THE DUNFORD-PETTIS PROPERTY FOR CERTAIN
PLANAR UNIFORM ALGEBRAS
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We show that if K is a compact subset of the complex plane C and if 4is a
T-invariant uniform algebra on K (e.g., A=R(K) or A= A(K)), then both A4
and A* have the Dunford-Pettis property.

We deduce our results from a recent sufficient condition of Bourgain [1] for
subspaces X of C(L) (L a compact Hausdorff space) to have the Dunford-Pettis
property (DPP). We actually convert his condition into a definition of a “Bour-
gain algebra” Xjp associated with every subspace X of C(L). Bourgain’s condi-
tion is that Xz equals C(L).

Wojtaszczyk [12; 13] studied the Dunford-Pettis property for planar uniform
algebras, and his results were improved by Delbaen [5]. The DPP for the disc
algebra was shown earlier by Chaumat [3], Cnop and Delbaen [4], and Kisljakov
[10]. Bourgain [1] used his condition to show that the ball and polydisc algebras
have the DPP; Bourgain has also shown in [2] that H* of the unit disc has the
DPP. In all of these cases the dual of the algebra is shown to have the DPP,
which implies that the algebra itself has the DPP.

No necessary conditions for the DPP of a uniform algebra 4 seem to be known.
However, a result of Milne [11] easily implies that there are uniform algebras
A without the DPP. He shows that there are uniform algebras .4 with (norm one)
complemented infinite-dimensional reflexive closed subspaces Y. (For 4 one can
take the uniform algebra on the closed unit ball of the dual space Y* (equipped
with the weak topology) generated by the constants and the functions in Y=
Y**.) Such uniform algebras do not have the DPP since reflexive infinite dimen-
sional Banach spaces always fail to have the DPP.

For a survey of the Dunford-Pettis property (for Banach spaces) we refer to
Diestel [6]. One of several equivalent definitions of the DPP is as follows.

DEFINITION 1. A Banach space X has the DPP if, whenever (x,), is a sequence
in X tending weakly to 0 and (x;}), is a sequence in X * tending weakly to 0, then

lim<{x,, xx>=0.
n— oo
For any compact Hausdorff space L, we use C(L) to denote the Banach space
of continuous complex-valued functions on L with the supremum norm. For K
a compact subset of the complex plane, we use R(K) to denote the closure in
C(K) of the rational functions with poles off K, and A(K) for those functions
in C(K) which are analytic on the interior K° of X.
Let X be a subspace of C(L) for L any compact Hausdorff space. Notice that
X** may be identified with a subspace X** of C(L)** by standard duality theory.
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If € C(L), we can consider the multiplication operator x — ¢x on C(L) as ex-
tended (by its double transpose) to an operator on C(L)**. We write ¢x** for the
action of this double transpose on x**e C(L)**.

We now define two “Bourgain algebras” for a subspace X of C(L).

DEFINITION 2. Let X be a subspace of C(L). Then X, denotes the space of
all functions ¢ in C(L) satisfying the condition
(b) if (x,), is a weakly null sequence in X, then
lim dist(¢x,, X)=0.
n— 00
(Here the distance is measured in the norm of C(L).)
We define Xz to be those ¢ € C(L) satisfying
(B) if (x3*), is a weakly null sequence in X **, then
lim dist(¢x,**, X**)=0.

n— oo

(Now the distance is measured in C(L)**.)
The following is a remarkable result of Bourgain [1] which we will use.

THEOREM 3. Let X be a closed subspace of C(L) (L a compact Hausdorff
space).

(i) If Xg=C(L), then X and X* both have the Dunford-Pettis property.

(ii) If X, =C(L), then X has the Dunford-Pettis property.

Proof. (i) follows directly from Proposition 2 of Bourgain [1] (as in the proof
of Theorem 1 of [1] for the case of the ball algebra). (ii) follows by repeating the
proof of Proposition 2 of [1] deleting all uses of the principle of local reflexivity.

In fact, Bourgain carries out his argument in the somewhat more general set-
ting of functions with values in a finite-dimensional space £. We could define Xp
and X, C C(L) when X C C(L, E). However we avoid this additional generality.

PROPOSITION 4. Let X be a subspace of C(L), L a compact Hausdorf(Fspace.
(1) If X is the norm closure of X in C(L), then (X)g=Xg, (X)p=Xp.
(ii) X C X,.
(iii) Both X, and Xg are closed subalgebras of C(L) and contain the constant
Junctions.
(iv) If X is an algebra, then X C Xp C Xp.
(v) If X is a uniform algebra on a compact subset K of C which contains the
Junction f(z) =z, then Xg= C(K) if and only if the function ¢(z)=2
is in Xg. (The same statement holds for X.)

Proof. (i) is not important to us, but it is easy to check. We can assume that
X is closed for the rest of the proof.

(ii) Since weakly null sequences in X are also weakly null in X **, we only need
to know that, for any ¢y € C(L), dist(y, X)=dist(y, X**) (where the first dis-
tance is in C(L) and the second in C(L)**). To see this recall that the second dual
of C(L)/X is canonically isometric to C(L)**/ X+ = C(L)**/X**.
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(iii) It is not at all difficult to see that X;, and Xz contain the constants. To
show that X (for example) is an algebra we need only show that if ¢, ¢, € Xp
then ¢+ ¢>€ Xp and ¢;¢, € Xp. Since it is marginally more difficult we check
that o] d)ZEXB-

Let (x;*), be a weakly null sequence in X**. Choose y,;*e X** with

|1 xa*—ya*| = dist(é1 x5, X**)+1/n.

Since (¢1x2*), is weakly null in C(L)**, we easily deduce from condition (B) that
(¥x*), must be weakly null (in X**). Then choose z;*€ X** with

o2 yi*—za*| = dist(p2 7%, X**)+1/n.
Now, by the triangle inequality,

|¢1d2x7* —2z3*| < || | o1 x7* —yi*| + |2 yi* —z7*|.

Since the right-hand side tends to zero as n approaches c, we conclude that

d12€ Xp.
The proof that Xz (or X}) is closed is equally straightforward. Suppose ¢ =

limy ., » 9% and ¢, € Xp for all B. Let (x,;*), be a weakly null sequence in X **and
let € be any positive number. Let M be sup|x;*| and note that M is finite. Choose
k so that

| — Pillo <e/2M.
Then choose N so that

dist(prxp*, X**)<e/2
for all n= N. The triangle inequality gives
dist(dx7*, X**) < |é — | [x7*] + dist (e x7*, X**)
<M(e/2M)+e/2=¢€

for n= N, which shows that ¢ € Xjz.
(iv) is clear because if X is an algebra, ¢ € X, and x**e X**, then ¢x**e X**.
(v) One implication is trivial. On the other hand, if Ze Xy and z€ X C X5, it
follows from (iii) and the Stone-Weierstrass theorem that Xz must be C(K).

EXAMPLE. The disc algebra A(D) has the DPP. To check this (using the
above) we need only show that Ze€ A(D),. Suppose (x,), is a weakly null se-
quence in A(D). Then x,(0) —» 0 and y,(z) = (x,(z) —x,(0))/z is in A(D). For
z=e", |2x,(2) —yn(2)| = |x,(0)|. Hence |ZX,(2)—Yn(Z)|—0 as n—oo. Thus
Ze A(D), and we are done. O

DEFINITION 5. A subalgebra 4 of C(K) (K C C compact) is called T-invariant
(see Gamelin [9]) if, whenever ¢ is a smooth function with compact support and
S is a bounded Borel function on C with f | x € A, then G | x € A where
f(z) 0o

—:dxdy.
Z—w 0%

G =60 fom+— ||
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We recall that 7T-invariant algebras A contain all the polynomials (in fact,
R(K) C A). Extending functions in 4 to be zero on C\ KX, the definition implies
that

1 f(z) 99

T. = — —
sfm=smfom+— || == == dxdy

is in A whenever f e A4 and ¢ is smooth on C. (Compact support of ¢ is not rele-

vant since the integral is now taken over K.) Finally, we recall that A(K) and

R(K) are T-invariant on K. (Note that P(K), the closure of the polynomials in

C(K), is T-invariant on the polynomial hull K of X, since P(K)=R(K).)

LEMMA 6. For K C C compact we denote Lebesgue area measure on K by ).
Then the measures

{d)\w(z) = —z—_l—w d\(z): weK}

Jorm a norm compact subset of M(K), the space of all regular Borel measures
on K (M(K) has the variation norm).

Proof. We first check that {1/|z—w|: we K] is uniformly integrable with re-
spect to dA. Let d denote the diameter of K and let u be Lebesgue area measure
on {|z| =d}. Let duo(z) =1/|z| dp(z).

Since pg is clearly absolutely continous with respect to u, if € >0 is given we
can find 6 > 0 so that u(E) < é implies uo(E) < e (for E a measurable subset of
{lz] =d}).

Now, if EC K and A(E) <6 then, for we K, we have

1
£ Te—wl

IXWI(E)=S§ dxdy = po(E—w),

where E—w denotes the translate of E by —w. Also ANE)=u(E—w)<¥d and
hence |\, | (E) = po(E —w) <e for all we K. This gives uniform integrability. An
application of the Vitali convergence theorem (see [8, p. 150]) shows that the
map w — \,,.: K —» M(K) is continuous and the norm compactness of {A,,: we K}
follows. O

THEOREM 7. If A is a T-invariant algebra on K C C, then both A and its dual
A* have the Dunford-Pettis property.

Proof. By Theorem 3 and Proposition 4(v) we need only check that the func-
tion ¢(z) =Z must be in Ag.
Let (x}*),, be a weakly null sequence in 4**. For convenience we assume that
[xx*} <1 for all n. Let e >0 be given.
From Lemma 6 we deduce that, for n» large enough,
sup [{\w, X3*>] <e/2.
wekK
Fix such an n. Then there is a net (x,), in A converging weak* to x;;* and satis-
fying [x.|=<1.



DUNFORD-PETTIS PROPERTY FOR PLANAR UNIFORM ALGEBRAS 103

By Lemma 6 we may also assume that

(*) sup [{Aw, XY <e (for all o).

wekK
With ¢(z)=27Z, let
Ja(W) =(Tyx,) (W)
=M XM+ | X2 D).

Using (*) we deduce that | f, — ¢X, ] < €e/7 <e.

Now because balls in A** are weak* compact, we can find a weak* limit point
Sf**e A** of (f,)«- Since ¢x, converges in the weak* topology to ¢x;* and the
norm of the limit of a weak* convergent net cannot exceed the limit superior of
the norms, we conclude that |¢x;*— f**| <e. Since this is true of all large n, we
have the desired conclusion that

lim dist(¢x;*, A**)=0

n— oo

and thus that ¢(z)=7Z is in Ap.

The authors would like to thank R. Aron, D. Luecking and R. Olin for helpful
conversations in connection with this work. This work was done while the second
author was visiting the University of North Carolina, on leave from Trinity Col-
lege, Dublin.
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