
Meta-Object Protocols for C++:
The Iguana Approach

Brendan Gowing & Vinny Cahill

ECE 750 Topic 8, MPLSA

June 2, 2004
Claus W. Spitzer

Contents Overview

● 4 major sections:
– Reasons for introducing fine-grained MOPs and

explicit reification into Iguana.
– Iguana syntax (Largest section).
– Examples.
– Performance analysis.

● Sort of related to OpenC++, but not quite.

Contents Detail

● Introduction.
● Previous implementations (MPC, OpenC++

versions I and II, MC++, CLOS).
● Reasons for doing it the way the did it.
– Wanted adaptable operating system software.
– Flexibility while maintaining performance.

Content Detail (cont'd)

● Iguana Syntax.
– Meta-Level Classes and Objects.
– Reification Categories.
– MOP Declarations.
– Protocol Selection.
– Meta-Level Invocations.
– Meta-Level Class Library.

● Examples.

Contents Detail (cont'd)

● Performance.
● Current Status.
● Conclusions.

Related Work

● Implements ideas from previous systems
– CLOS: Dynamic reflection.
– OpenC++ et al: Compile-time reflection methods.

Contributions and Novelties

● Is a tool for defining MOPs, doesn't limit us to
one MOP.

● Dynamic reflection while maintaining
performance.
– Selective Reification.
– Multiple MOPs.

The Good

● Interesting concept.
● Good organization.
● Decent explanations.
● Feels like a programming manual.
● Syntax is very similar to C++, feels familiar.

The Bad?

● The paper doesn't really go into much detail
about Iguana's internals. I don't mind, but I guess
that someone wanting to learn more about how it
works would be disappointed.

Q1

● What are the main distinguishing features of
Iguana?

A1

● The ability to support multiple MOPs and MOP
instances

● Selective reification.

Q2

● What mechanisms are used to maintain
performance while providing dynamicity?
– (Hint – I just said it)

A2

● Selective Reification
● Fine-grained MOPs.

Q3

● What is "meta-level locality of change"?

A3

● The ability of objects to alter their meta-level
implementation without affecting other objects.

Q4

● What is the syntax for choosing a reification
category?

A4

● The keyword "reify" followed by the single name
of the category that must be reified, followed by
an optional alternative class name, followed by
an optional alternative name for the instance of
the meta-class.

 reify <Category> [: <ClassName>] [instanceName];

Q5

● Which member components of a MOP definition
are required?

A5

● If you answered anything but “none”, then you
need to go over the text again.

Q6

● How does Iguana implement instance protocol
selection?

A6

● By replacing the declared class of the object with
a subclass containing the necessary meta-level
adjustments. For example
protocol Distributed;
Integer i ==> Distributed;
becomes
Integer__Metai i;

Q7

● What was the problem with reifying invocation
using class or instance protocols for context
switching?

A7

● All the invocations in an object would also
trigger a context switch.

Q8

● What construct is used to gain access to meta-
level objects?

A8

● The meta class. Example:
To access the bar method of foo (which is an
instance of the Mfoo class) one would use

meta->foo->bar(...)

Q9

● What are the dangers of replacing one object's
meta-level with the one of another object?

A9

● There is no checking for compatibility, so the
reification categories of the new meta-level may
be different.

Q11

● What happened to Q10?

Q12

● Why did the authors decide to use dynamic
bindings for the meta-level (which use expensive
register-memory moves) instead of a flat non-
reference member object?

A12

● The performance gain was minimal.
● Advantages of dynamic binding are lost.
– It is adaptable.
– It is encapsulated and can easily be replaced as a

whole.

