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ABSTRACT 
Users of the web are increasingly interested in tracking the 
appearance of new postings rather than locating existing 
knowledge. Coupled with this is the emergence of the Web 2.0 
movement (where everyone effectively publishes and subscribes), 
and the concept of the “Internet of Things”. These trends bring 
into sharp focus the need for efficient distribution of information. 
However to date there has been few examples of applying 
ontology-based techniques to achieve this. Knowledge-based 
networking (KBN) involves the forwarding of messages across a 
network based not just on the contents of the messages but also on 
the semantics of the associated metadata. In this paper we 
examine the scalability problems of such a network that would 
meet the needs of Internet-scale semantic-based event feeds. This 
examination is conducted by evaluating an implemented 
extension to an existing pub-sub content-based networking (CBN) 
algorithm to support matching of notification messages to client 
subscription filters using ontology-based reasoning. We also 
demonstrate how the clustering of ontologies leads to increased 
efficiencies in the subscription forwarding tables used, which in 
turn results in increased scalability of the network. 
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1   INTRODUCTION 
Establishing a global event service at Internet scales presents a 
major challenge for existing networking technologies. Such an 
event service is crucial in the support of the explosion of dynamic 
interactivity expected through the increased use of Web 2.0 
technologies where diverse and an increasing numbers of 
publishers and subscribers of content will be more mobile and 
dynamic [1]. The time at which items are posted is increasing in 
importance relative to the content of the post, e.g. blog postings 
rapidly fade in importance as time passes. The web has responded 

to this need with RSS feeds which allow event postings, to 
quickly be notified to interested users. However, this system relies 
on users subscribing to feeds of pages they have already located, 
whilst feed aggregators offer only rudimentary searches or simple 
classifications of feeds. This is partly because the near-real time 
events present in feeds are disassociated from the system of user-
defined hyperlinks required by search engines which also 
introduces a discovery latency that is unacceptable to feed users. 
Though we can search for the static pages we are unable to search 
the body of feed events active at any point in time. As we look 
forward to future uses of the Web, in support of the ‘Internet of 
Things,’ searching for events becomes more important as devices 
and sensors become sources of high frequency postings of 
interest. In [27] it is suggested that that an Internet-wide event 
service may need to scale to 109 events per second, a similar order 
of event producers and huge variability in the proportion of 
consumers subscribing to an event. Current event-based publish-
subscribe systems offer a networking model that is well suited to 
such applications, but they are typically limited to relatively static 
characterisations of events. Elements of this are being addressed 
by developments in Content Based Networks (CBN), a 
specialisation of the pub-sub paradigm where message forwarding 
is based on message attributes and their values. Extensive 
research is ongoing into finding a balance between restricting the 
expressiveness of event attribute types and subscription filters, 
their efficient matching at CBN nodes and efficient maintenance 
of routing tables [11, 21, 22, 33]. Currently user subscriptions are 
limited to simple syntactic matches (typically integers, strings and 
Booleans). In [16, 29, 31] the concept of Knowledge Based 
Networking is introduced, as a semantically enhanced publish-
subscribe model extending content-based networking (CBN). This 
novel integration of semantics within the pub-sub routers 
themselves allows messages to be matched to subscriptions based 
not only on their contents, but also their semantics. Producers of 
knowledge express the semantics of their available information 
based on an ontological representation of that information, and 
publish semantically enriched messages as required. Consumers 
express subscriptions upon that information as long-lived 
semantic queries, in response to which they continually receive 
suitable matching messages. A Knowledge-based Network (KBN) 
is therefore more flexible, open and reusable to new applications. 
However, the scalability of a KBN to Internet scale requires a 
routing mechanism that minimizes both the size of routing state 
held in KBN nodes and the overhead of ontological reasoning in 
nodes. To address this, [29] proposes the efficient partitioning of 
the routing space based on clustering related to the semantics of 
message contents, rather than grouping within the hierarchies of 
network addresses. In this paper we describe some empirical 
evaluation into the performance of semantic-based clustering 
within a deployed KBN using realistic distribution of 
subscriptions, notifications and their semantics based on 
characteristics of existing RSS feeds.  
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2   KBN IMPLEMENTATION 
The particular flavour of KBN investigated in this paper is an 
extension of the Siena CBN [12]. A Siena notification is a set of 
typed attributes, each attribute is comprised of a name, a type and 
a value. The current version of Siena supports the following basic 
types: string, long, integer, double and Boolean. Siena 
subscriptions are a conjunction of filtering constraints, where 
constraint is comprised of the attribute name, an operator and a 
value. The subscription operators currently supported are equality 
and less/greater than etc., and for strings, substring, suffix and 
prefix. Each Siena router maintains its own set of subscriptions 
(routing table), which is dynamically built from the specific 
subscriptions it receives. A subscription “covers” a notification, if 
the event matches to all filtering constraints of a filter.  
Notifications are delivered to a client, if the client has submitted a 
subscription where the conjunction of the subscription’s filters 
covers that notification. Siena also discovers coverings between 
subscription filters to optimize subscription routing. A filter 
covers another filter, if all notifications covered by the latter are 
also covered by the former. The Siena covering relationships, 
defined in [12, 20], allow each router’s subscription set to be 
dynamically arranged into a hierarchical tree structure (routing 
table), with more general subscriptions towards the top, and more 
specific subscriptions towards the bottom. This structure allows 
subscriptions to be efficiently and correctly aggregated together to 
reduce the subscription tree size and efficiently match each 
publication to subscriptions as it passes through each router.  

In [16, 29, 31] a KBN implementation is presented that extends 
Siena by providing three additional ontological base types: 
properties, concepts and individuals. It also supports subsumptive 
subscription operators, i.e. sub-class/property (more specific), 
super-class/property (less specific), and equivalence. E.g., a 
subscriber can subscribe to all KBN messages that contain an 
attribute whose value is a concept more/less specific than the 
named concept in the subscription. To achieve this, each KBN 
router holds a copy of a shared OWL ontology, within which each 
ontological class, property and individual used is described and 
reasoned upon. These new ontological types are first class KBN 
types, and can be used in any KBN subscription or notification, 
along-side the standard Siena types and operators. Due to the 
transitive nature of the sub-property/class and super-
property/class properties, covering relationship for these operators 
were defined in [31], maintaining Siena’s subscription 
aggregation efficiencies. A further fully-implemented extension, 
presented in [34], introduces a new “bag” type and associated bag 
operators. A bag (also called a multiset) is a set-like object . The 
bags of integers {1,2,3} and {2,1,3} are equivalent, but bags 
{1,1,2,3} and {1,2,3} differ. The bag of integers {1,1,2,3,4} is a 
super-bag of {2,4,3} and so on. A bag can contain any valid Siena 
values, including other bags. Bags are first order members of the 
Siena KBN type set so can appear in notifications, as well as in 
subscription filters. 

The bag operators can also be combined with other Siena KBN 
operators to produce composite bag operators. The composite bag 
relation is a binary relation over bags composed of (i) another 
binary bag relation over bags and of (ii) a sub-relation over the 
bag elements. The bag of integers {1, 1, 2, 3, 4} is a super-bag of 
{2, 4, 3} using the default “equals” (==) sub-relation. The bag of 
integers {1, 2, 3} is an equal-bag of {2, 3, 4} using the “less than” 
(<) sub-relation. (i.e. for every element in the second bag, there 

exists an element in the first bag that is less than the element, with 

no unused elements in either bag). A full description and logical 
proofs of KBN bags, and the simple and composite bag operators 
are outside of the scope of this paper, but are provided in [34].  

These bag type and operator extensions greatly extend the 
expressiveness of the Siena KBN subscription mechanism, 
especially when combined with the ontological operators. Again, 
due to the transitive nature of the sub/super bag operators, when 
combined with the covering relationships for the other Siena KBN 
operators, covering relationships for the bag operators can also be 
defined [34]. This maintains the efficiencies of Siena, allowing a 
single homogenous KBN to scale to moderate sizes. 

3 BENCHMARKING KBN PERFORMANCE  
Many of the parameters that affect the performance of a KBN’s 
routing scheme are largely application specific. Therefore a KBN 
can only be evaluated through its use in supporting diverse 
applications in a variety of scenarios. A benchmark, specifically 
for KBNs, is presented in [25], based on a synthetic benchmark 
for Content-based Networks in [26]. It defines the set of 
parameters that must be defined before an application of a 
specified KBN can be evaluated in either a qualitative or 
quantitative manner. These are summarised below: 

Message generation: publication rate; subscription rate; active / 
inactive subscriptions cycle durations. 

Publication generation parameters: number of fields in 
publication; publishers’ ontologies (defined in terms of content, 
size, complexity, expressiveness, bushiness etc).; names of 
attributes in publications, which may be drawn from publishers’ 
ontologies; type of each attribute; value space for each attribute, 
which may be drawn from publishers’ ontologies. 

Subscription generation parameters: number of subscriptions 
per subscriber; number of filters per subscription; subscribers’ 
ontologies (defined in terms of content, size, complexity, 
expressiveness, bushiness etc. and its similarity to the publishers’ 
ontologies); names of attributes used in each filter, which may be 
drawn from the publishers’ or subscribers’ ontologies; type of 
each attribute used in the filter; attribute values used in filters, 
which may be drawn from the publishers’ or subscribers’ 
ontologies; operators used in filters. 

KBN routers’ ontologies (defined in terms of content, size, 
complexity, expressiveness, bushiness etc. and their similarity to 
each other, the publishers’ ontologies and the subscribers’ 
ontologies).Only once the parameters listed above have been 
made explicit for each application running on top of a KBN, the 
performance can then be effectively and accurately compared.  

4 PODCASTING – A REAL WORLD-BASED 

PUB - SUB USAGE SCENARIOS 
In order to undertake empirical evaluation into the performance of 
a KBN using the benchmark identified in section 3, it was 
necessary to identify realistic distributions of subscriptions, 
publications and their semantics. Despite the increasing adoption 
of semantic-based metadata within the Web 2.0 community, there 
remains few sources of information to define distributions of 
subscriptions, messages and their semantics for different 
applications. In order to identify some realistic benchmark values 
we examined the distribution of podcast update feeds. 
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4.1 PODCASTING 
 The application area chosen for study was podcasting, due to its 
popularity and the availability of a semantically rich de-facto 
metadata standard, the iTunes XML schema [7]. The iTunes 
schema allows for basic descriptors to be combined with 
semantically rich tags such as descriptive hierarchical categories, 
keywords, and ownership. Of particular interest is the set of 
hierarchical categories defined in the schema, as shown in Figure 
1 which are used to annotate messages and aid in the searching for 
relevant podcasts. Firstly, it was necessary for the authors to 
establish exactly how many podcasts were actually being 
produced and consumed, or in terms of this paper, published and 
subscribed to. In 2006 a number of pivotal net analysts, including 
Neilson and Pew, aimed to answer this question. The survey by 
the “Pew Internet and American Life project” [3] in November 
2006, through a telephone survey of 2,928 adults within the 
Continental US, showed 12% of Internet users had downloaded a 
podcast, averaging an estimated 65 million podcast listeners 
within the U.S.A. This is in contrast with the 7% of users who 
reported downloading a podcast in their April 2006 survey 
showing a growth of around 5% in as many months. The Neilson 
analysis [4] shows varying yet similar results to the data collected 
by Pew. Based on a phone interview of 1700 participants, 6% of 
the respondents were “regular podcast downloader’s” leading to 
an estimate that 6% of US Adults, or around 9 million Web users 
had downloaded podcasts in the July-August period of 2006. 
Neilson also estimates that 72% of the respondents who regularly 
download podcasts download an average of 1-3 podcasts per 
week, 10% of whom download 8 or more podcasts per week. 
Neilson concludes approximately five podcast downloads per 
week was a fair estimate of average consumption. These studies 
provided us with a good indication of type of growth in podcast 
subscription that we should model in our distribution. From data 
donated by the administrators of FeedBurner.com 
(http://www.feedburner.com), one of the most popular and 
established podcast syndication websites, we determined the 
following with respect to characterising the distribution model for 
publications and subscriptions. In 2006, the number of podcast 
feeds grew from 31,167 feeds to 83,743 feeds, resulting in a 
growth of 52,576 new feeds over that 1 year period. When 
distributed equally over the year, this equates to a new podcast 
producer publishing approximately every 10 minutes. From a 
survey of the most 30 of the popular feeds, the average update 
period for each feed averaged one update per week. Where each 

feed is represented by one publisher, and each publisher publishes 
a new notification every week, this means that a new publisher 
starts on average every 600 seconds, with an average continuous 
publication rate of one notification every 604,800 seconds per 
publisher. The data from FeedBurner.com also shows a growth in 
subscriptions from 915,277 to 6,434,758, resulting in 5,519,481 
new subscriptions in 2006 alone. This can be approximated to 
836,285 new subscribers over the year or one every 37.73 
seconds. Based on the data in a Yahoo White paper on RSS feeds 
[9], each subscriber maintains an average of 6.6 subscriptions. It 
is estimated that podcast users very rarely change their 
subscriptions once they have found feeds that they like, and they 
rarely subscribe to feeds that they do not like. For these reasons 
this scenario estimates that each subscriber takes one week to 
subscribe to only their favourite 6.6 feeds, and then never 
unsubscribe. These approximations mean that a new subscriber is 
created on average every 37.73 seconds, which each creates an 
average of 6.6 subscriptions over a week (i.e. one every approx. 
91,636 seconds or 25.5 hours), and then continuously waits for  
messages, the ratio shown in Figure 2: 

4.2 DEPLOYING THE EXPERIMENT  
In striving to replicate a real world distributed deployment, the 
PlanetLab network [10] was used to deploy a KBN network and 
exercise it according to the scenario above. The PlanetLab 
network comprises 756 nodes, distributed across 368 sites 
worldwide. Whereas traditional network simulations are evaluated 
on either a local or virtual test-bed, the PlanetLab environment 
allowed us to experiment across a physical Internet infrastructure 
of 77 random machines distributed across Europe, North America, 
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Figure 1: Categories in the Apple iTunes Podcast schema (Ontology) 

Figure 2: Ratio of Publications to Subscribers 
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South America, Asia and Australia. The experimental setup 
consisted of 37 nodes running as dedicated KBN routers, 15 nodes 
running as dedicated publication creators and a further 25 were 
used as dedicated subscription generators. The 37 KBN routers 
form the hierarchical overlay as shown in Figure 3. 

4.3 THE PODCASTING BENCHMARK  
To evaluate the performance of the KBN we simulated the 
distribution of podcast feed updates according to the traffic 
characteristics discussed in section 4.1. In this scenario a KBN 
publishing client is created for each feed, and the client generates 
KBN publications for every update announcing a new podcast 
episode for that feed. A KBN client was also created for each feed 
subscriber, and that client created a separate KBN subscription for 
each of its feed subscriptions. To speed up the gathering of data it 
was decided to speed-up the experiment by a factor of 365, i.e. 
model a full year’s traffic in a single day.  

Message generation rates: These are sourced from section 4.1: a 
new publisher was started on average every 600 seconds, with an 
average continuous publication rate of one notification every 
604,800 seconds per publisher. a new subscriber was created on 
average every 37.73 seconds, which each created an average of 
6.6 subscriptions over a week (i.e. one every approx. 91,636 
seconds or 25.5 hours), and then continuously waited for 
messages.  

Publication generation parameters: The publishers’ relatively 
shallow and simple ontology was hand-crafted from the item 
categories as defined in the Apple iTunes podcast schema shown 
in Figure 1. This ontology is relatively small, at 38 kilobytes, with 
67 classes, no properties and no individuals. Each publication 
message contained 15 named attributes, as defined in the Apple 
iTunes podcast schema. (title, link, copyright, pubDate, 

itunes_Author itunes_Block, itunes_image, itunes_duration, 

itunes_explicit ,itunes_newFeedUrl, itunes_owner, 

itunes_subtitle, itunes_summary, itunes_category, 

itunes_keywords). All of the named attributes except 
itunes_category and itunes_keywords were of type String. 
itunes_category was defined as a bag of ontological classes, and 
itunes_keywords was defined as a bag of Strings. Following a 
survey of the 30 most popular feeds hosted by FeedBurner.com, 
the average number of keywords in each podcast item/episode 
was calculated as 4, therefore the itunes_keywords bag of each 
publication contained 4 keyword strings. These keywords were 
randomly drawn from a dictionary of 80 popular keywords. In the 
same survey, an average of 3 categories were attached to each 
publication, so the itunes_category bag of each publication 

contained on average 2-4 classes, drawn randomly from the 
publishers’ ontology described above and shown in Figure 1. The 
values for all of the attributes except itunes_category and 
itunes_keywords were hard-coded as static strings. 

Subscription generation parameters: Despite extensive 
searches we were unable to locate any information about how 
subscribers search for and select podcasts. For this reason, we 
decided to base the subscription format on what we considered the 
most useful and important semantic attributes of published 
podcast update notifications, i.e. the itunes_keywords and 
itunes_category attributes. When searching for actual podcasts the 
user would most likely use a search engine. The most popular 
search engines, including www.podcast-search.info, 
www.google.com, podcasts.yahoo.com and so on, all implement 
searches using a conjunction of keywords. In this scenario we 
decided to implement this subscription using the bag subscription 
mechanism discussed in section 2 by requiring that any matching 
subscription’s itunes_category bag of keywords must be a super-

bag of the keywords requested by the searcher. In this scenario, 
each subscriber subscribes using between 0 and 3 keywords 
randomly drawn from the same dictionary used by the publisher. 
When searching, a user would most likely select a single 
category, which would include all sub-categories if it was a parent 
category. Using the compound bag operator and described in 
section 2, this search can be implemented by requiring that the 
itunes_category attribute of any message must contain a bag of 
categories that is a super-bag of the required category, where one 
of the elements in the published itunes_category bag must be 
“more specific” than the required category, i.e. subsumed by the 
requested category. (i.e. a super-bag using the “more specific” 

sub-operator). In this scenario each subscriber specifies one 
category class drawn from the same ontology as the publisher. 
Therefore, each subscription is a conjunction of 2 constraints, 0-3 
keywords and a category class. This is based on the experimental 
assumption that a user when searching for content is typically less 
specific than a user posting content. In this scenario only the 
itunes_category and itunes_keywords attributes were used in the 
subscription filters so it was acceptable to have the other unused 
attributes in the publications hard-coded as representative static 
strings.  

Network topology: Combined with the goal of testing the KBN 
in a physically distributed environment, due to the resource 
requirements of this very large scale KBN deployment scenario 
(in particular the memory requirements of the multi-threaded 
publishing and subscribing clients rather than that of the routers), 
it was not possible to test the KBN’s operation for this scenario 
without widely distributing the workload of the clients. As 
discussed in the section 4.2, the experiment was deployed across 
77 distributed PlanetLab nodes, with 37 randomly selected nodes 
acting as KBN routers deployed in a hierarchy shown in figure 3, 
15 randomly selected dedicated publishing nodes, and 25 
randomly selected dedicated subscribing nodes. This workload 
distribution took into account the high subscription rate and 
relatively low publication rate. Considering the hierarchical 
nature of the network, and envisioning that the Root/Master node 
would suffer the highest loading, no publisher or subscriber sent 
messages directly to the Root Node.   

KBN routers’ ontologies: The KBN routers each used a copy of 
the same podcast categories ontology as used by the subscribers 
and the publishers. The hypothesis of this research is that the 

Figure 3: The KBN overlay network 
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clustering of KBN nodes according to the semantics of the 
knowledge they present or request will have a positive effect on 
the performance of the KBN and improve its scalability. To 
evaluate this hypothesis the operation of the KBN was evaluated 
in 3 experiments. The scenario described was evaluated by 
crudely dividing the KBN hierarchical overlay into clusters of 
approximately equal size, as shown in Figure 3. In the first 
experiment the network was not divided (one cluster). In the 
second experiment the same logical network hierarchy was 
divided into two clusters. In the third experiment the same 
network was divided into three clusters. When divided, each 
cluster was tasked with focusing on only a proportion of the 
ontology, as shown in Figure 1.  

To demonstrate the expected difference in performance due to 
clustering, the KBN’s operation was measured. In the first 
“unclustered” experiment, each publisher and subscriber could 
send their subscriptions and publications messages to any random 
node in the network (except the Root node). In the second and 
third “clustered” scenarios, depending on the semantics of the 
subscription or publication to be sent, the client selected a random 
node from whichever cluster was most suited to receive that 
message (i.e. the cluster that focussed on the portion of the 

ontology which contained the majority of their referenced 

ontological concepts). If the message referenced the same number 
of concepts from all portions of the ontology then the message 
could be sent to any node in the network. In each of the 
experiments the same volume of publications and subscriptions 
were created, according to the same message generation 
distributions described above. It is important to note however that 
although the cluster to receive the message was calculated, the 
particular node within the cluster that would receive the message 
was randomly selected from the cluster’s members. This approach 
was taken to maintain the idea that in a hierarchical overlay pub-
sub network, where the logical hierarchy may be very different 
from the physical network’s topology, clients are not restricted by 
which router (or broker) they should connect to. In many cases 
clients may connect to their closest router, but this is not a 
requirement, hence random node selection could be considered a 
worst-case scenario. 

5   RESULTS AND FINDINGS 
The primary metrics used in this paper were to compare the 
performance of the KBN’s operation where the characteristics of 
the subscription tree / routing table stored at each KBN router. 
This was due the end-to-end nature of the network, the 
heterogeneity of the machines in the PlanetLab network, and the 
variability of dynamic resource availability on the PlanetLab 
nodes as they ran other experiments concurrently. The authors 
feel that this is a fair metric to objectively compare the 
experiments for two reasons. Firstly, by the nature of using 
content-based subscription filter matching, for each notification 
potentially all subscriptions filters may need to be evaluated 
against the notification. For each subscription the subscription 
tree needs to be searched to find the optimal position to insert the 
subscription. Therefore, a smaller and more ordered subscription 
tree is more efficient. Secondly, the hierarchical logical topology 
of the KBN overlay were randomly created, and clients connect to 
random nodes (within a cluster), so the aggregate network traffic 
across each of the experiments should remain similar (especially 
for larger networks.)  

Figure 4 shows the sizes of the subscription tree / routing table for 
a node at level 3 in the middle of the KBN hierarchy. The graphs 
are truncated to approximately 850 simulated hours since soon 
after this point the resources requirements of the subscribers 
began to exceed the conservative fair-use resource allocation of 
the oldest PlanetLab nodes, mainly due to the 365X speedup 
factor used in these experiments. Resource throttling at these 
weaker nodes meant that the results became unreliable after 
approx 1000 simulated hours (40+ simulated days). The graphs 
show how the total subscription tree size is smaller when semantic 
clustering is employed, despite a very similar number of 
subscriptions arriving at the node for each experiment. Despite the 
fact that the rate at which subscriptions were arriving continued to 
increase according the distribution in figure 1, the total 
subscription tree size was starting to level out. The results 
therefore show that for a given number of received subscriptions, 
the subscription tree is smaller when semantic clustering is 
employed. Similar graphs were generated for nodes at each level 
in the hierarchy, and all show very similar results (except the 
Root node), and so are not presented here. The main optimisation 
feature of the Siena Hierarchical CBN, upon which the evaluated 
implementation of the KBN is based, is the use of subscription 
aggregation / covering to merge and order similar subscriptions. 
In the Siena subscription tree, subscriptions which cannot be 
merged with other subscriptions, or grouped under more general 
(covering) subscriptions, form “root” subscriptions in the tree. 
The count of “root” subscriptions, when considered with the size 
of the subscription tree, gives an overview of the searchability and 
optimality of the subscription tree at each node. Therefore the 
number of Siena “root” subscriptions at each node was also 
measured, as shown in Figures 5-8.The “root” subscriptions at 
each node are the most general subscriptions of each node so it is 
only these root subscriptions that need to be passed up to a 
router’s parent node. To a parent router a child router appears as a 
subscribing client using only the child’s “root” subscriptions.  

This is done iteratively up the tree, so subscriptions become more 
general in the nodes towards the top of the network, and more 
specific towards the bottom. This explains why the more general 
subscriptions flowing up the hierarchy cause the subscription tree 
to reach optimality quicker as more general subscriptions reduce 
the number of  “root” subscriptions. In addition, with respect to 
how child nodes send their “root” subscriptions to their parent 
node, it can be seen that semantic clustering greatly reduces this 
traffic and associated routing table “churn”. This is particularly 
apparent towards the bottom of the network. Again similar graphs 

Figure 4: Subscription tree / Routing table size on one KBN router 
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Figure 9: “Root” subscriptions in the Master/Root Node 
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were generated for other nodes at each level in the hierarchy, and 
all show similar results except the Root node. In a purely 
hierarchical network, where messages may be routed from one 
side of the network to the other side, it is clear that the 
Root/Master node can form a bottleneck in terms of the scalability 
of the network. As all the traffic travelling from one branch (and 
cluster) to another grows, the routing overhead in the Root node 
also grows. For this reason, to maximise scalability, it is 
necessary to minimise the size of the routing table at the root 
node, and optimise its searchability.  

Figures 9 and 10 clearly show that for the application 
characteristics, KBN configurations, and scenarios introduced 
above, the subscription tree / routing table in the root node is 
reduced and converges to smaller size when even rudimentary 
semantic clustering is performed. In addition, since the 
subscribing clients do not send subscriptions directly to the Root 
node, the only subscriptions reaching the Root node come from 
the “root” subscriptions of the nodes on level 2 of the hierarchy. 
As a result of only receiving more general subscriptions, there is a 
much smaller difference between the total subscription tree size 
and the number of “root” subscriptions in the node. Shown in, 
specifically Figure 10, are the root subscriptions which are the 
covering subscriptions. The figures show the roots subs reaching 
maximum capacity, which with the introduction of new 
subscription content would begin a reversal of this trend.  

6   RELATED WORK 
There has been little examination of the use of ontology-based 
semantics in content-based networking in the scientific literature. 
In [17] a semantic publish-subscribe system is presented, but it is 
based on a centralized (pub-sub bus) implementation and thus is 

Figure 5: “Root” subscriptions in a level 2 router  

Figure 7: “Root” subscriptions in a level 4 router 
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Figure 6: “Root” subscriptions in a level 3 router 

Figure 10: Subscription tree size in the Master/ Root node. 



limited to enterprise scale and does not offer true CBN 
capabilities. In [35], semantics can be used in messages in a pub-
sub middleware; however, the semantics are used only at the edge 
of the network in a manner similar to a small scale study 
presented in [30]. The KBN presented in this paper uses semantics 
deep in the forwarding algorithm of each message router within 
the network. Much work to date on content-based networks has 
focused on how efficiency in routing can be gained through 
subscription aggregation and merging. Recent progress with the 
XNET CBN has shown that perfect routing can be achieved in a 
scaleable manner independently of subscriber joins and leave 
rates though subscription aggregation [33]. The HERMES CBN 
[22], ToPSS [18] and the REBECCA CBN [24] have all applied 
peer to peer distributed hash table (P2P DHT) mechanisms to the 
formation of routing tables in CBN nodes. This is interesting in 
that it may form the basis for a flexible and robust clustering 
mechanism for routing in KBNs. It should be noted that though 
P2P systems themselves are concerned with efficiently routing 
queries to matching information sources in a query-response 
manner, they do not address the CBN concern of optimally 
routing a sequence of asynchronous replies back to the set of 
querying, or in CBN terms, subscribing clients. P2P DHTs 
provide efficient routing by using a cost metric keyed to the 
physical topology of the network resulting in average hop-counts 
for a route in the order of the log of the number of nodes in the 

network i.e. O(log(N)). However a difficulty remains in the 
mapping of content based subs to a key space suitable for DHTs. 

There are several attempts at applying P2P DHT techniques to the 
retrieval of distributed ontology encoded knowledge information, 
e.g. in RDF, in semantic overlay networks [11, 15, 23]. In 
supporting an ontology-driven DHT-based P2P routing 
mechanism for the KBN, the approach outlined in [15] seems 
most promising due to its support for peer clustering. Used in this 
way, peer clustering introduces a hierarchy of peer groups based 
on policies. Such policies could admit nodes based on semantic 
closeness, recorded performance, administrative domains or 
indeed reasoning capabilities. It therefore provides a mechanism 
for these different routing configuration strategies to co-exist, 
serving different application domains or user communities in a 
way that supports incremental deployment and innovation.  

Like the preliminary approach taken in this paper, the design 
presented in [5] uses the semantics of the message and knowledge 
of the entire network to decide where a subscription should be 
inserted into the network to minimise the routing table at 
individual nodes. A slightly different approach in [2] requires the 
entire network to be searched for a cluster before a subscription is 
submitted. However, these systems remain CBNs rather than 
KBNs because the semantics of the message cannot be used in 
subscriptions and so lacks the expressiveness of the system 
physically evaluated in this paper. In the presented KBN, it is 
planned to employ more sophisticated and dynamically 
reconfigurable clustering schemes, that can be without the need 
for the complete knowledge of the semantics of all of the network, 
either before hand or by searching, so improving scalability [29].  

7   CONCLUSIONS AND FUTURE WORK 
This paper raises some of the scalability issues involved in 
building a global Knowledge-Based Network. Fundamental to this 
is the need to support a large array of heterogeneous types in 
notification messages to accommodate the global variety in 

message sources and in the subscriptions to those messages. The 
performance of a KBN implementation which extends the Siena 
CBN has been explored. One part of the extension provides 
ontological concepts as an additional message attribute type, onto 
which subsumption relationships can be applied. The other part 
provides for a bag type to be used that allows bag equivalence, 
sub-bag and super-bag relationships to be used in subscription 
filters, composed with different bag element comparators. These 
two extensions augment the expressiveness of CBNs to directly 
support two major evolutions in the typing of data on the web, the 
use of ontologies in the Semantics Web and the use of string 
based tagging and folksonomies in Web 2.0. These evolutions 
allow the WWW to cope with a dramatic increase in the number 
of sources of information by providing richer meta-data about 
content; however the widespread use of rich semantics in meta-
data is still not in evidence. 

One of the main questions that surround the use of ontologies 
deep in the network at the routing layer remains the evaluation of 
the resulting performance overhead. Previous small scale studies 
in this area [29, 30, 31] show a definite performance penalty, but 
this may be acceptable when offset against the increased 
flexibility and expressiveness of the KBN subscription 
mechanism. Further research is required to evaluate how the 
performance of “off-the-shelf” ontology tools will affect the 
scalability of KBNs within larger scales. These results point to the 
potential importance of semantic clustering for efficient network 
and performance scalability. It is acknowledged that the 
experiments in this paper demonstrate only rudimentary semantic 
clustering. However, the experiments in this paper clearly 
demonstrate how even inflexible and static clustering can have a 
substantial positive effect. Ongoing research will focus on how 
clustering can be performed dynamically as the semantics of the 
data within the network changes.  

Work is also focusing on integrating policy-based cluster 
management for the KBN [29] to support much more 
sophisticated cluster schemes, e.g. overlapping clusters and 
hierarchies of clusters under separate administrative control. 
Policy-driven clustering enables the size and granularity of peer 
clusters to reflect different application domains. For example, the 
clustering policy may be specified in terms of accuracy, latency 
or reasoning resources as well as the semantic spread of the 
query-able knowledge-base, or in terms of queries across a peer 
population and of the querying load across that population. In 
addition, the effect of semantic interoperability in node matching 
functions and in inter-cluster communications will be assessed. 
This requires evaluation of different schemes for injecting newly 
discovered semantic interoperability mappings into the 
ontological corpus held by any given cluster, as well as how these 
mapping are shared between clusters. We expect that any 
practical system will need to adapt its clustering to reflect the 
constantly changing profile of semantics being sent and 
subscribed to via the KBN, thus creating a network environment 
in which messages are passed from node-to-node, cluster-to-
cluster based not on the data’s destination but based on the 
messages semantic data.  
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