4 is empty, AEPSA has not yet found the entry281

point. The final node 3 is taken from the queue. As it is the last282

entry in the queue and is occupied, it is by definition overlapped by283

the ray proxy frustum and is returned as the entry point284

Figure 4: A comparison of the visited nodes in a tree where the
ray proxy frustum fully overlaps leaves 3, 4 and 5. Leaf 6 is not
overlapped by the ray proxy frustum.

The traversal from root to the first occupied leaf (also the only over-285

lapped leaf) addslog N candidates to the bifurcation stack or, in the286

case of AEPSA, the entry point candidate queue. MLRTA will mark287

the leaf as a potential entry point and test all the leaves above it in288

the leaf again yieldinglog N log N nodes visited. As AEPSA starts289

testing at the highest node in the list, it will need to test all entries290

in the list before it reaches the lowest candidate which is the leaf291

node that is the correct entry point. AEPSA therefore in thiscase292

visits the same number of nodes as MLRTA as it can not exit early.293

5 Evaluation294

We collect the following data on a per-scene basis for both MLRTA295

and AEPSA:296

• The average depth of the entry point in the tree297

298

• The average time to find the entry point299

300

• The average number of nodes visited by rays entering the tree301

at the found entry point302

303

These averages are calculated from all ray proxy frustums used in304

the scene. In the event that a ray proxy frustum penetrates the scene305

fully without intersecting any objects, we count this ray proxy frus-306

tum as having entered the scene at the average depth.307

5.1 Implementation Details308

Our real-time ray-tracer employs SIMD packet tracing [Waldet al.309

2001][Wald 2004] of kD-trees. Incoherent packets are traced us-310

ing an omni-directional traversal algorithm [Reshetov 2006]. We311

employ a fastO(N log N) kD-tree compiler [Havran 2005] [Ben-312

thin 2006] biased towards the early cutoff of empty volumes of313

space [Hurley et al. 2002]. kD-Tree build termination is based314

on the well-known SAH cost metric [MacDonald and Booth 1990]315

[Havran 2000]. Our MLRTA implementation is based on work pre-316

sented in [Benthin 2006] and [Reshetov et al. 2005].317

All results are generated on a dual Intel Xeon E5335 at 2.00GHz.318

We render to a 512 x 512 viewport with a single light source located319

at the eye-point. For timing purposes, we use the cycle-accurate320

RDTSC instruction [Intel 2006] on Intel’s x86 Core 2 Architecture.321

5.2 Test Scenes322

In order to fully test AEPSA, our test suite consists of 14 scenes323

with discrete triangle counts ranging from 240 to over 1 million.324

The scenes differ in complexity and form. Several of them (the325

4



Online Submission ID: 5

Scene Tris Leaves %Empty AvgDepth
Sponza 79076 137427 35.57 21.62
Buddha 1087716 78344 43.37 20.72
Jagd 69399 107030 27.19 21.81
Dw Truck 125691 90734 33.62 21.39
Legocar 10882 25319 32.78 20.01
Sculpture 50772 84840 37.36 21.93
Dragon 849890 129048 46.11 22.4
Deo10k 20000 86026 30.81 21.14
Bunny 69452 156525 37.91 24.03
Kitchen 181745 130265 36.14 23.15
Room 240 620 36.13 11.24
FairyForest 174118 111419 37.75 23.45
Scene6 805 2588 28.44 16.94
Sibenik 76651 114724 34.84 22.81

Table 1: kD-tree compiler statistics for our test scene database.
From left to right, the scene name, number of triangles in thegeom-
etry, number of leaves, percentage of leaves that are empty in the
final tree and average depth of all leaves are given.

Stanford Models [Stanford ]) are the output of laser scanning and326

contain mostly non-axis aligned triangles of a relatively similar327

size. Others are architectural models exhibiting the opposite char-328

acteristics. Four of these scenes are illustrated in Figure1. In ad-329

dition to this, we provide statistics for the kD-trees generated from330

these scenes in Table 1.331

6 Results332

We will now discuss the results obtained using our method.333

6.1 Phase 1334

Phase 1 (preparation of the entry point candidate list) is scored on335

its ability to generate candidate lists containing deeper entry points336

than previously found. All of our test scenes present a moderate av-337

erage increase in depth (see Figure 5). It is important to remember338

though that a depth increase of one level in the tree has to thepo-339

tential to reduce the number of nodes under the entry point byhalf.340

Mean extra depth achieved was 2.54% with a standard deviation of341

1.96%. Maximum extra depth achieved was 6.24%.342

6.2 Phase 2343

Phase 2 (returning the best entry point in the candidate list) is scored344

on its speed to find the entry point. Our results (see Figure 6)in-345

dicate speedups up to 144%, with a mean speedup of 57.68% and346

a standard deviation of 40.75%. No scene exhibits a slowdown, as347

predicted in Section 3.2. This is a result of the decreased number of348

nodes visited due to not needing to scan the entire candidatelist.349

6.3 Overall Performance350

In order to test the overall performance of our new algorithm, we351

measure the frames per second achieved by our real-time ray-tracer352

using basic packet-tracing, MLRTA and AEPSA across our test353

scene database. Results show an across-the-board gain in render-354

ing speed using AEPSA of up to 36% over packet-tracing and a355

speedup of up to 18% over MLRTA (see Figure 7).356

Figure 5: Percentage of extra depth achieved over MLRTA. That is,
(Ad−Md)/Md∗100, whereAd andMd are the average depths of
the entry points in the kD-Tree returned by the MLRTA and AEPSA
algorithms, respectively.

Figure 6: Speedups achieved over MLRTA in finding the entry point
in phase 2. In order to compare the second phase times more ac-
curately, we use MLRTA phase 1 for both algorithms. This ensures
that both algorithms have the same number of candidate nodesto
check and that both algorithms return the same entry point.

7 Discussion357

Our tests indicate that in certain cases MLRTA is detrimental to358

rendering speeds. Two scenes, “Jagd” and “DW Truck” exhibit359

slowdowns under MLRTA. AEPSA shows slowdowns on neither360

of these scenes. The entry point search time (see Figure 6) for both361

of these scenes under AEPSA is on the order of one half the time362

MLRTA takes, indicating that too long of an EP search time canout-363

weigh any benefits gained. In all cases the performance of AEPSA364

is greater than or equal to the rendering speed exhibited by MLRTA.365

Using a Pearson Product-Moment Correlation we find no signif-366

icant simple linear correlation between the tree characteristics in367

table 1 and overall speedup, indicating that if such a correlation368

exists, it may be a non-linear function of one or more variables.369

5



Online Submission ID: 5

Figure 7: Using basic packet tracing as a baseline, we compare the
overall performance of our real-time ray-tracer using AEPSA and
MLRTA. In all cases AEPSA produces a speedup.

8 Further Work370

As we use culling techniques in our leaf nodes during the entry-371

point search, it may be beneficial to skew the kD-tree compiler372

towards creating leaves of larger volume. Such a skewing may373

make it easier to cull leaf nodes as the ray proxy frustum willbe374

more likely to pass through leaves without intersecting anygeome-375

try stored in the node. We intend to investigate tuning tree creation376

to leverage our algorithm’s strengths.377

Entry point search algorithms have been used with other accelera-378

tion data structures [Wald et al. 2006]. We intend to investigate the379

use of AEPSA with bounding volume hierarchies and the bounding380

interval hierarchy [Wächter and Keller 2006] [Waechter 2007].381

9 Conclusion382

We have presented a two-phase extension to MLRTA for finding383

deep entry points in acceleration data structures such as kD-trees384

or BVHs for real-time ray-tracing. We have compared this algo-385

rithm to the state-of-the-art entry point search algorithmon which386

we base our work. Our results indicate a decrease in time to find387

the entry point and an increase in entry point depth across all of our388

tested scenes. The overall performance of our real-time ray-tracing389

system showed an increase in frames per second of up to 36%.390

10 Acknowledgements391

This section purposely withheld for review purposes.392

A AEPSA pseudo-code393

The following is a simplified implementation using a recursive394

function to find the candidates. Our actual implemetions of ML-395

RTA and AEPSA are completely iterative functions with software396

stacks for performance.397

PROC aepsa(tree, frustum)398

stack //holds candidates399

find_candidates(root(tree),400

frustum, stack)401

402

WHILE NOT empty(stack) DO403

node = pop(stack)404

IF traverse_to_leaf(frustum, n)405

along path to leaf not taken406

overlaps non-empty leaf THEN407

RETURN WITH n408

ENDIF409

ENDWHILE410

411

RETURN WITH NULL412

ENDPROC413

414

415

PROC find_candidates(node, frustum, stack)416

IF node IS leaf THEN417

i = intersect(frustum, leaf);418

IF i == TRUE THEN419

stack.push(node);420

RETURN WITH i;421

ENDIF422

ENDIF423

424

s = find_candidates(left(node)425

OR find_candidates(right(node));426

427

IF s == TRUE THEN428

push(stack, node)429

ENDIF430

ENDPROC431

References432

APPEL, A. 1968. Some Techniques for Shading Machine Ren-433

derings of Solids. InAFIPS 1968 Spring Joint Computer Conf.,434

vol. 32, 37–45.435

BENTHIN, C. 2006. Realtime Ray Tracing on current CPU Ar-436

chitectures. PhD thesis, Computer Graphics Group, Saarland437

University.438

COOK, R. L., PORTER, T., AND CARPENTER, L. 1984. Dis-439

tributed ray tracing. InComputer Graphics (SIGGRAPH ’84440

Proceedings), vol. 18, 137–45.441

DMITRIEV, K., HAVRAN , V., AND SEIDEL, H.-P. 2004. Faster442

Ray Tracing with SIMD Shaft Culling. Research Report MPI-443

I-2004-4-006, Max-Planck-Institut fr Informatik, Saarbrücken,444

Germany, December.445

FOLEY, T., AND SUGERMAN, J. 2005. KD-tree Acceleration446

Structures for a GPU Raytracer. InHWWS ’05: Proceedings of447

the ACM SIGGRAPH/EUROGRAPHICS conference on Graph-448

ics hardware, ACM Press, New York, NY, USA, 15–22.449

GLASSNER, A. S., Ed. 1989.An introduction to ray tracing. Aca-450

demic Press Ltd., London, UK, UK.451

HAVRAN , V., AND BITTNER, J. 2000. Lcts: Ray shooting using452

longest common traversal sequences. InProceedings of Euro-453

graphics (EG’00), 59–70.454

HAVRAN , V. 2000. Heuristic Ray Shooting Algorithms. Ph.d. the-455

sis, Department of Computer Science and Engineering, Faculty456

of Electrical Engineering, Czech Technical University in Prague.457

HAVRAN , V., 2005. On The Kd-tree Construc-458

tion Algorithms with Surface Area Heuristics.459

http://ompf.org/forum/viewtopic.php?t=19.460

6



Online Submission ID: 5

HORN, D. R., SUGERMAN, J., HOUSTON, M., AND HANRAHAN ,461

P. 2007. Interactive k-d Tree GPU Raytracing. InI3D ’07:462

Proceedings of the 2007 symposium on Interactive 3D graphics463

and games, ACM Press, New York, NY, USA, 167–174.464

HURLEY, J., KAPUSTIN, A., RESHETOV, A., AND SOUPIKOV, A.465

2002. Fast Ray Tracing for Modern General Purpose CPU. In466

Proceedings of GraphiCon 2002.467

INTEL. 2006. Intel 64 and IA-32 Architectures Software Devel-468

oper’s Manual Volume 2B: Instruction Set Reference, N-Z. ch. 4,469

246–247.470

MACDONALD , D. J.,AND BOOTH, K. S. 1990. Heuristics for ray471

tracing using space subdivision.Vis. Comput. 6, 3, 153–166.472

RESHETOV, A., SOUPIKOV, A., AND HURLEY, J. 2005. Multi-473

level ray tracing algorithm. InSIGGRAPH ’05: ACM SIG-474

GRAPH 2005 Papers, ACM Press, New York, NY, USA, 1176–475

1185.476

RESHETOV, A. 2006. Omnidirectional ray tracing traversal algo-477

rithm for kd-trees. InIn Proceedings of the IEEE Symposium on478

Interactive Ray Tracing, pages, 57–60.479

RESHETOV, A. 2007. Faster ray packets - triangle intersection480

through vertex culling. InSIGGRAPH ’07: ACM SIGGRAPH481

2007 posters, ACM, New York, NY, USA, 171.482

STANFORD. The Stanford 3d scanning repository.483

http://graphics.stanford.edu/data/3Dscanrep.484

WÄCHTER, C., AND KELLER, A. 2006. Instant Ray Tracing:485

The Bounding Interval Hierarchy. InRendering Techniques486

2006 (Proc. of 17th Eurographics Symposium on Rendering),487

T. Akenine-Möller and W. Heidrich, Eds., 139–149.488

WAECHTER, C. 2007.Quasi-Monte Carlo light transport simula-489

tion by efficient ray tracing. Ph.d. thesis, University of Ulm.490

WALD , I., BENTHIN, C., WAGNER, M., AND SLUSALLEK , P.491

2001. Interactive rendering with coherent ray tracing. In492

Computer Graphics Forum (Proceedings of EUROGRAPHICS493

2001, Blackwell Publishers, Oxford, A. Chalmers and T.-M.494

Rhyne, Eds., vol. 20, 153–164. available at graphics.cs.uni-495

sb.de/ wald/Publications.496

WALD , I., IZE, T., KENSLER, A., KNOLL , A., AND PARKER,497

S. G. 2006. Ray tracing animated scenes using coherent grid498

traversal. InSIGGRAPH ’06: ACM SIGGRAPH 2006 Papers,499

ACM Press, New York, NY, USA, 485–493.500

WALD , I. 2004. Realtime Ray Tracing and Interactive Global501

Illumination. PhD thesis, Computer Graphics Group, Saarland502

University.503

WHITTED, T. 1980. An improved illumination model for shaded504

display.Communications of the ACM 23, 6 (June), 343–349.505

7


