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Abstract 

Mechanical forces may act within tissues at the cellular level to regulate biological 

processes, a field of study that has been termed mechanobiology. The aim of 

computational mechanobiology is to derive sets of equations that describe the changes in 

cell expression, and hence the composition, structure and phenotype of tissues, as a 

function of the applied mechanical stimuli. This chapter will attempt to review the 

different mechanobiological models that have been developed to relate mechanical 

stimuli to tissue differentiation. The majority of these models have been used to simulate 

tissue differentiation during fracture healing or osteochondral defect repair. Based on this 

review, a number of recommendations will be made by the author for the future 

development of computational models of tissue differentiation. 
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1. Introduction 

In the embryo a mesenchymal stem cell is a pluripotent progenitor cell which divides 

many times and whose progeny eventually gives rise to the skeletal tissues: cartilage, 

bone, tendon, ligament, marrow stroma, connective tissue, as shown in Fig. 1. The 

progression from stem cell to final end phenotype is dependant on local cuing from 

surrounding cells as well as signals emitted by the cell itself and the reception of its own 

signalling [1]. The premise of mechanobiology is that biological processes such as 

mesenchymal tissue differentiation are regulated by signals to cells generated by 

mechanical loading. Repositories of mesenchymal stem cells also reside within the adult 

body (e.g. marrow, periosteum), which if successfully manipulated either in vivo or ex 

vivo, could be used as a cell-based therapy to treat clinical problems such as cartilage and 

bone defects. To achieve this objective will require a comprehensive understanding of 

how mechanical loading effects tissue differentiation. 

 The purpose of computational mechanobiology is to determine the quantitative 

rules that govern the effects of mechanical loading on biological processes such as tissue 

differentiation [4]. A number of different studies have attempted to do this by 

hypothesizing the relationship between the mechanical stimuli experienced by cells and 

their differentiation pathway.  Beginning with the work of Friedrich Pauwels, this paper 

will attempt to review a number of different mechanobiological models of mechano-

regulated skeletal tissue differentiation, focusing primarily on the mathematical 

framework of the underlying hypotheses and on these methodologies used in their 

implementation. With the exception of the work of Pauwels and Perren, all these models 



have used the finite element modelling technique to determine the mechanical 

environment within the differentiating tissue. 

 

 

2. Pauwels Theory 

Mechano-regulated tissue differentiation has mostly been studied during fracture healing 

of long bones or integration of orthopaedic implants. During these processes, bone tissue 

can form directly or indirectly. During endochondral ossification (indirect bone 

formation), cartilage is formed, calcified and replaced by bone tissue. During 

intramembranous ossification (direct bond formation), bone tissue forms without the 

intermediate cartilage stage. A comprehensive review of the mechanics of bone 

regeneration is available elsewhere [5]. By observing that mechanical loading of the 

fracture callus influenced bone regeneration, Pauwels [6] recognised that the mechanical 

environment of mesenchymal tissue can influence its differentiation pathway. He 

proposed that two stress invariants, namely the octahedral shear stress S and the 

hydrostatic stress D, regulated the type of soft tissue formed within the fracture callus. 

These stress invariants are defined as 
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where σ1, σ2, σ3 are the principle stresses. Octahedral shear stress causes material 

deformation, but no change in volume, and was proposed as a specific stimulus for 



fibrous tissue formation, while hydrostatic stress causes a change in material volume, but 

no change in distortion, and was proposed as a specific stimulus for chondrogenesis. 

Pauwels’s ideas on tissue differentiation were based on comparisons of histological 

patterns in oblique pseudarthroses (false joint) and angulated fractures with the state of 

stress and strain in the tissue as determined by simple mechanical models, see Fig. 2 and 

Fig. 3. He noted that areas of cartilage formation consistently developed in certain 

locations within the fracture, which he believed coincided with areas of hydrostatic 

pressure. Similarly parallel collagen fibres or fibrous tissues were hypothesised to 

develop in areas of tissue elongation. Pauwels did not propose a specific stimulus for 

bone formation. Instead he concluded that bone formation occurred once cartilage or 

connective tissue provided a rigid enough template on which ossification could occur. 

The ossified tissues are then remodelled and are replaced by secondary lamellar bone, see 

Fig. 4. In conclusion, Pauwels theory for of tissue differentiation can be interpreted as 

follows: 

1. The stimulus favouring fibroblast differentiation from the mesenchymal cell 

pool is high shear. 

2. The stimulus favouring chondrocyte differentiation form the mesenchymal 

cell pool is hydrostatic compression. 

 

 

3. Strain based models 

Perren [8] proposed a simple model for tissue differentiation based on a qualitative 

analysis of fracture healing. He hypothesised that a certain tissue phenotype would not 



form in a fracture callus if the strain level in the fracture callus caused that tissue to fail, 

see Fig. 5. This idea was termed the ‘interfragmentary strain theory’. Interfragmentary 

strain was defined as the interfragmentary motion divided by the fracture gap size. Based 

on the strength of different tissue phenotypes, and the measured interfragmentary strain, 

tissue differentiation can be predicted. Initially the fracture site is filled with granulation 

tissue, which begins to differentiate towards cartilage, gradually increasing the strength 

of the regenerating tissue. As the tissue stiffens, the interfragmentary strain decreases, 

allowing the formation of stiffer and stronger tissues at the fracture site. This process 

continues until full function is restored in the bone. Although easy to understand, this 

model is limited because it assumes that only a single tissue type exists within a fracture 

callus at any one point in time, which is obviously a simplification. 

 Duda and colleagues [10] proposed a model where the minimum principle strain 

served as the stimulus for tissue differentiation in a finite element model of an 

osteochondral defect. If the mean minimum principle strain around an element in the 

finite element model was above a threshold for the specific material that the element was 

modelling (defect/connective tissue, fibrous tissue, cartilage, calcified cartilage, 

cancellous bone, subchondral bone), then the elastic modulus of this specific element was 

increased. If the elastic modulus was further increased beyond the maximum elastic 

modulus for that particular material, differentiation to the next stiffest material occurred, 

and the material properties of the element were updated to that particular material. 

Similarly if the strain was below a threshold for a specific material the elastic modulus 

was decreased. A tissue factor (TF) was introduced to control the rate of tissue formation 



or resorption between iterations such that the change in Young’s modulus between 

iterations was given by 

 TFEE nn *1+= .       (Eqn. 3.1) 

Gómez-Benito et al. [11] present a mathematical model to simulate the effect of 

biophysical stimuli on cell proliferation, migration and differentiation during fracture 

healing. The mechanical stimulus ψ used in this model is the second invariant of the 

deviatoric strain tensor J2: 
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where εI, εII and εIII are principle strains, and εoct = (εI +εII + εIII)/3 is the octahedral strain. 

In this model, growth and geometry of the fracture callus are functions of cell 

proliferation and differentiation. The main variables in the model were the concentrations 

of mesenchymal stem cells (MSCs) (cs), cartilage cells (cc), bone cells (cb) and fibroblasts 

(cf), which produced the various skeletal tissues. The percentage of these basic types was 

assumed to determine the mechanical properties of the local tissue. 

The number of cells N can be modified through a change in cell concentration 

(Dc(x,t)/Dt), where c(x,t) is the cell density, or through a change in the volume growth 

rate (div(v)), where v is the growth rate. The rate of change of MSC concentration was 

assumed to change by proliferation, migration and differentiation (cell death was 

considered a specific differentiation pathway) such that 
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where cs is MSC concentration, Vdisrupted the fraction of disrupted tissue, D(Vdisrupted) is a 

diffusion coefficient and αproliferation  and ψproliferation are constants that define stem cell 



proliferation such that proliferation depends on the mechanical stimulus ψ. In this model 

an assumption was made that cells would migrate slower in disrupted tissue, which was 

modelled by making the diffusion coefficient dependant on the volume fraction of 

disrupted tissue. MSC differentiation (fdifferentiation) is dependant on both time and the 

mechanical stimulus such that  
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with hintramembranous(ψ, t), gdifferentation(ψ, t), ldifferentiation(ψ, t) the functions that define the 

evolution to osteoblasts, chondrocytes and fibroblasts, respectively, i

mt  the maturation 

time needed for each cell type i to mature into specialised cells, and ψlim, ψbone, ψcartilage, 

ψfibrous the mechanical stimulus limits for each cell type.  

 It was assumed that callus growth was mainly due to mesenchymal cell 

proliferation and chondrocyte hypertrophy during endrochondral ossification: 
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where ),( ψs

v

ionproliferat cf  defines the rate of callus growth due to proliferation, v is the 

growth rate per day and ),( tg
v

alendochondr ψ  controls the rate of callus growth due to 

chondrocyte hypertrophy. 

 The mechanical properties of the differentiating matrix was characterised by its 

density and composition. A mixture of 5 different tissues can potentially be found: debris 

tissue, granulation tissue, cartilage tissue, fibrous tissue and bone tissue. The production 



rate of this extracellular matrix was assumed to depend on the cell type, cell density and 

matrix production rate per cell: 
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where i

matrixV  is the volume fraction of tissue i, ci is the cell density, Qi is the matrix 

production rate per cell. The production of bone matrix volume in mature bone was 

determined using the internal bone remodelling formulation proposed by Beaupre et al. 

[12]. Based on the volume fraction of each tissue type within a particular region, the 

components px of the tissue are determined, namely the amount of collagen I , II and III , 

ground substance and mineral. The modulus of elasticity E and the Poission’s ratio v 

were then determined based on the proportion of each component px in a particular 

region. 

 This model was implemented using a poroelastic finite element model (ABAQUA 

v.6.3, Hibbit, Karlsson and Sorensen) to determine the biophysical stimuli. A 

thermoelastic analysis was used to determine the new callus geometry after modelling 

cell migration, proliferation and differentiation. The callus geometry, tissue 

differentiation patterns and fracture stiffness predicted by the model were similar to 

experimental observations.  

 

 

4. Hydrostatic stress/Deformation Models 

Carter and colleagues introduced a semiquantitive theory for the role of hydrostatic stress 

and octahedral shear stress in tissue differentiation within the context of fracture healing 

[13]. This concept differed from Pauwels by specifying a specific stimulus for bone 



formation and by recognising the possibility that regions of tensile hydrostatic stress may 

exist within skeletal tissue. This model also accounted for the fact that bone cannot form 

without a sufficient blood supply.  In a further development of this model, octahedral 

shear stress was replaced with either octahedral shear strain or maximum principle strain 

due to the belief that biological events at the tissue level are often related to changes in 

cell shape and local matrix deformation. The maximum principle strain was felt to be 

critically important as to whether intramembranous ossification can occur and also in 

controlling type I collagen synthesis [14]. According to this tissue differentiation concept, 

hydrostatic pressure directs the pluripotential mesenchymal tissue down a chondrogenic 

pathway; significant shear or tensile strain leads to fibrogenesis; a combination of 

hydrostatic pressure and significant shear or tensile strain leads to fibrocartilage 

development; and, given adequate vascularity, low levels of hydrostatic stress and 

shear/tensile strain allow direct intramembranous bone formation. A phase diagram 

illustrating this concept is shown in Fig. 6. The patterns of tissue differentiation observed 

during fracture healing [15,16], distraction osteogenesis [15,17], around bone-implant 

interfaces [18] and during osteochondral defect repair [15] have been consistent with the 

expectations of this mechanobiological model based on linear elastic finite element 

calculations. The latter study involved creating an idealized two-dimensional finite 

element model of a full-thickness cartilage defect, see Fig. 7 (a). The stress and strain 

histories within the defect were determined based on a time-varying load that was applied 

to the model. The hydrostatic stress within the defect was predicted to be chondrogenic, 

see Fig. 7 (c); however due to the differences between the material properties of the 

normal cartilage and the regenerating tissue, high tensile strains were present within the 



regenerating tissue that are not present in normal cartilage, see Fig. 7 (b). According to 

their mechano-regultion hypothesis, these tensile strains could be expected to promote 

fibro-cartilage or fibrous tissue formation. This model has not yet been used to simulate 

the time course of tissue differentiation during these events. 

 Loboa et al. [19] have extended the tissue differentiation concept of Carter and 

Beaupré [14] to incorporate a constitutive model based on a fiber-reinforced, poroelastic 

representation of soft tissue to describe the time-dependent differentiation of multipotent 

mesenchymal tissue and the corresponding changes in tissue material properties. The 

controlling mechanical stimuli are the imposed intermittent tensile strain and the locally 

generated cyclic fluid pressure, see Fig. 8. This study simulates the time-dependent 

changes in three material properties necessary to describe a fiber-reinforced poroelastic 

constitutive model: the tensile elastic modulus (E), compressive aggregate modulus (HA) 

and permeability (k). The solid matrix Poisson’s ratio is assumed to be zero. The model 

only looks at loading histories that would lead to the formation of soft skeletal tissues; it 

does not attempt to model time-dependent changes associated with intramembranous 

bone formation.  

In this model the peak cyclic daily tensile strain ε determines the rate of modulus 

change εE&  due to tensile strain, occurring as a result of increased collagen fiber size, 

density, alignment and cross-linking. Tensile strain between 1.5% and 3% provide for 

tissue homeostasis, while strains above this magnitude cause an increase in εE& , and 

strains below this magnitude cause a decrease in εE& . The strain dependant component of 

the tensile modulus is then given by:  

 tEtEttE ∆−=∆+ εεε
&)()(       (Eqn. 4.1) 



where ∆t is a given time step. 

Increased fluid pressure is also speculated to induce chondrogeneis, as evidenced 

by an increase in tensile modulus elastic modulus due to increases in both collagen type 

II synthesis (increasing the tensile modulus associated with collagen fiber content, Ef) 

and proteoglycan synthesis (increasing the aggregate modulus, Ha). Combining these two 

components gives the pressure-dependent component of the tensile elastic modulus: 

 afp HEE +=        (Eqn. 4.2) 

The total tensile modulus is obtained by adding Eqn. 4.1 and Eqn. 4.2: 

 pEEE += ε         (Eqn. 4.3) 

In this model, the fluid pressure stimulus also determines the proteoglycan–dependent 

rate of permeability change pk&  used to update the pressure dependant component of the 

permeability kp at each time step ∆t: 

 tktkttk ppp ∆+=∆+ &)()(       (Eqn. 4.4) 

Once the pressure exceeds a minimum value (0.013MPa), the rate of permeability change 

pk&  increases linearly with pressure until a maximum value of pk&  is reached (1.5 × 10
-15

 

m
4
/Ns/day).  

The permeability is further reduced due to the increased flow path length that 

fluid must traverse as the collagen fibers increase in size and density. The path length 

also increases with increased proteoglycan size and packing, and as E (Eqn. 4.3) depends 

on both collagen and proteoglycan synthesis, it was used as an indicator of flow path 

length. A dimensionless parameter qe, which decreases exponentially with E, is 

multiplied by kp to calculate the total permeability k:  



 epqkk =         (Eqn. 4.5) 

Upper and lower bounds are placed on the values of E, Ha, and k based on findings from 

the literature. Detailed descriptions and justifications for the changes in E, Ha and k in 

response to the mechanical stimuli are available [19]. 

 Claes and Heigele [20] compared the local stress and strain in a fracture callus as 

calculated from a finite element model with histological findings from an animal fracture 

model. They proposed that the amount of strain and hydrostatic pressure along existing 

calcified surfaces at the fracture surface determine the differentiation of the callus tissue. 

The hypothesis predicts intramembranous bone formation for strains smaller than 

approximately ± 5% and hydrostatic pressures smaller than ± 0.15MPa. Endrochondral 

ossification is associated with compressive pressures larger than about – 0.15 MPa and 

strains smaller than ± 15%. All other conditions lead to connective tissue or fibrous 

cartilage formation, see Fig. 9. In contrast to the models of Carter et al. [14], numeric 

values delineating the tissue types have been included. However no attempt was made to 

simulate the time course of fracture healing, i.e. only fixed time healing stages were 

modelled. 

 

 

5. Models including fluid flow 

Tissues such as cartilage and bone are composed of a solid and a fluid phase. When such 

a tissue is loaded, the fluid components flows through the tissue, acting as a stimulus to 

the cells. If the fluid flow is high, so to will be the biomechanical stress acting on the 

cells. Prendergast et al. [21] proposed a model for the mechano-regulation of tissue 



differentiation by two biophysical stimuli: tissue shear strain and interstitial fluid flow. 

High levels of the biophysical stimuli favour fibroblast differentiation from the 

mesenchymal cell pool, intermediate stimuli favour chondrocyte differentiation, and low 

mechanical stimuli favour osteoblast differentiation, see Fig. 10. Using this concept, a 

regulatory feedback model was developed to predict the patterns of tissue  differentiation 

around an implant [22], where the tissue phenotype depends on the combined value of 

distortional strain γ and interstitial fluid flow v, such that  

• For bone formation   
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• For fibrous tissue formation 
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where a = 3.75 % and b = 3.0 µm/s. The biophysical stimuli were determined using a 

poroelastic finite element model of the bone-implant interface.  

Lacroix et al. [23] expanded upon this mechano-regulation model in an attempt to 

simulate the time course of fracture healing in a long bone. In this model, a resorptive 

field was added at low strain/low fluid flow levels. If the strain or fluid flow becomes too 

low, then the lack of mechanical stimulation to the cells initiates a resorptive process. 

Furthermore this model accounted for the role played by the migration and proliferation 

of mesenchymal stem cells in the fracture callus by assuming the spreading of cells can 

be simulated using a diffusion equation: 



  
dt

dn
nD =∇ 2 ,       (Eqn. 5.2) 

where n is the cell density and the constant D is the diffusion coefficient. In this model 

the biophysical stimuli did not directly regulate the rate of change of the material 

properties of the differentiating tissue. Instead the material properties of an element in the 

model were calculated as an average of the 10 previously predicted tissue phenotypes. To 

account for the fact that mesenchymal stem cells and differentiated cells may exist 

simultaneously, a rule of mixtures was used to calculate the material properties in such 

cases.  

 Despite the simplifications of this model, it was successful in reproducing several 

features of fracture healing. These are 

(i) Intramembranous bone formation far from the fracture site, 

(ii) Endochondral ossification in the external callus, 

(iii) Stablisation of the interfragmentary gap when bridging of the external 

callus occurs, 

(iv) Resorption of the external callus. 

Kelly et al. [24] further expanded the mechano-regulation model of tissue 

differentiation of Prendergast et al. [19] to simulate tissue differentiation during 

osteochondral defect repair. In this model, the dispersal, proliferation, differentiation and 

death of cells is regulated by the local environment. The dispersal of cells of a particular 

phenotype i throughout the defect was simulated by assuming the cell population to be 

described by diffusive, proliferative and apoptotic processes as follows: 
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where n
i
 denotes the number of cells of a particular cell phenotype i, D

i
 is the diffusion 

coefficient for cell phenotype i, P
i
(S) is a proliferation rate and K

i
(S) is an apoptosis 

(death) rate for cell i as a function of the stimulus S. The diffusion coefficient for cell 

type i moving through a volume of tissue is calculated as the weighted average of the 

diffusion coefficients for each of the tissue types j present at that site in the model, i.e. 

∑
=

=
t

1

jij

n

j

i
DD φ ,             (Eqn. 5.4) 

where Dij is the diffusion coefficient for cell type i in tissue j, and nt is the total number of 

tissue types, in this case granulation tissue, fibrous tissue, cartilage and bone. φj denotes 

the volume fraction of each tissue type j such that: 

1
n

1j

j =∑
=

t

φ .        (Eqn. 5.5) 

As the cells disperse throughout the defect, their number will increase due to 

proliferation, or decrease due to apoptosis (cell death). The proliferative response of each 

cell phenotype might be expected to be influenced by their local environment such that 

the rate of change in the number of cells n
i
 of the i

th 
phenotype depends on P

i
(S), the 

proliferation rate for cell phenotype i as a function of a mechanical stimulus S, and K
i
(S), 

the apoptosis rate for cell phenotype i as a function of a mechanical stimulus S. A 

quadratic relationship was assumed between cell proliferation/apoptosis and octahedral 

shear strain So such that: 
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The thresholds used in the mechano-regulation diagram of tissue differentiation were the 

same as used by Huiskes et al. [22] and Lacroix et al. [23]. Again a model based on the 

hypothesis of mechano-regulated tissue differentiation by shear strain and fluid flow was 



able to predict temporal changes in tissue phenotype as observed during experimentation; 

in this case during osteochondral defect repair.  

 Kuiper et al. [25] used tissue shear strain and fluid shear stress as mechanical 

stimuli regulating tissue differentiation during fracture repair, see Fig. 11. Fluid shear 

stress τ is defined as a function of pressure gradient p∇  and specific matrix surface s  

 
s

p∇
=τ         (Eqn. 5.7) 

where the specific surface is related to tissue permeability k, porosity n, fluid viscosity v, 

and constant G through the Carman-Kozeny equation  

 32
nkvGs =         (Eqn. 5.8) 

They concluded that strain provides the dominant cell differentiating stimulus in the 

fracture callus. Typical healing patterns were predicted for a variation of applied 

movements on the cortical bone. 

 

 

6. Future directions 

A number of different hypotheses have been put forward relating tissue differentiation to 

the local mechanical environment, none of which have been definitively refuted or 

proven. To this end, not only will it be necessary to continue comparing in-vivo 

experimental observations with the predictions of tissue differentiation based on these 

hypotheses, it will also be necessary to test the hypotheses directly using well designed in 

vitro experiments. A number of bioreactors have been recently designed which are 

capable of regulating the mechanical environment of a population of cells in-vitro [26]. It 

should be possible to test hypotheses of mechano-regulated tissue differentiation by 



subjecting populations of mesenchymal stem cells to mechanical loading in a bioreactor 

[27]. Not only could these bioreactors be useful in determining the role of mechanical 

loading in the differentiation process, they could also play a role in quantifying how 

mechanical loading influences cell migration, proliferation, death, matrix synthesis etc., 

which are necessary in order to develop a complete mechanobiological model of tissue 

differentiation that has practical benefits. For example, experiments where cartilage has 

been engineered in a bioreactor [28] have shown that applying loading to a population of 

chondrocytes results in increased amounts of collagen II and proteoglycan synthesis over 

static controls, which in turn has lead to changes in the mechanical properties of the 

engineered tissue. Similar experiments could be used to quantify how a particular 

biophysical stimulus influences matrix synthesis and the alignment and cross-linking of 

collagen fibers, which in turn could be used to determine evolution equations used to 

describe the change in mechanical properties over time for differentiating tissue subject 

to loading. To implement such evolution equations accurately in computational models 

will require the use of more sophisticated constitutive models to describe the non-linear, 

inhomogeneous nature of these tissues. Other experiments that will be necessary to 

facilitate the development of computational models include determining the motility rates 

of different cell types and the mitosis rates of cells in response to loads. It may also be 

necessary to incorporate the effects of growth factors into mechanobiological models 

[29].  

 In conclusion, in addition to a hypothesis for mechano-regulated tissue 

differentiation, mechanobiological models of tissue differentiation should attempt to 

incorporate the following: 



(i) A mathematical framework to describe the dispersal, mitosis and death of cells in 

response to changing mechanical or chemical stimuli.  

(ii) Evolution equations to describe the synthesis and organisation of matrix 

components by cells in response to load. 

(iii)Equations to relate changes in the synthesis and organisation of matrix 

components to the tissues mechanical properties. 

(iv)  Appropriate constitutive equations to describe the non-linear, inhomogeneous 

nature of biological tissues. 

Only by successfully incorporating these elements can we expect computational models 

of tissue differentiation to become useful tools in tissue engineering and the design of 

orthopedic implants. 
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Mechanobiological models – Figures 

 
 

 

Fig. 1. It is hypothesised that connective tissue cells differentiate from the mesenchymal 

cell pool in response to the local mechanical and biochemical stimuli. Adapted by van 

der Meulen and Prendergast [2] from Caplan [3]. 

 

 

 



(a) (b) 

Fig. 2. (a) Pauwels’ illustration of an angulated fracture, consisting of a tension 

side (Z) where cells were thought to be elongated, and a compression side (D) 

where the cells were thought to be hydrostatically stressed. (b) Histological section 

of an angulated fracture callus, consisting of small chondrocytes on the 

compressive (right) side of the callus, and a more fibroblast like cells on the 

tension (left) side of the callus. Adapted from Pauwels [6]. 

 

 

Fig. 3. (a) Pauwels’ representation of cartilage been squeezed between the 

regenerating bony tissue. In the centre the regenerating tissue is elongated 

transversely. (b) Callus from a fracture of the forearm of a mouse, showing 

collagen fibers have developed in the area of maximum elongation. Adapted from 

Pauwels [6].  

(a) (b) 



 

 

 

Fig. 4. A schematic representation of the hypothesised influence of mechanical 

stimuli on tissue differentiation proposed by Pauwels. Figure taken from Weinans 

and  Prendergast [7]. 

 

 



 

Fig. 5. Strain tolerance of repair tissues. A tissue cannot exist in an environment 

where the interfragmentary strain exceeds the strain tolerance of the extracellular 

matrix of the tissue. Taken from Perren and Cordey [9]. 

 

 

 

 

 



 
 

Fig. 6.  Phase diagram describing the influence of loading on the differentiation of 

pluripotential mesenchymal tissue into bone, fibrous tissue, fibrocartilage or 

cartilage. The tensile failure line marks the cut-off region beyond which failure of 

the mesenchymal tissue occurs as a result of excessively high tensile strains. The 

pressure necrosis line marks the pressure region beyond which 

cartilage/fibrocartilage no longer forms and tissue necrosis occurs instead [16]. 

 



 

Fig. 7 (a) Finite element mesh of a chondral defect used by Carter and Beaupré 

[15]. (b) The distribution of hydrostatic stress and tensile strain in normal articular 

cartilage. (c) The distribution of hydrostatic stress and tensile strain in the 

articular cartilage and regenerating tissue in the chondral defect.  

 

 



 
 

Fig. 8. Influence of tensile strains and fluid pressure on tissue differentiation [19]. 

 

 

 
Fig. 9.  Mechano-regulation model of tissue differentiation proposed by Claes and 

Heigele [20]. 

 

 

 



 

Fig. 10. Mechano-regulation pathway hypothesised to control tissue differentiation 

based on the tissue strain and fluid flow. Both tissue strain and interstitial fluid 

flow are hypothesised to cause cell deformation. A region of high cell deformation 

causes fibrous tissue formation, intermediate deformations allow cartilage 

formation and low strains allow bone formation. After Prendergast et al. [21]. 

 

 

Fig. 11. Mechano-regulation model of tissue differentiation proposed by Kuiper et 

al. [25]. 


