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Climate Feedbacks on the Terrestrial Biosphere and the 
Economics of Climate Policy: An Application of FUND 

 

 

1. Introduction 
Models should be as simple as possible, but not simpler. This also holds for Integrated 

assessment models (IAMs). IAMs combine reduced form models of the various 

components of the climate change problem to shed light on climate policy – and the 

perfect IAM has just enough complexity to generate an important insight. The perfect 

IAM does not exist, of course, but (Smith & Edmonds 2006) have recently argued that 

most IAMs have a serious deficiency. The simplifying assumption that the uptake of 

carbon dioxide by the terrestrial biosphere is independent of climate, may have led to a 

substantial underestimate of the effort and cost required to meet any target for 

stabilization of the atmospheric concentration of greenhouse gases. In this paper, I test 

this with a different IAM, and extend the analysis to costs and benefits. 

The representation of the carbon cycle in IAMs has been under scrutiny before (Joos et 

al. 1999;Schultz & Kasting 1997), but earlier work was focused on alternative 

representations of a static carbon cycle. One of the crucial assumptions about the carbon 

cycle is the atmospheric life-time of carbon dioxide, as this determines whether emissions 

should be reduced or eliminated if concentrations are to be stabilized (Kolstad 2005). 

This paper is focused on the hitherto largely neglected dynamics of the carbon cycle – 

neglected by climate economists, that is. As argued below, this not only changes the level 

of ambition and costs of climate policy (as would be the case with alternative static 

representations), but it also introduces new interactions. There is an additional premium 

on emission reduction, as the terrestrial feedback falls with abatement. Additional 

parameters, such as the climate sensitivity, affect the atmospheric concentration of 

greenhouse gases. 

Section 2 describes the model. Section 3 discusses the impacts of the climate feedback of 

the terrestrial biosphere on cost-benefit analysis, while Section 4 considers cost-

effectiveness analysis. Section 5 concludes. 
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2. The model 
I use Version 2.9 of the Climate Framework for Uncertainty, Negotiation and 

Distribution (FUND). Version 2.9 of FUND has the same basic structure as that of 

Version 1.6 (Tol 1999;Tol 2001;Tol 2002c), except for the impact module (Tol 

2002a;Tol 2002b). The source code and a complete description of the model can be found 

at http://www.fund-model.org/. 

Essentially, FUND is a model that calculates damages of climate change and impacts of 

greenhouse gas emission reduction for 16 regions of the world by making use of 

exogenous scenarios of socioeconomic variables. The scenarios comprise of projected 

temporal profiles of population growth, economic growth, autonomous energy efficiency 

improvements and carbon efficiency improvements (decarbonization), emissions of 

carbon dioxide from land use change, and emissions of methane and of nitrous oxide. 

Carbon dioxide emissions from fossil fuel combustion are computed endogenously on the 

basis of the Kaya identity. The calculated impacts of climate change perturb the default 

paths of population and economic outputs corresponding to the exogenous scenarios. The 

model runs from 1950 to 2300 in time steps of a year, though the outputs for the 1950-

2000 period is only used for calibration, and the years beyond 2100 are used for the 

approximating the social cost of carbon under low discount rates. The scenarios up to the 

year 2100 are based on the EMF14 Standardized Scenario, which lies somewhere in 

between IS92a and IS92f (Leggett et al. 1992). For the years from 2100 onward, the 

values are extrapolated from the pre-2100 scenarios. The radiative forcing of carbon 

dioxide and other greenhouse gases used by FUND is determined based on Shine et al. 

(1990). The global mean temperature is governed by a geometric buildup to its 

equilibrium (determined by the radiative forcing) with a half-life of 50 years. In the base 

case, the global mean temperature increases by 2.5˚C in equilibrium for a doubling of 

carbon dioxide equivalents. Regional temperature increases, which are the primary 

determinant of regional climate change damages (except for tropical cyclones, as 

discussed below), are calculated from the global mean temperature change multiplied by 

a regional fixed factor, whose set is estimated by averaging the spatial patterns of 14 

GCMs (Mendelsohn et al. 2000).  
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The model considers the damage of climate change for the following categories: 

agriculture, forestry, water resources, sea level rise, energy consumption, unmanaged 

ecosystems, and human health (diarrhea, vector-borne diseases, and cardiovascular and 

respiratory disorders). Impacts of climate change can be attributed to either the rate of 

temperature change (benchmarked at 0.04˚C per year) or the level of temperature change 

(benchmarked at 1.0˚C). Damages associated with the rate of temperature change 

gradually fade because of adaptation (Tol 2002a). 

FUND considers emission reduction of the three main greenhouse gases: carbon dioxide, 

methane, and nitrous oxide. For methane and nitrous oxide, simple abatement cost curves 

are used (Tol 2006). For carbon dioxide, the model is more elaborate. Initially, abatement 

costs rise more than proportionally with abatement effort, but costs become linear after a 

backstop price is reached. There are mild intertemporal spillovers between and within 

regions that reduce costs (Tol 2005a). 

FUND is fully described on http://www.fund-model.org/. The model specification used 

here is as in the publications listed above. In this paper, I modify the carbon cycle. The 

atmospheric concentration of carbon dioxide follows from a five-box model: 

(1a) i,t i i t i tBox  =  Box 0.000471 Eρ α, +  

with 

(1b)  t
i=1

5

i i,tC  =  Box∑α

where αi denotes the fraction of emissions E (in million metric tonnes of carbon) that is 

allocated to Box i and ρ the decay-rate of the boxes (ρ = exp(-1/lifetime). See Table 1 for 

the parameters. The model is due to (Maier-Reimer & Hasselmann 1987), its parameters 

are due to (Hammitt et al. 1992). Carbon dioxide concentrations are measured in parts per 

million by volume. Below, I refer to Equation (1) as the static carbon cycle; it is static in 

the sense that it is not affected by climate change. 

There is a feedback from climate change on the amount of carbon dioxide that is stored 

and emitted by the terrestrial biosphere. Instead of modelling the full dynamics, I keep 

the uptake by the terrestrial biosphere as it is – that is, Equation (1) is not affected – and 

add emissions from the terrestrial biosphere. Emissions from the terrestrial biosphere 

follow 
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(2a) ( )2000
max

B t
t t

BE T T
B

β= −  

with 

(2b) 1 1
B

t t tB B E− −= −  

where EB are emissions (in million metric tonnes of carbon); t denotes time; T is the 

global mean temperature (in degree Celsius); Bt is the remaining stock of potential 

emissions (in million metric tonnes of carbon, GtC; Bmax is the total stock of potential 

emissions; Bmax = 1,900 GtC; β is a parameter; β = 2.6 GtC/ºC, with a lower and upper 

bound of 0.6 and 7.5 GtC/ºC. The model is calibrated to the review of (Denman et al. 

2007). 

Figure 1 shows the atmospheric concentration of carbon dioxide for the business as usual 

scenario and for β = 0, β = 0.6 GtC/ºC, β = 2.6 GtC/ºC, and β = 7.5 GtC/ºC. Without the 

climate feedback of the terrestrial biosphere, ambient CO2 goes up to 817 ppm in 2100. 

With the feedback, this is 903 ppm, with a range of 838 to 1040 ppm. The terrestrial 

biosphere clearly makes a difference. 

 

3. Efficient climate policy 
An efficient climate policy selects emission reduction so as to maximize net present 

welfare. Essentially, abatement costs are balanced against the avoided damages of 

climate change. I here only approximate the optimum. In the first period, marginal 

abatement costs equal the marginal damage costs. However, I let marginal abatement 

costs rise with the rate of discount rather than with the growth rate of the marginal 

damage costs (Hotelling 1931). This approximation facilitates comparison with the cost-

effectiveness analysis below. 

I first compute the marginal damage cost of carbon dioxide emissions along the business 

as usual or no climate policy scenario (Tol 2005b). This is done by slightly perturbing 

that scenario, computing net present value of the difference in impacts, and normalizing 

that with the difference in emissions. The results are shown in Table 2 as the social cost 

of carbon. I then impose a carbon tax equal to the social cost of carbon, and recomputed 

the marginal damage cost along the new emissions trajectory. This is iterated until the 
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carbon tax equals the marginal damage costs. The results are shown in Table 2 as the 

Pigou tax (Pigou, Arthur C. 1920). 

As a carbon tax reduces emissions, one would expect that the Pigou tax is lower than the 

social cost of carbon. Table 2 confirms that this is the case. By the same token, if the 

feedback of climate change on the terrestrial biosphere leads to higher concentrations of 

carbon dioxide in the atmosphere, then one would expect that the social cost of carbon is 

higher. Again, Table 2 confirms that this is the case. In the central case, the social cost of 

carbon is 19% higher with the feedback factor than without; this is 5% and 49% in the 

low and high cases, respectively. 

For the Pigou tax, there are two effects at work. Firstly, higher concentrations imply 

higher marginal damage costs. Secondly, abatement not only reduces anthropogenic 

emissions, but also the feedback on the terrestrial biosphere. This bonus increases the 

difference between the social cost of carbon and the Pigou tax. Table 2 shows that the 

first effect dominates. The feedback increases the Pigou tax by 18% in the central case, 

and by 4% and 46% in the low and high cases. The Pigou tax is 88% of the social cost of 

carbon without feedback, and 86% with the highest feedback. The difference is so small 

because the climate system has so much momentum. 

Table 3 shows a sensitivity analysis for the social cost of carbon. I first vary the pure rate 

of time preference. Obviously, the social cost goes up as the discount rate goes down, but 

the relative change varies in an unpredictable way. This is because the terrestrial 

feedback differs in speed rather than in size – cf. Equation (2). Furthermore, the level of 

climate change has a mix of positive and negative effects, while the rate of climate 

change is unambiguously negative and CO2 fertilization unambiguously positive (in the 

model). A different feedback effect affects all of these at once, and a different discount 

rate emphasizes different aspect of the time profile. Hence, the relative effects are hard to 

predict. However, a higher terrestrial feedback is always bad, regardless of the discount 

rate. Table 3 also shows the results for different values of the climate sensitivity. The 

social cost of carbon is substantially larger if the planet warms faster. If the planet warms 

more slowly, the social cost of carbon is negative, and more so if the terrestrial feedback 

is stronger. The negative cost is explained by CO2 fertilization, which is stronger as the 

terrestrial feedback is stronger. CO2 fertilization also dampens the negative impacts if the 
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climate sensitivity is larger, while faster warming means that the terrestrial feedback is 

exhausted sooner so that its impacts are more concentrated in the 21st century. Table 3 

also shows the social cost of carbon without CO2 fertilization, underlining the importance 

of this factor. 

 

4. Cost-effective climate policy 
A cost-effective climate policy meets a given target at the lowest possible cost. To a first 

approximation, this implies that the marginal costs of emission reduction is equal 

between countries and greenhouse gases, and rises with the rate of discount. The initial 

carbon is the only difference, therefore, with the efficient policies discussed above. 

Furthermore, the optimization problem is uni-dimensional. I select two stabilization 

targets, viz. 3.4 Wm-2, 4.6 Wm-2 and 5.8 Wm-2 or 520 ppm CO2eq, 650 ppm CO2eq and 

810 ppm CO2eq. The highest and lowest targets were also used in the US CCSP (Clarke et 

al. 2007) but are otherwise arbitrary; the middle target is between the other targets. 

Table 4 shows the results. A stricter target requires a higher initial carbon tax, and 

implies a sharper reduction in economic growth. If the terrestrial biosphere releases more 

carbon into the atmosphere due to climate change, it is tougher to meet the target. Carbon 

taxes go up, and economic growth falls further. Opinions differ as to the strain the 

economy can and should take. However, climate policy would almost wipe out economic 

growth if the target is 4.6 Wm-2 and if the climate feedback of terrestrial biosphere is at 

its maximum – the same target is two orders of magnitude smaller if there is no feedback. 

Table 5 shows the results for the initial carbon of a sensitivity analysis around the 4.6 

Wm-2 target. There is an extensive literature on the costs of emission reduction, and on 

cost-effective strategies. The same sensitivities apply here. The results in Table 5 focus 

on those parameters that affect the impact of the terrestrial feedback. Cost-effective 

trajectories to meet a radiative forcing target are insensitive to the warming that would be 

caused by that forcing if there is no feedback. However, if the terrestrial biosphere 

releases carbon in response to climate change, the cost-effective trajectory is sensitive. 
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Table 5 reveals that the initial carbon tax goes up (down) if the climate sensitivity1 goes 

up (down), as one would expect, and that the effect is of the same order of magnitude as 

the effect of the terrestrial feedback itself. As both parameters are fairly uncertain, the 

interaction may create a fat tail (Weitzman 2009). 

Table 5 also displays the impact of alternative parameterization of the static component 

of the carbon cycle (Equation (1); Table 1). In the base case, the zero-carbon-tax scenario 

has an atmospheric concentration of carbon dioxide of 817 ppm in 2100 without a climate 

feedback on the carbon cycle, which goes up to 903 ppm with the climate feedback (for β 

= 2.6 GtC/ºC). Although (Hooss et al. 2001) uses very different parameters, the 2100 

concentration is 823 ppm without feedback and 910 ppm with. Using the parameters of 

(Maier-Reimer & Hasselmann 1987), the 2100 concentration is 860 ppm without 

feedback and 957 ppm with. Table 5 shows the initial carbon tax needed to stabilize at a 

radiative forcing of 4.6 Wm-2. With a zero or small climate feedback, the tax rates are 

similar between the alternative specifications of the static carbon cycle. However, results 

diverge for a high climate feedback. This underlines that the climate feedback is a 

dynamic feedback in the mathematical sense of the word, and introduces a bifurcation in 

the system. 

Table 5 also varies the efficacy of non-CO2 greenhouse gas emission reduction – 

essentially, the cost function is varied so that the same carbon tax would yield twice or 

half the amount of methane and nitrous oxide emission reduction as in the base case. 

Again, the effect on the initial carbon tax is in the same order of magnitude as the 

terrestrial feedback. That is, methane and nitrous oxide play a crucial role in keeping the 

warming sufficiently in check to prevent massive releases of carbon from the terrestrial 

biosphere. 

 

5. Discussion and conclusions 
The positive feedback of climate change on the terrestrial biosphere component of the 

carbon cycle implies that efficient climate policy is more stringent than in the case 

                                                 
 
 
1 The climate sensitivity is defined as the equilibrium increase of the global mean surface air temperature 
due to a doubling of the atmospheric concentration of carbon dioxide. 
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without such feedback because (a) climate change is more severe and its impacts are 

worse, and (b) there is “reduced feedback” premium on emission reduction. The latter 

effect is small compared to the former. There are no clear interactive effects of the 

terrestrial feedback with the discount rate or the climate sensitivity, but the impact of the 

terrestrial feedback on the social cost of carbon is dampened by the positive effects of 

CO2 fertilization on agriculture. This implies that one can reasonably approximate the 

impact of the climate feedback with the effect of higher baseline emissions. 

The positive feedback of climate change on the terrestrial biosphere component of the 

carbon cycle implies that cost-effective climate policy is more expensive for the same 

target than in the case without such feedback. If the feedback is large, more ambitious 

stabilization targets may be unattainable. The feedback would be reinforced if the 

warming is faster than expected, if non-CO2 greenhouse gas emission reduction is less 

effective, or if other parts of the carbon cycle are less advantageous. This implies that one 

can reasonably approximate the impact of the climate feedback with the effect of higher 

baseline emissions or more stringent targets. However, this is true for modest values of 

the climate feedback parameter only. For high values, there appears to be a “bifurcation” 

– that is, certain targets can be achieved at reasonable cost for one set of parameters 

choices, but alternative (and superficially similar) parameter choices imply much higher 

abatement costs. This bifurcation does not apply to the impacts of climate change because 

there is no target date (e.g., emissions in 2100), because the total feedback is limited by 

the stock of carbon dioxide in the terrestrial biosphere, and because of the discount rate. 

As ever, the above results are predicated on the model and its parameters and scenarios. 

The modification of the carbon cycle is particularly simple and the results should be 

tested against other, more realistic specifications. At the same time, the simple 

formulation used here can readily be included in other integrated assessment models so 

that one can test the robustness of my findings against alternative representations of the 

impact of climate change or the costs of emission reduction. Future research should 

particularly focus on the two main findings (1) that the climate feedback on the terrestrial 

carbon cycle has approximately the same effect as higher baseline emissions and (2) that 

there is a possible bifurcation in costs and feasibility. The latter conclusion may negate 

the former conclusion, but the bifurcation seems to hold for small part of the parameter 
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space only and may disappear under uncertainty or a less rigid application of the target 

date. Future research should also explore other feedbacks, such as on the ocean carbon 

cycle and the permafrost. The results presented here show a definite impact on the level 

of the costs of climate policy and a possible impact on the dynamics of climate policy. 

The size of the impact is such that further research is worthwhile. 

On the policy side, the results show that climate policy will be more expensive (or less 

feasible) than previously thought but at the same time show that emission abatement is 

more urgent. 
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Table 1. Parameters of the “five-box carbon cycle model” of (Maier-Reimer & 
Hasselmann 1987) according to the standard calibration in FUND (Hammitt, 
Lempert, & Schlesinger 1992), according to (Hooss, Voss, Hasselmann, Maier-
Reimer, & Joos 2001), and according to the original calibration (MR&H). 

FUND Life time ∞ 363.0 74.00 17.00 2.000 
 Fraction 0.130 0.200 0.320 0.250 0.100 
Hooss Life time ∞ 236.5 59.52 12.17 1.271 
 Fraction 0.132 0.311 0.253 0.209 0.095 
MR&H Life time ∞ 313.8 79.80 18.80 1.700 
 Fraction 0.142 0.241 0.323 0.206 0.088 
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Table 2. The social cost of carbon and the Pigou tax for various strengths of the climate 
feedback on the terrestrial carbon cycle. 

Feedback None Low Mid High 
Social cost of carbon ($/tC) 1.93 2.03 2.30 2.87 
Pigou tax ($/tC) 1.70 1.77 2.01 2.48 
PT/SCCa (%) 88.08 87.44 87.39 86.44 
a Pigou tax / social cost of carbon. 
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Table 3. A sensitivity analysis of the social cost of carbon ($/tC) for various strengths of 
the climate feedback on the terrestrial carbon cycle. 
Pure time 
preference 

Climate 
sensitivity 

CO2 
Fertilization 

Climate feedback 
terrestrial biosphere 

%/year ˚C/2xCO2  None Low Mid High 
3 2.5 Yes 1.93 2.03 2.30 2.87 
1 2.5 Yes 16.44 17.32 19.49 22.52 
0 2.5 Yes 56.86 60.73 68.28 74.55 
3 1.5 Yes -3.69 -3.71 -3.79 -4.02 
3 4.5 Yes 20.34 21.14 23.15 25.47 
3 2.5 No 9.02 9.19 9.67 10.61 
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Table 4. The marginal and total costs of meeting various stabilization targets for various 
strengths of the climate feedback on the terrestrial carbon cycle. 

Feedback None Low Mid High 
Initial carbon tax ($/tC in 2005) 
No target 0 0 0 0 
5.8 Wm-2 6 7 15 71 
4.6 Wm-2 19 23 56 1461 
3.4 Wm-2 111 131 229 >2000 
Reduced growth (difference with baseline growth, in percent per year) 
No target 2.006a 0.000 0.001 0.002 
5.8 Wm-2 0.015 0.017 0.025 0.264 
4.6 Wm-2 0.022 0.027 0.206 1.880 
3.4 Wm-2 0.506 0.519 1.138 - 
a Average annual growth of the global economy between 2000 and 2100 for the case 
without carbon feedback and without climate policy. 
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Table 5. Initial carbon tax necessary for meeting a radiative forcing target of 4.6 Wm-2 
for the base case, low and high climate sensitivities (1.5ºC/2xCO2 and 4.5ºC/2xCO2 
versus 2.5ºC/2xCO2), low and high efficacy of non-CO2 abatement (half and double), 
and two alternative calibrations of the static carbon cycle model (cf. Table 1) for various 
strengths of the climate feedback on the terrestrial carbon cycle. 

Feedback None Low Mid High 
Base 19 23 56 1461 
Low climate sensitivity 19 21 34 88 
High climate sensitivity 19 24 82 >2000 
Low non-CO2 gas abatement 17 19 34 98 
High non-CO2 abatement 21 27 1205 >2000 
Hooss 20 24 59 >2000 
MR&H 24 28 71 >2000 
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Figure 1. The atmospheric concentration of carbon dioxide under the business as usual 
scenario for four alternative specifications of the climate feedback of the terrestrial 
biosphere. 
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