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Abstract

In today’s mobile telecommunications networks, in-
creasingly powerful fault management systems are re-
quired to ensure robustness and quality of service of
the network. In this context, fault alarm correlation is
of prime importance to extract meaningful information
from the vast quantities of alarms generated by the net-
work. Existing sequential data mining techniques ad-
dress the task of identifying possible correlations in fre-
quent sequences of telecoms alarms. These frequent se-
quence sets, however, may contain sequences which are
not plausible from the point of view of network topol-
ogy constraints. This paper presents the Topographical
Prozimity (TP) approach which exploits the topograph-
ical information encoded in telecommunication alarms
in order to address this lack of plausibility in mined
alarm sequences. An evaluation of the quality of mined
sequences is presented and discussed. Results show an
improvement in overall system performance for impos-
ing proximity constraints.

1 Introduction

Given the growing complexity of mobile telecommu-
nications networks, the task of ensuring robustness and
maintaining quality of service in the network requires
increasingly powerful network management systems.
Furthermore, the steady increase in size and complex-
ity of the network produces a corresponding increase
in the volume of data generated by network elements
(e.g. alarms, performance indicators) placing added
strain on management systems. In particular, the area
of fault management remains a key problem area for
network operators, as the speed at which faults are
handled has very immediate consequences for network
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performance. The complex, inter-connected nature of
the network means that a single fault may produce
a cascade of alarms from affected network elements.
Conversely, intermittent, self-clearing alarms may be
raised without any attendant fault in the network. In
this context, event correlation provides a means of deal-
ing with the large volume of alarm data. Correlations
define relations between alarm events that facilitate the
processes of alarm filtering, masking and prioritising
specified in ITU-T recommendations [7]. While se-
quential data-mining techniques have evolved to iden-
tify possible useful correlations in alarm data, the task
of identifying the subset of important and plausible
correlations remains heavily dependent on the domain
expertise of network equipment manufacturers and op-
erators. Yet alarms encode substantial domain knowl-
edge, in particular topographical information regarding
the network elements which generated a given alarm.
Furthermore, telecommunications networks, although
complex, conform to a well-defined topology of net-
work elements. This paper addresses the challenge of
harnessing the latent domain knowledge available in
alarm data in order to provide criteria for automati-
cally evaluating the plausibility of mined alarm corre-
lations. Section 2 sets out current approaches in the
domain of sequential data-mining addressing the task
of event correlation. Section 3 describes the need to
exploit topographical attributes of the input data to
validate mined sequences and how this has been re-
alised for telecommunications alarm data as the Topo-
graphical Proximity (TP) measure. Section 4 describes
a set of experiments aimed at providing a qualitative
evaluation of the topographical proximity approach for
mining telecommunications alarm data. The results
are presented and discussed in section 5.



2 Sequential Data Mining

Telecommunications alarm data is inherently tem-
poral and sequential in nature, consisting of a series of
timestamped events. The specific problem of identify-
ing relationships between events in a sequential dataset
can be viewed as a subset of the problem of mining
for associations between dataset elements in general,
constrained by the temporal aspects of the data. The
domain of sequential data mining addresses this prob-
lem space with the objective of finding noteworthy se-
quences of events or sequential patterns that suggest
relationships between constituent events. In theory,
the notion of noteworthiness may be task—specific. In
practice, however, a sequence which is noteworthy of-
ten equates to a sequence which occurs frequently in
the input data. However, frequency as the sole measure
of sequence “noteworthiness” is not a valid measure for
network alarm data where frequency may indicate re-
dundancy. The research presented here is motivated by
the need to establish novel criteria for pattern selection
in sequential data mining.

Much of the foundation work in sequential mining
techniques shares a common historical origin in the
Apriori association rule mining algorithm for transac-
tion data [2]. Apriori is based on the assumption that a
frequent sequence of elements must consist of elements
which are themselves frequent. The algorithm gener-
ates a set of frequent sequences by iterating through a
“generate and count” process, generating candidate se-
quences of increasing length and pruning the set based
on sequence frequency or support (i.e. normalised fre-
quency) values. Candidates are generated by a process
of merging two existing sequences of length n — 1 to
give a sequence of length n, as in example 1.

ABC + ABD => ABCD (1)

The WINEPI [8] and GSP [10] algorithms were among
the first to adapt the Apriori technique to mine for tem-
poral association rules in sequential data. Both employ
a sliding time window with a user-specified duration to
traverse the input data, extracting sequences according
to user-specified minimum and maximum sequence du-
ration constraints. Although the basic premise for the
two algorithms is the same, they differ in many design
and implementation details. The GSP algorithm was
designed for mining transaction data and, therefore,
incorporates extra transaction-based constraints on vi-
able candidate sequences. Furthermore, GSP events or
items may be organised in a taxonomy allowing events
or their superordinates in the taxonomy to be used
for calculating support values or generating candidate
sequences. WINEPI, on the other hand, is optimised

for flat sequential data, like telecoms alarm data and
addresses the issue of full or partial ordering of event
sequences.

Other Apriori-based approaches aim to optimise
performance within the same conceptual framework.
MINEPI [8] is an extension of the WINEPI algorithm
which optimises space and time constraints by com-
pressing event sequences to their minimal occurrence
window. FreeSpan [5] focuses on the candidate gen-
eration process employing a database of projected se-
quence extensions to ensure that the system only gen-
erates candidates that exist in the data. Its extensions,
PrefixSpan [9] and IncSpan [3], modify the projected
database structure and access to optimise the depth-
first search of possible candidate sequences. SPADE
[13] decomposes the search space and uses lattice-based
search strategies to optimise performance.

Apriori-based approaches assume that the aim is to
identify highly frequent patterns. Other approaches
are designed to extract sequences according to differ-
ent criteria. Weiss [12] describes a supervised machine
learning system using genetic algorithms where the ob-
jective is to predict rare, rather than frequent, equip-
ment failures events on the basis of alarm sequences,
candidates sequences are generated by a combination
and/or mutation process. Heierman et al [6] use peri-
odicity and length of sequences as well as frequency in
their candidate selection process. Sterritt [11] presents
a hybrid approach which combines genetic algorithms
and Bayesian belief networks to derive structures based
on sequences with a strong cause and effect relation-
ship. The research set out below is based on an Apriori
approach but introduces a novel criterion for sequence
selection which evaluates sequence plausibility and co-
herence in terms of network topology.

3 Topographical Proximity

The algorithms outlined in section 2 are capable of
efficiently extracting thousands of event sequences in
sequential input data. Therefore, post-processing re-
mains an essential component of a usable mining sys-
tem whereby sequences which are deemed to be unin-
teresting because they are redundant or simply implau-
sible are eliminated from the output. The Topological
Proximity (TP) approach introduced in this paper con-
stitutes a means of determining the plausibility of a
correlation between events in mined sequences at run-
time of the mining process. The algorithm quantifies
how closely alarm-generating elements are connected
to each other in terms of the logical structure of a net-
work using topographical information extracted from
the alarms themselves. The general assumption is that



the more closely connected the alarm-generating ele-
ments, the more plausible and hence interesting the
relationship between the alarms and the greater likeli-
hood that there is some cause and effect relationship
between them. At runtime, a measure of Topograph-
ical Proximity is used to reject or promote candidate
sequences on the basis of their connectedness. Not only
does this ensure that the output sequence set is plau-
sible within the context of the network, but the space
and time constraints of the data mining process are
optimised as the algorithm uses both frequency and
proximity to reduce the dimensions of the candidate
sequence set, thereby restricting the search space of
possible correlations. The measure may also be used
during post-processing to rank sequences in terms of
the connectedness of their constituent alarm events.
Section 3.1 outlines how the TP measure is calculated
based on a generic network topology. Section 3.2 de-
scribes how the measure has been integrated into the
sequential mining process.

3.1 TP Calculation algorithm

The TP algorithm calculates the logical distance be-
tween alarm-generating network elements. The value
has a minimum of zero for nodes that have no logical
connection in the network and a maximum of one for
nodes that have a very clear and close connection. TP
calculation is based on the Radio Access Network of
a standard UMTS telecommunication network which
consists of functional nodes connected by communica-
tion interfaces and arranged in a logical, hierarchical
structure, represented by the simplified schema in fig-
ure 1.1 Each node in this system has functional sub-
components which may generate fault alarms which are
then communicated to a designated Radio Access Net-
work Management Node via a standard interface. Node
subcomponents represent a node’s internal functional-
ity, the functionality of the interfaces between nodes
or logical communications artefacts. The position of
an alarm-generating node in the hierarchical structure
is encoded in its full distinguished name, included in
the source node attribute of each alarm.

In the context of this hierarchical network, the topo-
graphical proximity value for network elements on the
same branch of the network is automatically assigned
the maximum value of 1, to reflect the direct descen-
dancy relation between the network elements, for ex-

IThe TP calculation algorithm, however, is valid for any net-
work which consists of functional nodes connected by interfaces
and arranged in a logical structure. In [4], we describe how prox-
imity values may be predefined as constants and assigned on the
basis of shared and disjunct topographical information of alarm-
generating nodes.

MasterNode2

@@@
Figure 1. Simplified telecommunications net-
work schema

ParentNodel_1
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ample between Child1 and ParentNodel_1 or ParentN-
ode2_2 and MasterNode2 in figure 1. For network ele-
ments that are not on the same branch of the network
(e.g. Child5A and Childl in figure 1), the topograph-
ical proximity value equates to a weighted traversal of
the network branches or edges between two network el-
ements. The TP value represents the total number of
edges that must be traversed to find a path between the
two elements. The weighting reflects the assumption
that some hierarchical relations are closer than others.
For the purposes of this analysis, logically, Child nodes
form tighter clusters around Parent nodes than Parent
nodes around Master nodes. This reflects the assump-
tion that alarms on elements lower in the hierarchy may
be more likely to share a common cause. Thus, nodes
Childl and Child2 in figure 1 are deemed closer in the
context of the network than nodes ParentNodel_1 and
ParentNodel_2.

For any two alarms, the source node attribute of
each alarm is parsed to give the inheritance hierarchy
of the network element with which that alarm is asso-
ciated. The Topographical Proximity value for the two
associated network elements is then calculated accord-
ing to algorithm 1. Examples 2 to 4 below provide
some sample TP values based on the network elements
in figure 1.

T Pcalculation(Childl, Child3) = 0.8 (2)
T Pcalculation(Childl, Child6) = 0.4 (3)
T Pcalculation(Childl, ChildlA) = 0.05  (4)
3.2 Integration of TP to themining algorithm

The current implementation integrates the Topo-
graphical Proximity approach with the candidate gen-



Algorithm 1 TP calculation algorithm

Algorithm 2 calculateSequenceTP

Input: 2 network elements, E1 and E2
Output: TP value, 0 > TP <1

TP =0

if sameBranch(E1, E2) then
Return 1

end if

if sharedParentNode(E1, E2) then
TP+ =04

end if

if sharedMasterNode(E1, E2) then
TP+ =0.35

end if

if sharedNetwork(E1, E2) then
TP+ =0.05

end if

Return TP

eration component of the MINEPI algorithm [8].
MINEPI generates candidate sequences of length n by
combining two existing sequences of length n — 1 and
stores the minimal, or most compact, occurrences of all
frequent sequences for subsequent iterations. Our algo-
rithm filters all occurrences of candidate sequences on
the basis of their connectedness within the network, as
represented by the TP value calculated for the alarm-
generating network elements. This filtering can be im-
plemented in one of two ways:

1. Store minimal occurrences of all sequences above
a given TP threshold;

2. Store the occurrences with the highest TP value
of all sequences.

In the first case, the space constraints of the system
are optimised for sequence compactness, in the second
for sequence connectedness. In order to compare the
performance of the original Minepi algorithm with that
of the Topographical Proximity approach, the experi-
ment reported in section 4 take the first approach using
the TP value to prune the candidate set rather than to
explicitly optimise sequence storage. The final step, as
with Minepi, prunes the remaining candidate set based
on a support (i.e. frequency) threshold.

Each minimal occurrence of a sequence has an as-
sociated proximity value. For sequences of length two,
the TP wvalue is calculated according to algorithm 1.
For longer sequences, the TP value is the mean of the
TP values for the two existing occurrences to be merged
and the proximity value calculated for the source nodes
of the first and last alarms of the new candidate, as in
algorithm 2. For example, candidate sequence 7 below

INPUT: seq, {alarmy,alarms . ..alarm,}
OUTPUT: TPvalue
if length(seq) == 2 then
return calculateT P(alarmy, alarms)
else
T P,cq1 = Retrieve from memory T Patarmi...n_1)
T Pscq2 = Retrieve from memory T Pyiarms,...,,

T Ppew = calculateT P(alarmy, alarmy,)
TPseqi+TPseq2+T Prew
3

return
end if

is composed of subsequences 5 and 6.2
Seq-1 = Childl, Child3, M aster Nodel (5)

Seq 2 = Child3, Master Nodel, Child1A (6)
Seq = Childl,Child3, MasterNodel, ChildlA (7)

T Pseq, the TP value for the new candidate sequence
Seq, is calculated as follows, where the only new TP
calculation evaluates the connection between Childl
and Child1A:

T Pgeqi + T Pseq2 + T Pcalc(Childl, ChildlA)

3

(8)
The added cost of the TP computation is minimal as
for each occurrence of a new candidate sequence, only
one new TP calculation is carried out. Furthermore,
the cost is offset by the reduction in the search space
of candidate sequences at each iteration achieved by
imposing a minimum TP value threshold. Unlike a
support threshold, the TP threshold is not an arbi-
trary means of reducing the set of candidate sequences.
The TP threshold can be set to reflect domain experts
intuitions regarding what connections constitute plau-
sible sequences in their network. A support threshold
is imposed after the TP threshold but the frequency
constraint can be more flexible given the candidate
sequences set is pre-pruned for proximity. Section 5
explores how the use of the topographical proximity
threshold interacts with the standard mining parame-
ters of maximum sequence duration and minimum sup-
port value to obtain optimum results in a qualitative
evaluation of mined sequences.

TPSeq =

4 Experiments

A set of experiments was conducted in order to pro-
vide a qualitative evaluation of the mining algorithm at

2For the purposes of illustrating the TP calculation, the
alarms in the sample sequences are represented by their source
nodes. The examples refer to the simplified network in figure 1.



different topographical proximity thresholds. To date,
research has tended to focus on system performance,
justifiably given the intensive computation involved in
the mining process. What has been notably lacking,
however, is an evaluation of the quality of the mined
sequences. The experiment described below aims to
address this shortfall. To this end, the mining task has
been formulated as one of identifying specific target
sequences in the data. The experiment was run on a
Pentium 4 3.2 GHz processor with 2 GB of RAM run-
ning Microsoft Windows XP Professional version 2002.

4.1 Test Cases

For the purposes of this experiment, the time win-
dow and minimum support system parameters were
tested within the ranges of 60-600 seconds at 60 sec-
ond intervals and 25-175 occurrences at intervals of
25, respectively. This gives a total of 70 test cases
(10 time windows x 7 support wvalues) for each
Topographical Proximity (TP) threshold value. For
each time window and support parameter combination,
baseline system performance of Minepi without Topo-
graphical Proximity (T'P = 0) was calculated. Six fur-
ther test cases for each parameter combination were
evaluated at TP = {0.5,0.6,0.7,0.8,0.9,1}. The aim
was to determine optimum system parameters and TP
threshold values from the 490 (107 % 7) test cases and
to establish whether the imposition of a TP threshold
improved the quality of the output sequence set.

4.2 Methodology

Most commercially available alarm management
systems are fully dependent on the expertise and ex-
perience of network analyst to derive rules for filtering
and correlating alarms. This experiment aims to pro-
vide a global measure of the quality of the performance
of the mining algorithm evaluated in the context of the
domain knowledge of such experts. This objective has
been formulated as the task of identifying in live net-
work data common alarm sequences specified by net-
work analysts.

Dataset. The basic dataset for the experiments con-
sists of 96,991 alarms from the Radio Access Net-
work (RAN) of a live telecommunications network.The
alarm format conforms to telecoms standards [1] and
includes a timestamp with a granularity of milliseconds
and thirteen attributes relating to four broad categories
of alarm timing, event lifecycle, alarm type and alarm
source details.

Target Sequences Set. The quality of the output
frequent event sequences must be evaluated relative
to the frequency of known event sequences in the in-
put data. In order to compile a target set of event
sequences, a detailed statistical analysis of the alarm
data was conducted by network experts. The analy-
sis focused on the most frequently occurring individ-
ual alarms in order to identify repeating alarms and
suspected correlations among the frequent alarm set.
The results was a target set of twenty event sequences
consisting of eighteen repeating alarm sequences, nine
of length two events and nine of length four, and two
inter-event correlations of length two and four. This
set of twenty sequences represents a baseline of gold
standard sequences which experts extrapolate from the
dataset and which the algorithm should identify in the
dataset.

Procedure. The mining algorithm was run on the
dataset of 96,991 alarms for the 490 test cases set out
in section 4.1. For each test case, three performance
metrics were calculated based on the number of tar-
get sequences from the set of twenty target sequences
identified for these parameters and threshold values.

4.3 PerformanceMetrics

The metrics used to determine performance in the
experiment reported below are the measures of pre-
cision and recall borrowed from the Information Re-
trieval domain. In the context of this mining experi-
ment, the measures are defined as follows:

e Precision: the number of correctly identified tar-
get sequences relative to the total number of se-
quences found by the system.

Number of target sequences found
Total number of sequences found

Precision =

e Recall: the number of correctly identified target
sequences relative to the total number of target
sequences.

Number of target sequences found
umber of sequences in the target set

Recall = N

A high precision value indicates that the algorithm
is selective and does not identify many spurious se-
quences. A high recall value indicates that the algo-
rithm is accurate, successfully identifying most of the
target sequences. These two metrics are combined to
give a single indicator of system performance, the F
Score representing the trade-off between these two in-
dicators of precision and accuracy. A high F Score
value indicates that the algorithm is both selective and



accurate with respect to the target sequence set. The F
Score is calculated according to the following formula:

2 * Precision * Recall
Precision + Recall

e FScore =

The performance metrics were calculated for perfect
matches of target sequences identified by the system.
They focus on the performance of the mining algorithm
in terms of its ability to identify patterns known to ex-
ist in the data while restricting these patterns to ones
which represent plausible connections in a telecommu-
nications network. Results are presented and discussed
in section 5.

5 Results

In order to isolate the impact of the Topographical
Proximity value on system performance in this exper-
iment, the effects of the time window and support pa-
rameters were analysed. The ten graphs in figure 2 il-
lustrate performance for each of the ten time windows
from 60 to 600. Each graph plots the three perfor-
mance metrics of precision, recall and F Score for all
TP value thresholds: the Minepi baseline (TP = 0) and
TP = {0.5,0.6,0.7,0.8,0.9,1}. The figure illustrates
that there is little variation in performance across the
ten time windows. This would strongly suggest that
window size is not a significant factor in the task of
identifying target sequences. This can be attributed to
the fact that the sequences are short in duration and
therefore should be identified at all window sizes above
60 seconds. Figure 2 presents the results derived using
a support threshold of 100 but results at all support
thresholds exhibit the same characteristics.

The minimum support parameter, however, has
a much greater effect on sequence identification,
as illustrated in figure 3. The seven subplots
demonstrate system performance for support values
{25,50, 75,100, 125,150, 175} at a time window of 240
seconds. The plots show quite different behaviour for
the seven support thresholds. It is therefore in the con-
text of these seven experimental conditions represented
by the seven support thresholds that we evaluate the
effect of the TP value on system performance.

Figure 3 demonstrates a clear trend across all sup-
port value thresholds: as the TP threshold increases,
there is a decrease in recall with a corresponding in-
crease in precision, giving an overall increase in F Score
value. This trend reflects the trade-off between repro-
ducing the target sequence set in the output and gen-
erating a more restricted and, therefore, precise set of
output sequences. The trade-off is such that, despite
the reduction in recall values, overall performance, rep-
resented by the FScore value, improves as higher TP

thresholds are enforced. This result validates expec-
tations that restricting the sequence selection process
to only accept topographically plausible sequences will
significantly reduce the number of spurious sequences
identified, thereby reducing the search space at runtime
and facilitating post-processing. Furthermore, the re-
duction in recall values, particularly for TP > 0.7, may
be addressed by employing the second strategy outlined
in § 3.2 of optimising sequence storage with reference
to proximity rather than sequence duration.

The results reported here would suggest that the use
of the topographical proximity value yields a favourable
trade-off between accuracy and recall for sequential
data mining of telecoms alarm data. Furthermore, we
would suggest that the output sequence set for higher
TP thresholds more accurately represent the opinion
of domain experts that:

e interesting correlations occur on related or con-
nected nodes;

e frequency alone may not be an appropriate cri-
terion for identifying noteworthy sequences in
telecommunications data.

6 Future Work

The research reported in this paper suggests two
complementary directions for future work. The first
is to extend the topographical proximity measure to
a broader sequence validation methodology. This can
be addressed by identifying those attributes of indi-
vidual alarms, which are significant, not for classify-
ing individual alarms into types, but at the sequence
level for validating alarm sequences. Future imple-
mentations aim to exploit attributes such as alarm
severity and probable cause to generate a more refined
measure of sequence plausibility by which to constrain
the sequence generation process. Furthermore, the al-
gorithm described in this paper assumes a simplified
and homogeneous network topology. This is an over-
simplification which needs to be addressed in future
development by exploiting other explicit connections
within the telecoms network.

The second key extension to the current research
regards the qualitative evaluation of sequential mining
algorithms. The experiment described above infers a
target sequence set from domain experts analysis of
the input data. Devitt et al [4] describe an experiment
which uses a silver standard of alarm data with syn-
thetic sequences inserted in known quantities and dis-
tributions into the data. A further step would require
the development of a gold standard dataset for tele-
coms alarm data where all significant and interesting
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Figure 2. Performance metrics by TP threshold,

correlations have been tagged in the data by domain
experts.

7 Conclusions

The main contribution of this paper is to intro-
duce the Topographical Proximity (TP) approach for
sequential mining of telecommunications alarm data.
This measure exploits the topographical information
encoded in alarms to validate all candidate sequences
at run-time with respect to the plausibility of the pos-
sible correlation they represent. The second significant
contribution is to provide a qualitative evaluation of
the performance of the mining algorithm. The evalu-
ation results strongly suggest that the performance of
the mining algorithm improves with the inclusion of
the TP measure.

60 < timeWindow < 600, support = 100.
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