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THE CENTROID OF A JB*-TRIPLE SYSTEM

SEAN DINEEN and RICHARD M. TIMONEY

The (geometrical) concept of centraliser of a Banach space is defined [3], [4]
using extreme points of the dual ball. The center of C*-algebra is the set of
elements which commute with all other elements of the spacé. For a C*-algebra
with identity the centralizer may be identified with the center. The center of
a JB*-algebra is defined by means of operator commutativity (and in fact
this coincides with the usual algebraic definition of the center of a non-
associtative algebra with identity). In algebras without identity the concept
of center may not be very useful and instead the concept of centroid is
used. In this article we show that the centroid of a JB*-algebra coincides
with its centralizer (and also with its center when the algebra has an identity).
See section 3.

We define in section 2 the concept of centroid for a JB*-triple system and
show that it coincides with the centralizer. This gives an algebraic interpreta-
tion for the centralizer from which we can deduce the JB*-algebra result.
Section 4 relates our results to known results on associative JB*-algebras
and triples.

The authors thank W. Kaup for a helpful suggestion at the early stages
of this work.

1. Background.

Throughout we consider Banach spaces E, X, Y,... over the complex field
and use E, X', Y’,... to denote the dual spaces. For L a locally compact
Hausdorflf space we let Co(L) denote the C*-algebra of complex-valued
continuous functions on L which vanish at infinity (with the understanding
that L may actually be compact in which case Co(L) = C(L)).

For the basic theory of JB*-triple systems we refer to [23], [24], [18], but
we recall now the definition and some notation.

DerINITION 1.1. A JB*-triple system is a complex Banach space X together
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with a continuous triple product {-,-,-}: X x X x X — X which satisfies
(1) {x,y,z} is C-bilinear and symmetric in x and z and C-antilinear in y;

(2) the Jordan triple identity

(L) {a,b{x.y.z}} = {{a.b,x},y, 2} = {x, {b,a, y}, 2} + {x, 5, {a, b, 2}};

(3) the operators
xOx:X->X:y p»{xx,y}
are Hermitian and have nonnegative spectrum (for x € X);
(4) the JB*-condition
I, x, x 11 = lix]|.

The simplest examples are C*-algebras A with the triple product
{x,y,x} = 3(xy*z+2zy*x). Hilbert spaces are also JB*-triples with triple
product defined in terms of the inner product (,-) by {x,y,z} = 3((x,y)z +
+(z, y)x).

Our notation differs slightly from that of some other authors who use
{x,y* x} for our {x,y,z}, the “*” serving as an indication of conjugate-
linearity. We use x [Jy to denote the operator

xOy:X->X:z b{x,y,z}

(x,y€ X). An element ee X is called a tripotent if {e,e,e} =e. A tripotent
is minimal if the operator e []e has one-dimensional 1-eigenspace. For any
tripotent e € X, we denote the Pierce projection of X onto the eigenspace
Xi(e) of e[Je by P;(e) (for the eigenvalues i = 0,1/2,1). Recall that the
1-eigenspace X, (e) is a JB*-algebra for the Jordan product xoy = {x,e, y}.

A closed subspace J of a JB*-triple X is called a JB*-ideal if {a,u,v}eJ
and {u,a,v} eJ for each aeJ, uveX.

A JB*-triple X is called a JBW*-triple if X is a dual Banach space and the
triple product is separately weak*-weak* continuous.

ReMARK 1.2. It is shown in [11, Proposition 4] that if X = Y’ is a JBW*-
triple, then there is a 1 —1 correspondence between extreme points of the unit
ball By of Y and minimal tripotents of X. The correspondence arises as
follows. For each ¢ €Y, it is shown in [11, Proposition 2] that there exists
a unique tripotent e = e(¢) € X satisfying both

@) ¢ =9c°Pie),

and
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(i) ¢|X,(e) is a faithful normal positive functional on X, (e).

Then [11, Proposition 4], e is a minimal tripotent in X if and only if
e = e(¢) for some extreme point ¢ of By.

DerintrioN 1.3 ([3]). If E is a Banach space, then an operator T:E — E
is called a multiplier if each extreme point ¢ of the ball B, is an eigenvector
of the transpose 'T of T. (We denote the corresponding eigenvalue by A;(¢).)

The centralizer C(E) of a Banach space E consists of all multipliers T: E - E
with the property that there is another multiplier S:E — E satisfying
As(¢) = Ar(¢) (for all extreme points ¢ of Bg.).

It is shown in [3],[4] that C(E) is a commutative C*-algebra with
identity and is therefore *-isomorphic to C(K) for some compact Hausdorff
space K. Such a K gives rise to the maximal function module representation
of E (see [3]) which is a representation

e:E-{ 1 E,‘>
eK 1y

of E as a subspace of an I -product indexed by K. The representation ¢ is
an isometry of E onto ¢(E) and for a point x € E with g(x) = (X )4k, and
for f e C(K)

(1.2) e(f:x) = (f (k)xikex

(where f.x denotes the result of applying the operator in C(E) corresponding
to f e C(K) = C(E)). We denote a (maximal) function module representation
of E by (K, (Ex)ck- E, 0), where E = g(E).

Now let E= X =Y’ be a dual space and let (K, (X keks X, 0) be the
maximal function module representation of X. If ¢ is any extreme point of
By, then there is an isolated point k = k,e K and a corresponding M-
decompositon of X

(1.3) X =X, @, M
satisfying
(1.4) (9, x) = <P, xi

where we use x, to denote the X,-component of x € X. Moreover X, = X,
has no (nontrivial) weak*-closed M-ideals. Specializing to the case when X
is a JBW*-triple, we find that X, is a JBW*-triple which contains a
minimal tripotent but has no weak*-closed JB*-ideals (other than {0} and
X,). We refer to [7] for the proofs of these facts.

We will several times use (implicitly) the observation thatif X = X, @, X,
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is an M-decomposition of a JB*-triple X, then

{x1+x2, 1+ Y221+ 22} = {x1, 1,21} + {x2, V2, 22}

(for x,,y1,z,€X, and x,,y,,z;,€ X,). (This follows easily from Cartan’s
uniqueness theorem.)

ProposiTioN 1.4. If J is a closed subspace of a JB*-triple system X and
{a,u,v} € J whenever aeJ, u,ve X, then J is a JB*-ideal.

Proor. From (1.1) we have, for aeJ and b,x,y,z€ X,

%, {ba, v}, 2} = {{a, b, x}, y, 2} + {a,, {a, b, z}} - {a, b, {x, y, z}}.

By hypothesis, the right-hand side belongs to J. To deduce that {b,a,y}eJ
we need the simple fact that if « € X, then there is a sequence (x,)X-, in
X with

a = lim {x,,a, x,}.

n—

This can be checked using the fact that the subtriple {(«) of X generated by a
is isometric to Cq(L) for some locally compact Hausdorff space L (see [17]).
Thus it is sufficient to prove the result for the case X = Cy(L), where we can
take (x,)-; to be any bounded sequence satisfying x,(t) = 1 for all ¢ with
la(t)l 2 1/n.

ReMARK. 1.5. It is shown in [19, Theorem IV.3.5] that if J c X is a weak*-
closed subspace of a JBW*-triple X satisfying {a,u,u}eJ for all aeJ, ue X,
then X = J @, J' for some J' = X. This can be deduced from Proposition 1.4
by appealing to the coincidence of the M-ideals of JBW*-triple with the
JBW*-ideals (see [2]) and the fact that weak*-closed M-ideals are M-
summands (see [8]).

2. The centroid of a JB*-triple system.
DeFINITION 2.1. We define the centroid Z(X) of a JB*-tripele X to be the
set of all continuous linear operators T: X — X satisfying
2.1) T {x,y,z} = {Tx,y,z}
(for all x,y,z € X).

We note that the identity (2.1) may be reformulated in each of the following
ways:

22) T{x,y,z} = {x,y, Tz}
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23) To(xOy)=x0Oy)eT
24) To(xOx)=(xOx)eT.
The equivalence of (2.1) and (2.2) is clear by symmetry of the triple product,

(2.3) is merely (2.2) expressed in operator notation and the equivalence of
(2.4) and (2.3) follows easily by the polarization formula

2ix Oy) =ix+y) O x+y)—(x+iy) O (x+iy)+ (1 —=i)x Ox+(1=i)y Oy.

LemMa 2.2. If X is a JB*-triple system and x € X, then there exist u,o,w € X
(not unique) with x = {u,v,w} and ||x|| = llull llo]| |Iwll.

Proor. As in the proof of Proposition 1.4, it is sufficient to consider the
case where X = {(x) = the closed subtriple of X generated by x, i.e. where
X = Cy(L) for some locally compact Hausdorff space L. In this situation we
can write

X
X = {lx|1/37 lells, |x|2/3} = {u7 U,W}.

ReEMARK 2.3. It now follows that if T € Z(X), X a JB*-triple system, and if
M is an M-ideal in X then T(M) = M. To see this use the fact that the
M-ideals of X coincide with the JB*-ideals (see [2]). Hence if x € M, we have
x = {u,v,w} for some u,v,we M. Thus T(x) = {T(u), v, w} e M.

ProrosiTION 2.4. If X is a JB*-triple and T € Z(X), then T is a multiplier.

Proor. By [2],[5],[6], the double dual X" is a JBW*-triple system, and
has a triple product which extends that of X (where we consider X as a
subspace of X" in the canonical way). It follows easily from (2.1) by taking
weak* limits in each variable separately that

2.5) "T{x,y,z} = {“Txhy’z}

holds for all x,y,ze X".
Now let ¢ be an extreme point of By. and let

(2.6) X" =X ®, M,
=Y®.2Z

be the decomposition of X" described in (1.3). Let e denote a minimal
tripotent in Y. Recall that Y contains only trivial weak*-closed JB*-ideals and
o(y+2)=¢(y) for yeY, zeZ. By (2.5) "T € Z(X"), and hence Remark 2.3
implies that “T(Y) < Y and "T(Z) < Z. By (2.5)

“Te = "T{e,e,e} = {e,e,"Te} = (e (Je)"Te.
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Since e [J e has one-dimensional 1-eigenspace it follows that "Te = A.e (for
some A,€C). Let W ={yeY:"Ty =4,y}. Since "T is weak*-weak*
continuous and 0 # e e W it follows that W is a nonzero weak*-closed JB*-
ideal and is hence equal to Y. Consequently, for ye Y and z € Z, we have

(T, y+z) =<¢,"Ty+"Tz)
=<¢,"Ty)
= 2£9, )
=4,y +2).
Consequently ‘T¢ = A.¢. This completes the proof that T is a multiplier.
LEMMA 2.5. If X is a JB*-triple and T € Z(X), then
2.7 T{x, {u,v,w},z} = {x, {u, Tv,w}, z}
for all u,v,w,x,z€ X.
Proor. From the Jordan triple identity (1.1) we have
{x.{b,a,y},2z} = {{a,b,x},y,z} +{x,y,{a, b, z}} - {a,b, {x,y, 2}}.
Replacing a by Ta and using (2.1) repeatedly we deduce that
{x,{b, Ta,y},z} = T({{a,b,x},y,z}+{x,y,{a,b,z}} —{a,b, {x,y,2}})
= T{x, {b,a,y}, z}.
LemMMmA 2.6. If X is a JB*-triple and T € Z(X), then there is a unique
S: X — X satisfying
(2.8) S{u,v,w} = {u, Tv,w}

(for all u,v,we X).
Moreover S is a bounded linear operator and

29) T{x,y,z} = {x,5y,z}
holds for all x,y,ze X.

Proor. We remark first that JB*-triples X have the following “cancellation
property”; if a,be X and {x,a,z} = {x,b,z} holds for all x,ze X then a = b.
‘To see this put x = z = a—b and obtain

lla—bll> = lIi{a—b,a—b,a—b}ll = ||{x,a—b,z}|| = 0.

We propose to use (2.8) as a definition of S, but to show § is well-defined
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by (2.8) (and Lemma 2.2) we need to show that if {u,v,w} = {ii, 5, W}, then
{u, Tv,w} = {d, T5, w}.
From (2.7) we obtain

{x,{u, Tv,w},z} = T{x, {d, 0, W}, z}
= {x, {4, Td, w}, z}.
Now the above cancellation property gives
{u, To,w} = {a, To,w}.

We now define Sy for ye X by Sy = {u, Tv,w} if y = {u,v,w}. Clearly we
have a well-defined function S X — X. Using (2.7) we have (for y = {u,v,w})

{x,Sy,z} = {x, {u, Tv,w}, z}
= T{x, {u,v,w}, z}
= T{x’y’z}

which is (2.9).
Now linearity of S follows easily from (2.9) and the cancellation property.
Finally ||S]| < o follows because we can express any yeX as y = {u,v, w}

with ||yll = {jull lolf {Iw]].

Lemma 2.7. If X is a JB*-triple, TeZ(X) and S:X — X is the unique
operator satisfying (2.8), then S € Z(X).

Proor. Replacing y by Ty in (1.1) and using (2.2) and (2.8) repeatedly
we obtain

{a.b,5{x,y,z}} = {a,b, {x, Ty, z}}
= {{a,b,x}, Ty, z} —{x, {b,a, Ty}, z} +{x, Ty, {a, b, z}}
= S({{a,b,x}, 5,2} —{x, {b,a,y}, 2} + {x.,). {a,b,2}})
= ${a,b, {x,y,z}}.
By Lemma 2.2, we deduce that
{a,b,Sc} = S{a,b,c}
(for all a,b,c € X) which shows that S e Z(X).

THEOREM 2.8. For a JB*-triple X, the centroid Z(X) coincides with the
centralizer C(X).

Proor. The fact that C(X) c Z(X) follows by considering the maximal
function module representation (K, (X\).cx,X, @) of X. The triple product
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on X can be calculated coordinate-by-coordinate — i.e. each X is a JB*-triple
and

e({x, y, 2})(k) = {e(x)k), e(y)(k), e(z)(k)}

(see [7]). By (1.2) it is now clear that the operators in C(X) belong to Z(X).

For the converse Z(X) < C(X), we already have by Proposition 2.4 that
if T e Z(X)then T is a multiplier. We claim that the operator S of Lemma 2.5
satisfies Ag(¢) = Ar(¢) for each extreme point ¢ of By.. For this fix ¢ and let
e be the corresponding minimal tripotent of X”. Asin (2.6),let X" =Y @, Z.
Let e = ey+e;, where eyeY, e;€Z. Minimality of e implies that either
ey =0 or e; = 0. Since ¢(e) = 1, we deduce that e, = 0 and e€ Y. As in the
proof of Proposition 2.4, "Te = J.e and A, = Ap(¢). Now weak*-continuity
allows us to deduce from (2.8) that

"S{u,v,w} = {u,"Tv,w}

holds for all u,v,w e X". Consequently
Se = "Se,e,e} = {e,"Te,e} = A,{e,e, e} = Ae.

Since S € Z(X), we can now deduce from the proof of Proposition 2.4 that

As(¢) = A, = Ar(¢), as required. This completes the proof of the theorem.

CoRrOLIARY 2.9. Let X be a JB*-triple system. Then the centralizer C(X)
consists of all bounded linear operators T:X — X which commute with all
Hermitian operators on X.

Proor. If T e C(X), then T commutes with all Hermitians (see [7]). Con-
versely if T commutes with all Hermitians, then T satisfies (2.4) because x [J x
is Hermitian. Hence T € Z(X).

CoROLLARY 2.10. Let X be a JB*-triple system. Denote by £ (X) the algebra
of all bounded operators on X and by of the subalgebra of ¥(X) generated
by the Hermitian operators. Then C(X) is the center of .

Proor. By Corollary 2.9, C(X) contains the centre of «/. Conversely, if we
identify C(X') with C(K) for some compact Hausdorff space K, then every
function f € C(K) may be written as f = u+iv with u,v real-valued functions
in C(K). Since u and v correspond to Hermitian operators in C(X), it follows
that C(X) < o. Hence Corollary 2.9 implies the result.

COROLLARY 2.11. Let X be a JB*-triple system and a dual Banach space. Then
the centroid of X is one-dimensional if and only if X is irreducible (i.e. if
and only if it is not possible to express X as a l, direct sum X, @, X, of
two nonzero subspaces X, X ;).
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ProoOF. Suppose the C*-afgebra Z(X) = C(X) is isomorphic to C(K) for K
a compact Hausdorff space. Then K is extremely disconnected and moreover
X is irreducible if and only if K has no proper open subsets (i.e. if and only
if K is a singleton) — (see [3], [7]). The result follows.

3. The case of a JB*-algebra.

DerFINITION 3.1. A JB*-algebra is a complex Banach space X with a
(nonassociative) product xey and an involution x — x* satisfying the
Jordan algebra axioms

(1) xoy=yox

(2) x?o(xoy)=xo(x?0y)
and the JB*-condition

(3) I{x,x,x}I = IIx|?

where the triple product {-,-,-} on X is defined in terms of the product and
involution by

@31 {x,y,2} = xo (y*oz)—y*o(zox)+zo (xoy*)

With the triple product given by (3.1) (and the JB*-algebra norm) every
JB*-algebra is a JB*-triple system. We refer to [14],[23] for background
information on JB-algebras. Note that our {x,y,z} would often be denoted
{x, y*, 2z} in the literature on Jordan algebras.

For X a JB*-algebra and xe X, we denote by M, the multiplication
operator M,: X —» X, M (y) = xoy. We now define the center and centroid
of a JB*-algebra. We will see that the center is a useful concept in the
case of a JB*-algebra with identity but that the centroid is more appropriate
in general (as observed in [16, 7.6.1]).

DeFINITION 3.2. The center of a JB*-algebra X is defined as the collection of
all a e X satistying

(3.2) MM, =MM,
(for all x € X).

In view of the commutativity of the Jordan product we note that (3.2) is
equivalent to the associativity property

(33) ao(xoy) = (aex)ey
(all x,y e X).
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DeriNniTION 3.3. The centroid of a JB*-algebra X is defined as the set of all
bounded operators T: X — X satisfying

(34) T(xoy) = (Tx)ey
(for all x,y e X).
Clearly (3.4) is equivalent to T(xey) = xo(Ty).

ProposiTiION 3.4. Let X be a JB*-algebra. Then the centroid of the JB*-
algebra X coincides with the centroid of the JB*-triple X (as defined in (2.1)).

Proor. If T: X — X satisfies (3.4), then it is easily seen (from (3.1)) that T
satisfies (2.1).

Conversely, if T: X — X satisfies (2.1), then we consider the double trans-
pose “T: X" — X". By [26] the Jordan product and involution on X extend
to X" to make X" a JB*-algebra with identity e. Moreover the product on X" is
separately weak*-weak* continuous. Now, via (3.1), we have a separately
weak*-weak* continuous triple product on X”. Thus it is easy to deduce
from (2.1) that

"T{x,y,z} = {"Tx,y,z}

holds for all x,y,ze X" (by taking weak*-limits in each variable separately).
Since xeoy = {x,e, y} it follows that

“T(xoy)= ("Tx)oy

holds for all x,y € X”. Restricting to x,y € X, we obtain (3.4), which completes
the proof.

From Proposition 3.4 and Theorem 2.8 it follows instantly that the
centralizer of a JB*-algebra X coincides with its centroid. For unital JB*-
algebras, we can make a further identification with the center of X.

ProprosiTION 3.5. Let X be a JB*-algebra with unit element e. Then an
operator T: X — X belongs to the centroid if and only if T = M, for some
element a in the center of X.

Proor. If T: X — X is in the centroid of X, then
T(X) = T(eox) = T(e)ox = aox = M,(x),
where a = T(e). Also a must be in the center of X because
MM, (y) = M,(xoy) = T(xoy) =xoTy = M.M,(y).

Conversely, if a is the center, then (3.3) yields (3.4) for T = M, and thus
M, is in the centroid.
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4. Associative JB*-algebras and triples.

In this section we characterize associative JB*-algebras and triples and relate
them to the centroid and to the “commutative J*-algebras” of Friedman and
Russo [9] and also to some unpublished results of T. Barton.

We recall that a state ¢ on a JB*-algebra X with identity is a con-
tinuous linear functional ¢ on X such that ||¢|| = ¢(1) = 1. An extreme point
of the set of states, S(X), is called a pure state. The set of pure states is
denoted by P(X).

The numerical radius of x € X, 3(x), is defined by

8(x) = sup{llo(x)ll: ¢ € P(X)}
and, by the Hahn-Banach theorem, this equals
sup{llp(x)ll: ¢ € S(X)}.

ProrosiTioN 4.1. If X is a JB*-algebra with identity, then the following are

equivalent :

(1) X is associative (and hence X =~ Z(X));
(2) X is a commutative C*-algebra;
(3) All pure states on X are multiplicative linear functionals.

Proor. (1)= (2) by Proposition 3.5. Since the pure states on the com-
mutative C*-algebra, C(K), are point evaluations we have (2) = (3).
(3)=(1). If x,y,z € X then, for all ¢ € P(X),

[p(xo(yoz)—(xoy)ez) = |p(x)P(y)P(z) — d(x)p(y)9(z)| = 0.
Hence
S(xo(yoz)—(xoy)ez)=0.

By [26, Theorem 2(iv)], 3(a) < llal| = e3(a) for all ae X and hence (xoy)eoz
= xo(yoz). This completes the proof.

We now consider JB*-triple systems.
DEerINITION 4.2 ([23]). A JB*-triple system X is associative if
{x,y,{z,u,0}} = {x, {5, z,u}, 0} = {{x, .2}, u,0}
for all x,y,z,u,ve X.

Using the Jordan triple identity one sees that X is associative if and only
if {x,y,{z,u,0}} = {{x,y,2},u,0} for all x,y,z,u,v in X (see [23, p.324]). By
Definition 2.1, we thus have that X is associative if and only if x 0 y € Z(X)
for all x,ye X (and if T = x (J y in Lemma 2.1, then § = y (J x). A J*-homo-
morphism (respectively J*-anti-homomorphism) of a JB*-triple is a linear functi-
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onal ¢ € X' such that ¢{x,y,z} = ¢(x)(y)p(z) (respectively — o (x)p(y)p(z))
for all x,y,ze X.

A compact Hausdorff space together with a continuous mapping o:
T x K — K satisfying o(a, a(f, x)) = a(¢f, x) and o(1,x) = x all xe K and

a,BeT = {e’:0eR}
is called a T,-space (see [2]). Let
C,(K) = {f eC(K): f(o(2, x)) = af (x) for all (s,x)e T xK}.
A Banach space X isometrically isomorphic to C,(K) is called a C,-space.
THEOREM 4.3. If X is a JB*-triple system, then the following are equivalent :

(1) X is associative ;

(2) xOyeZ(X) forall x,yeX;

(3) X is a C,-space;

(4) All extreme points of the unit ball of X are either J*-homomorphisms or
J*-anti-homomor phisms ;

(5) If (K,(Xi ek X,0) is a maximal function module representation of X,
then X, has dimension at most one for each ke K ;

(6) The centroid Z(X) coincides with J(X) = {T, +iT,: Ty, T, are Hermitian
operators on X};

(7) For each ¢ €X', the tripotent e = e(p)e X" corresponding to ¢ (see
Remark 1.2) has X,;(e) = {0};

(8) For each extreme point ¢ of By, the Pierce space X, (e) is {0}, where
e = e(¢p)e X" is the corresponding minimal tripotent.

Proor. We have already noted (1) <> (2). (1) = (3) = (4) is due to Friedman
and Russo [9]. (4)= (1) is proved in a fashion similar to the implication
(3)= (1) iri Proposition 4.1 using the Krein-Milman theorem in place of the
numerical radius.

(3)= (5): This is known for the counterparts of C,-spaces over the reals
(see [21]). We include a proof for the complex case.

Suppose X = C,(K,), where K, is a T,-space. We can assume that K,
is the set of extreme points of By (possibly union {0}) in the weak*-
topology and that a(a, k) = ak (see for example [9]). Hence, given any two
linearly independent elements k,,k, € K, and any two scalar values a,,a, €C,.
we can use the Tietze extension theorem to find f e C(K,) satisfying
f(ak;) = aa; for i = 1,2. Using the projection Q: C(K,) = C,(K,) given by

(QN)k) = Ja"f(ak)da

T
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(da denotes Haar measure on T), we find that there is an f € C,(K,) with
fk) =a; (i=12)

Let K, denote the set Ko/T of T-orbits in K, with the quotient topology.
Then K, is a compact Hausdorff topological space and we can identify
functions g e C(K,) with the functions ge C(K,), which satisfy g(ak) = g(k)
for all «e T, ke K,). These functions act on C,(K,) by pointwise multi-
plication and it is easy to see that C,(K,) is then a reduced locally
C(K,)-convex C(K;)-module (see [13, §7]). Consequently the C(K,)-action
on C,(Ky) corresponds to a function module representation of C,(K,)
with base space K.

For fixed ky € K, we claim that

Ny, = {f € Co(Ko): f (ko) = O}

has codimension one in C,(K,) - unless ko = 0, when N, = C,(Ky). To see
this, fix 0 # ky € K,. As above, there exists f, € C,(K,) with fy(kg) = 1. Now,
for arbitrary f € C,(K,) we can write

[ = fko)fo+(f—S(ko)fo)
which proves our claim. If now we take /"€ N , then we can write
I
=1 |12 m‘lﬁ ’

which shows that

Ny, = {9/ :9€ C(K,),f €C,(Ko),g(ko) = O}

Now let (K, (X,)ick> X, 0) denote a maximal function module representa-
tion of X = C,(K,). Then there is a continuous surjection t: K — K, such that

(gor)f=9f
for ge C(K,), and f € X. Since X, =~ X/M,, where M, is the closure of
{G.f:GeC(K),Gk)=0,feX}

and since M, > N, it follows that X, has dimension at most one for each
keK.

(5)= (6): By [7, Proposition 25], if T: X — X is Hermitian, then there are
Hermitian operators T;: X, — X, so that

0(Tx) = (Tu(xx)kek-

It follows then from (5) that all Hermitians commute and thus, from Corollary
29 that J(X) = C(X). Since Z(X) = C(X) = J(X) is true in general (see the
proof of Corollary 2.9), (6) follows.
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(6) = (2): Since x[Jx is Hermitian (for x e X), it follows from (6) and
polarization that x[(JyeJ(X) = Z(X) for each x,y e X.

We have now established the equivalence of (1)-(6).

3)=(7): If X is a C,-space, then so is X" (in fact X" is a commutative
von Neumann algebra — see [9, Remark 2.7] for instance). Representing
elements of X" as functions on a compact Hausdorff space K, we find that
e€ X" is a tripotent if and only if |e| has values in {0, 1}. Then e Je is multi-
plication by |e|> which can only have eigenvalues 0 and 1.

(7) = (8): This is obvious.

(8)= (1): For this part of the proof only, we let (K, (X} )eck> X" 0)
denote a maximal function module representation of X”. For each extreme
point ¢ of By we have an isolated point k = k,€ K so that (as in (1.3) and

(1.4))
Xn — X;‘l @w Mk
and

@, xi+m)y = (P, x).
We also have a minimal tripotent e = e(¢) corresponding to ¢ as in Remark

1.2. As in the proof of Theorem 2.8, we can show that e € X
Since P, ;;(e) = O, it follows from [11, Lemma 1.3] that

X" = Xole) @ X/(e)

”

Since ee X} and X, is a weak*-closed minimal JB*-ideal, we deduce that
1(e) = Xi, and hence that X} is one-dimensional.
Now let K, denote the isolated points of K which arise from extreme
points of By as above. Let K, denote the closure of K,. Then K, is a
clopen subset of K. We write

Xk, = {xeX":0(x)k)=0 forall k¢ Ko}
and
P:X" X,

for the M-projection of X’ onto Xg . (P is induced by multiplication by the
characteristic function of K,.)
By [7, Theorem 33, Example 37] or [12]

Xk, = ( I1 X;’)
kek, Iy

and, since each X} (keK,) is one-dimensional, Xk is an associative
JB*-triple.
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If J: X - X" denotes the canonical embedding of X in its double dual, then
PJ:X — Xy is an injective isometry (see [7, Example 37]) which is easily
seen to be a JB*-homomorphism. Hence X is associative. This completes the
proof of the theorem.

ReMARK 4.4. Banach spaces satisfying condition (5) of Theorem 4.3 are
called square Banach spaces (see [3]). Condition (6) of Theorem 4.3 is
equivalent to each of the following

(6) J(X)is commutative.
(6)" Every pair of Hermitian operators on X commutes.

J*-algebras (= JB*-subtriples of C*-algebras, also called JC*-triples)
satisfying condition (7) above were called “commutative” by Friedman and
Russo ([9]). (The operator they denote by G coincides with the Pierce
3-projection Py, (see [10]).)

Some of the equivalences in Theorem 4.3 are due to T. Barton (private
communication).
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