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Heat-capacity and entropy changes at the metal-insulator transitions have been mea-

sured on Ti O, single crystals.

The 130-K transition is related to a disordering of the

Ti** and Ti** chains at the unit cell level. Ti®* pairing occurs in this phase but without

any long-range order of the bonds.

It is shown from both magnetic-susceptibility and

specific-heat data that for the 150-K transition, the electronic contribution seems to be
of the same order of magnitude as the lattice contribution.

Titanium oxide Ti,0, belongs to the class of
materials which show metal -insulator transitions
and have attracted considerable attention during
the last decade.!"? It is one of the Magnéli phases
Ti,0,,-, and is triclinic with two molecules per
primitive cell.> The structure contains two types
of Ti chains, running parallel to the pseudorutile
¢ axis and truncated every four Ti by the crystal-
lographic shear planes.* Ti,O, exhibits two elec-
trical transitions, a semiconductor-semiconduc-
tor transition at about 130 K and a semiconductor -
metal one at about 150 K.> For both transitions,
there is a steep increase of the electrical con-
ductivity with increasing temperatures. The mag-
netic susceptibility shows a sharp enhancement
at 150 K; it is small and temperature independent
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both below and above 150 K and does not show
any anomaly at 130 K.* Marezio ef al. showed
that, below 130 K, the Ti chains are either Ti®*
or Ti** and that the 3+ sites are paired to form
nonmagnetic Ti®*-Ti®* bonds [Figs. 3(a) and 3(b)].
Between 130 and 150 K, the crystal structure
was found to be only slightly different from the
room-temperature one.*

It was proposed that the low-temperature phase
(7 <130 K) is insulating because of the localiza-
tion of 3d electrons into nonmagnetic Ti® *-Ti®*
bonds. The high-temperature phase (7 >150 K)
is metallic because of the delocalization of the
3d electrons. The nature of the intermediate
phase (130 < T <150 K) is not clear. It has been
suggested that there could be charge localization
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FIG. 1. Molar heat capacity C, of Ti;O;. Measure-
ments are made at low temperature on powder (2 g)
and above 110 K on single crystals of 25x10™% g. The
inset shows the molar heat capacity of single crystals
in the temperature range of the transitions. The mea-
surements are performed with increasing tempera-
tures.

and Ti®* pairing also in the intermediate phase,
but without any long-range order. Recently,
Anderson discussed such a phase as a “classical
liquid of pair bonds.””

Until now no experimental evidence for the
validity of such a model has been given. In this
Letter, the first heat-capacity data obtained on
Ti,O, single crystals are presented. The single
crystals were grown by chemical transport reac-
tion as described elsewhere.? X-ray and elec-
tron-diffraction studies showed that the crystals
were single phased. The data obtained for the
electrical resistivity and the magnetic suscepti-
bility are very similar to those given in Refs. 5
and 6.

The heat capacity at constant pressure, C,,
has been measured in the temperature range of
100 to 400 K for several crystals, with a Perkin-
Elmer DSC2 differential-scanning calorimeter.
The errors on C, are of the order of 2%. The
curve of C, versus T (Fig. 1) shows two peaks:
The high-temperature peak is centered at 154 K
and is 3 K wide; the low-temperature peak is
about 10 K wide and is centered at 142 K for in-
creasing temperatures and at 130 K for decreas-
ing temperatures. Measurements have also been
performed on powder samples at lower tempera-
tures with a differential calorimeter.® The en-
thalpies of the transitions are found to be 95+5
and 468 +5 cal /mole for the 130- and 150-K tran-
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FIG. 2. C,/T versus T* for T<50 K. The corre-
sponding Debye temperature is 4938 K+ 10 K. The in-
set shows the Debye temperature & versus T and the
strong deviation from the Debye theory above 40 K.

sitions, respectively. The corresponding entropy
changes are 0.70 +0.05 and 3.40 +0.05 cal/mole
deg.

In order to fit the data with the Debye theory,
the C, - C, correction has been calculated at
room temperature, with the volume thermal ex-
pansion coefficient and the molar volume deduced
from data of Marezio et al.'° for Ti,O, and the
tabulated compressibility of TiO,. This correc-
tion is found to be negligible at 300 K. In the
high-temperature phase, the heat capacity ap-
proaches the C, equipartition value of 66 cal/
mole deg. At low temperature, the C,-C, cor-
rection, being much smaller than at room tem-
perature, is also negligible. Figure 2 shows the
curve of C,/T versus T? obtained from the low-
temperature measurements on powder samples.
Between 10 and 40 K, C, follows a 7° law corre-
sponding to a Debye temperature of 493 K+10 K.
Above 40 K, the results deviate from the Debye
theory, and the Debye temperature © (as deduced
from tabulated values) increases with tempera-
ture (Fig. 2, inset).

The departure from the 7% law below 10 K might
be due to some impurities. The Debye tempera-
ture of 493 K obtained between 10 and 40 K is
smaller than the values of 674 and 760 obtained
for Ti,0,' and TiO,, '* respectively. The same
kind of result has been obtained for V,0, com-
pared to VO, and V,0O, '* and might be character-
istic of the crystal structure of the Magnéli
phases. The deviation from the Debye theory
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FIG. 3. Crystal structure showing only the Ti chains parallel to the pseudorutile ¢ axis and truncated every four
Ti by a shear plane. (a) Structure in the metallic phase. (b),(c) Structure of the phase stable below 130 K. (d) Pro-
posed structure with disordered Ti®**-Ti®* bonds for the intermediate phase. The a(3-1-1-3) chains contain the
Ti(1) and Ti(8) sites, while the 5(4-2-2-4) chains contain the Ti(2) and Ti(4) sites.

above 40 K indicates that the phonon frequency
spectrum g(w) does not follow the Debye quadrat-
ic law even for rather small w.

The measured molar entropy change AS=0.70
cal/mole deg at the 130-K transition corresponds
approximately to two configurations per primitive
cell. This result suggests the model of disor-
dered Ti®** and Ti** chains shown in Fig. 3(d).

If we call the 3-1-1-3 chain « and the 4-2-2-4
chain b, the two pairs of Ti®*ions may be located
either on chain ¢ or on chain b, and similarly

for the Ti** ions; no more than two consecutive
chains can be occupied by ions of similar charge.
An exact calculation for this model yields a value
for the partition function of 2.62%* for N cells, if
the same statistical weights are given to the
configurations Ti® *(c)-Ti* *(c)-Ti® *(c)-Ti* (c),

Ti® *(c)-Ti* *(c)-Ti* *(c)-Ti® *(c), etc., where

Ti® *(c) and Ti**(c) mean Ti®** chain and Ti**
chain. This calculation is not physically correct.
In fact, if a statistical weight of 1 is given to the
configuration Ti®*(c)-Ti**(¢)-Ti® *(c)-Ti**(c) sta-
ble below 130 K, then the configurations includ-
ing two consecutive chains occupied by the same
ions [such as Ti®*(c)-Ti**(c)-Ti* *(c)-Ti®*(c)]

must have a statistical weight ¢ less than 1. The
configurations including twice two consecutive
chains occupied by the same ions [such as Ti3 *(c)-

1320

Ti® *(c)-Ti* *(c)-Ti* *(c)). will have a statistical
weight b ~¢®*. The number of configurations per
unit cell is then smaller than 2.62. The experi-
mental data correspond to a value of 0.7 for g,
indicating an extra energy of approximately 3
meV for the configuration Ti®*(¢)-Ti**(c)-Ti**(c)-
Ti3*(c) compared to the Ti®*(c)-Ti* (c)-Ti%*(c)-
Ti**(c). The kind of disorder suggested in this
model is compatible with the x-ray data,* where
the thermal parameters of the Ti ions in the in-
termediate phase are reported to be anomalously
large.

The low value for the susceptibility in both the
intermediate- and low-temperature phases can
be explained by the fact that the 3d electrons are
paired in the Ti®*-Ti** bonds. The temperature-
independent behavior might be due to a Van Vleck
mechanism, as was proposed for titanium sesqui-
oxide Ti,0,."* The steep increase of the suscep-
tibility at 150 K can be attributed to a delocaliza-
tion of the electrons and therefore to a Pauli con-
tribution. If one takes for the Pauli contribution
Ax ~600 xX10"® emu/mole, one obtains an effec-
tive mass m* ~15m and a density of states at the
Fermi level of 10 eV ™! per 3d electron. The
heat-capacity peak at 150 K includes an electron-
ic contribution which can be roughly evaluated
from the susceptibility results. The effective
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mass of 15m leads to a y coefficient of approxi-
mately 0.01 cal/mole deg® and to an electronic
entropy change of 1.50 cal/mole deg. The 3 val-
ue is much larger than for usual metals and is

of the same order of magnitude as the values
found in V-doped Ti,0,,' Ti-doped V,0,,'° and
other vanadium oxides.® This result might be
characteristic of a highly correlated electron gas
for the metallic phase.!® For the 150-K transi-
tion, as the total entropy change is 3.40 cal/mole
deg, the electronic contribution to the transition
seems to be of the same order of magnitude as
the lattice contribution. Therefore, the electron-
phonon interactions are likely to play an impor -
tant part in the 150-K transition, although the
electron correlations in the 3d band of the metal -
lic phase are not taken into account in this inter-
pretation. Further work is in progress and will
be published later.
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We have measured the resistivity of single-crystal paramagnetic Tb, Y, Sb with x=0,
0.05,0.20,0.40. At low temperatures a resistance anomaly develops in proportion to x.
The observed resistance anomaly reflects the temperature-dependent probability that
the conduction electrons are scattered from the crystal-field—split 4 levels of the Tb
ions by elastic as well as inelastic processes. A calculation of this anomaly yields ex-
cellent agreement for those values of x for which indirect exchange can be neglected.

In the last few years there has been an increas-
ing interest in the crystal-field splitting of the
4f electronic level of the rare earth ions and its

many profound effects.! If the ion is of the non-
Kramers type (J integral), the crystal-field—
only ground state may be a singlet. In such a
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