
Meta-Object Protocols for C++: The Iguana Approach

Brendan Gowing� Vinny Cahill

Distributed Systems Group,

Department of Computer Science,

Trinity College,

Dublin 2,

Ireland.

http://www.dsg.cs.tcd.ie/

Abstract

Meta-Object Protocols (MOPs) are an impor-
tant aspect of object-oriented re
ective pro-
gramming. A number of C++ extensions have
been implemented that include certain re
ective
features, however none of these provides a fully
featured MOP. In this paper, we describe an
extended version of C++ called Iguana that al-
lows various features of the C++ language to
be rei�ed and their implementations (dynami-
cally) modi�ed. We show how Iguana can be
used to write compiled re
ective software.

1 Introduction

The Meta-Object Protocol (MOP) of the
CLOS programming language [KRB92] is an
exemplary model of how to provide fully-
functional re
ective support in a language.
C++ [Str91], which has become a very pop-
ular general{purpose programming language,
has by default no such re
ective or meta-
level features1, though a number of previ-
ous extensions support rei�ed method dispatch
[KHL+93], object creation and member ac-
cess [CM93]. In this paper, we present the
Iguana programming language which extends

�bgowing@dsg.cs.tcd.ie
1If you discount the facility to overload a number of

the standard operators, such as ->, new, etc.

C++ with MOP features.

The development of Iguana has been moti-
vated by our research into adaptable operating
system software. We have chosen to use re
ec-
tion as a mechanism for implementing dynam-
ically adaptable system components [GC95].
We were, however, faced with the problem of
choosing a programming language that sup-
ported both re
ection and the complexity of
operating system implementation (such as ma-
chine level representation). We therefore chose
to add re
ective features to C++ as it could
already support system software development.

Essentially, a MOP [KRB92] speci�es the
implementation of a re
ective object-model.
We consider that a program's meta-level is an
implementation of the object model supported
by that language. Thus, a MOP speci�es which
meta-level objects are needed to implement an
object model, be it as a consequence of rei�ca-
tion or a meta-level declaration. A MOP itself
can be said to be instantiated as a \MOP in-
stance" when each of its meta-level objects are
instantiated. Signi�cantly, the interfaces ex-
ported by each of the meta-objects become the
interface of that MOP.

Iguana includes the following features:

� Multiple, �ne-grained MOPs: Objects
within a single program can use di�erent
object models.

1

� Meta-level classes and objects.

� Rei�cation categories: A list of object
model features that Iguana can reify. See
Appendix A.

� MOP declaration: Syntax for de�ning
MOPs consisting of meta-level objects and
rei�cation category declarations.

� MOP selection: The mechanism for asso-
ciating base-level objects with one or more
MOPs.

� Mechanisms for invoking meta-level ob-
jects.

� A meta-level class library containing MOP
implementations.

Supporting multiple MOPs and multiple
MOP instances allows distinct object models
to be used. For example, a distributed object
could use a distributed object model while its
peers continue to use the standard C++ ob-
ject model. The object models speci�ed by
a MOP are implemented by meta-level classes
and their instances. By default Iguana does
not reify anything. Rei�cation categories pro-
vide the opportunity to speci�cally reify a com-
ponent of the object model. In this fashion, a
compiled program does not have to su�er the
performance overheads of a \reify everything"
policy.
MOP declaration is the mechanism for spec-

ifying which rei�cation categories will be used
and which meta-level objects will implement
an object model. MOP selection is the mech-
anism that base-level objects use to bind
themselves to an implementation of an object
model. Base-level objects can subsequently in-
voke meta-level objects explicitly through the
base-level objects meta member, or implicitly
through the rei�cations made to support the
object model.
Finally, Iguana has a meta-level class library

which contains the meta-level classes needed
to implement a number of standard (in Iguana
terms) object models.

In this paper, we describe the meta-level fea-
tures of the Iguana language. In the next sec-
tion we discuss some related work. Section 3
discusses the reasons why we have introduced
the concepts of �ne-grained MOPs and explicit
rei�cation categories into Iguana. Section 4
presents the syntax of the Iguana extensions
to C++. In Section 5, we present an exam-
ple MOP supporting active objects. Section 6
discusses performance. Section 7 describes the
status of the current implementation of Iguana,
while section 8 concludes the paper.

2 Related Work

The �rst language to feature a MOP was
CLOS, the Common Lisp Object System
[KRB92]. CLOS implements OO program-
ming in a LISP environment. Before CLOS,
a number of distinct OO programming exten-
sions had been added to LISP, each with their
own features and eccentricities. The nascent
CLOS, by using a MOP, was not only able to
supply a \greatest denominator" OO system
which supported the majority of OO features
provided by the existing systems, but was also
an open and adaptable implementation which
could be modi�ed to provide features that were
not part of standard CLOS behaviour. Iguana
takes the MOP precedent of CLOS, but builds
on it by allowing multiple MOPs to coexist and
features selective rei�cation through rei�cation
categories.

For other languages, the way their meta-level
interactions occur are less formally speci�ed.
Often, the meta-level facilities are somewhat
limited in comparison to the abilities of the
CLOS MOP. This is especially so for compiled
languages. For example, OpenC++ Version
1 [CM93] only rei�es method dispatch, object
creation and object member access. However,
despite the lack of dynamic binding between
meta- and base-levels, OpenC++ has been suc-
cessfully used to implement atomic data types
[SW95]. Similarly, MeldC [KHL+93] only rei-
�es method dispatch. Iguana supports a larger

2

set of rei�able language constructs and also al-
lows dynamic meta-level/base-level binding.

The AL-1/D [OIT93, OI94] re
ective pro-
gramming language implements a Multi-Model
Re
ection Framework (MMRF).MMRF allows
the meta-level to be split into modules of meta-
level objects called `models'. Models can be
compared to Iguana's �ne-grained MOPs but
do not support inheritance, as �ne a granu-
larity, or feature combination. AL-1/D does
not seem to support dynamic modi�cation of
it's meta-level, a feature which is available in
Iguana through the rei�cation categories.

An alternative form of MOP is the \compile-
time" MOP as exhibited by both MPC++
[Ish94] and OpenC++ Version 2 [Chi95].
MPC++ is a \metalevel processing" version of
C++ in which the meta-level architecture spec-
i�es an abstract C++ compiler. At compile
time, the programmer can use the meta-level
features of the MPC++ compiler to extend the
syntax of the language with new features. Es-
sentially, MPC++ is an open implementation
of a C++ compiler, where the compiler itself
is rei�ed as a MOP, which can be extended at
compile time. However, the code generated by
the compiler is not re
ective, although re
ec-
tive extensions could possibly be added using
the notational extension feature. The focus of
Iguana is very di�erent. OpenC++ Version 2
is a similar system where a compile-time MOP
describes the behaviour of the compiler and
guides the code generating process.

Iguana aims at generating re
ective software
instead of being a re
ective compiler itself. The
Iguana syntax can not be extended, but the
MOP part of the syntax is su�ciently general
so as to allow new meta-level concepts to be ex-
pressed easily. More importantly, Iguana has
been designed to explicitly facilitate dynami-
cally adaptable objects, i.e., objects whose be-
haviour can be adapted at runtime.

3 Compiling Re
ective Lan-

guages

MOPs have typically been developed in the
domain of the interpreted language. There is
good reason for this. For a program to be inter-
preted, an interpreter must construct a lot of
behavioural information about that program,
such as appropriate dispatching functions to
use, inheritance hierarchy lookup, etc.2 This
information is not used directly by the pro-
gram, but is instead meta-level information
needed by the interpreter to execute the pro-
gram.
In re
ective programming, however, re
ec-

tion occurs when the subject of a computation
is the actual interpretation of the program; i.e.,
the re
ective computation is computing an as-
pect of how to interpret the program. The re-

ective program can then adapt its own inter-
pretation via modi�cations of the meta-level
information. To support this feature, mecha-
nisms are needed to access and e�ect the meta-
level behavioural information. For this to occur
dynamically, adaption of the meta-level must
be able to occur at run-time as the program
executes.
As an interpreter has already constructed a

signi�cant amount of meta-level information,
extending the interpreter to be re
ective only
involves adding support for exposing the meta-
level information to the base-level program, al-
lowing the program to in
uence the decision
making process of the interpreter and e�ect
its own behaviour through modi�cation of the
meta-level information and mechanisms.
In the case of compilers, the meta-level infor-

mation that is constructed at compile time is
rarely maintained beyond the compilation pro-
cess. True, a certain amount of meta-level in-
formation can be found in the debugging data

2We use the term meta-level information to de-
scribe both the tables of data associated with interpre-
tation/compilation and the implicit knowledge main-
tained by the interpreter/compiler to order its decision
making process regarding the behaviour of the base-
level program.

3

that compilers can provide, but this typically
only consists of tables of symbols and their ap-
propriate o�sets into either code or data sec-
tion. There is no easy way to use such sparse
information to e�ect the behaviour of the pro-
gram. Also the behaviour of the object model
has been literally hard coded into the program.
In this regard, the object model is implicit and
can not be altered.

Adding re
ection to a compiled language
thus entails maintaining the meta-level infor-
mation beyond the compilation process and
also embellishing the generated code with the
appropriate links to the meta-level information
that controls its behaviour. The obvious so-
lution would be to ensure that the compiler
would indiscriminately generate meta-level in-
formation for every element of the program's
object model. But this presents a signi�cant
problem: the program now has the increased
execution overhead involved in evaluating the
links and meta-level information, and it is also
wasteful of both compilation time and storage
space, especially in the case where the meta-
level information of a program component will
never be used.

To solve this problem, Iguana supports rei�-
cation categories and multiple, �ne-grained
MOPs. Rei�cation categories attempt to min-
imise execution overhead by o�ering the pro-
grammer the opportunity to selectively choose
which object model elements need to be rei-
�ed. Thus rei�cation only occurs where it is
expressly needed. Multiple �ne-grained MOPs,
as well as supporting the notion of multiple ob-
ject models, address the problem of meta-level
information bloating the executable image by
supporting the implementation of a modular
meta-level architecture. Meta-level informa-
tion is only generated for an object that selects
a MOP.

Rei�cation category selection can only occur
within a MOP declaration. Thus it is the act of
MOP selection by an object which determines
what meta-level information will be available
to that object and in what ways it will be rei-

�ed.

3.1 Rei�cation Categories

In order to avoid falling into the \reify ev-
erything" trap and its subsequent performance
overhead for compiled programs, Iguana uses
rei�cation categories to indicate to the com-
piler where rei�cation should occur. Every re-

ective language will have a set of object model
elements which can be rei�ed. These elements
correspond to Iguana's rei�cation categories
but, unlike the typical re
ective language, rei�-
cation categories are not implicit. In Iguana,
there is an explicit process of selection which
can only occur within the context of a MOP
declaration.

Black Box using
some Reification
 Categories

Adaption by
inserting new
meta−level
objects.

Closed Black Box
 Implementation

(a) (b)

(c)

Open Implementation

(d)

Figure 1: This example shows (a) a black
box approach to object model implemen-

tation, (b) an \open" implementation,
(c) rei�cation categories exposing parts

of the object model, and (d) adaption
via dynamically rebinding meta-level ob-

jects.

Whereas the CLOS MOP automatically
maintains method information in a language

4

accessible manner, i.e., methods are always rei-
�ed, Iguana allows each MOP to specify which
rei�cation categories the MOP needs to use.
Figure 1 shows the distinction between (a) a
black box object model implementation, where
no adaption can be performed, (b) the open
implementation which has all elements of the
object model rei�ed, and (c) the rei�cation cat-
egory version where meta-level objects are ex-
posed for certain features of the object model.
Part (d) of �gure 1 shows how adaption can be
achieved through dynamic rebinding of meta-
level objects.
For each rei�cation category that is used,

two actions will be performed by Iguana.
First, the actual rei�cation will be performed
which involves modifying any a�ected base-
level classes to use a di�erent object model
mechanism than the default. Secondly, a
meta-level object which implements the new
mechanism will be associated (i.e., dynamically
linked) with the base-level objects.
As an example, consider the case of the in-

vocation rei�cation category. When the state-
ment reify Invocation; appears in a MOP
declaration, it will cause the Iguana prepro-
cessor to create an invocation meta-level ob-
ject and reify invocation within the base-level
objects which have selected the MOP. In this
particular case, the meta-level object that
has been created will be given the default
name of invoke and be an instance of class
MInvocation.

3.2 Multiple, Fine-Grained MOPs

Iguana provides the ability to have multiple,
�ne-grained MOPs. This interesting feature
means that an application can have objects
that use di�erent object models. Essentially,
this means that an object's meta-level imple-
mentation can di�er signi�cantly from the im-
plementation of another object's meta-level,
even though the objects are part of the same
application. In an example where active ob-
jects and \normal" C++ passive objects co-
exist in the same application, we describe the

\active object" object model as co-existing
with the other object models.

An object that subsequently needs to modify
its object model (or more correctly, modify its
meta-level implementation) can do so knowing
that any changes will not a�ect other object
models. We term this feature as being \meta-
level locality of change."

In Iguana, MOPs can actually be quite �ne-
grained. From our research into operating sys-
tem design, we consider that a �ne-grained
modular approach to meta-level implementa-
tion can more easily facilitate both its imple-
mentation and runtime adaption. Thus a pro-
grammer can design a MOP which only im-
plements a particular form of invocation and a
separate MOP which only implements a partic-
ular form of method dispatching. The combi-
nation of both of these MOPs can then provide
an implementation of invocation and dispatch-
ing for base-level objects, but yet the imple-
mentation is separated into the two modular
components.

4 Iguana Syntax

In this section we describe the extensions made
to the syntax of C++ to support re
ection.
Iguana is implemented as a preprocessor which
reads in the Iguana source, digests the meta-
level extensions, makes the appropriate meta-
level modi�cations, and then outputs modi�ed
C++ code. If little use has been made of the
re
ective features then there will be little di�er-
ence between the input and output code. After
the preprocessing has completed, Iguana will
invoke a C++ compiler to compile the output
code into an executable.

4.1 Meta-Level Classes and Objects

Syntactically, there is no di�erence between
meta-level and base-level classes and objects.
Meta-level classes and objects are declared us-
ing the existing C++ syntax. The features that
do distinguish between base- and meta-level are

5

where an object is declared and what its func-
tionality is. Meta-level classes and objects are
usually declared within a MOP declaration and
their functionality usually concerns meta-level
features, such as method dispatch, which would
make their inclusion at the base-level rather
meaningless and somewhat impractical.
An example of where a class could be use-

fully employed by both the meta- and base-
levels occurs with general purpose classes such
as lists, arrays, etc., where the functionality is
somewhat generic.
By convention, the classes in the Iguana

Meta-Level Class Library (see Section 4.6) have
names beginning with a capital `M'. This is
meant to be an indication to a programmer
that instances of these classes would not make
very good base-level objects. However, this is
by no means a part of the language speci�ca-
tion and programmers can choose to name their
meta-level classes as they like.

4.2 Rei�cation Categories

As explained above, Iguana is a compiled lan-
guage which uses rei�cation categories to se-
lectively choose what language elements must
be rei�ed. A rei�cation category can only be
selected within a MOP declaration (see Sec-
tion 4.3) so that rei�cation will only occur in
accordance with the chosen categories of the
MOP.
Syntax for choosing a rei�cation category

starts with the reify keyword which is fol-
lowed by the name of a single category that
must be rei�ed, for example Dispatch. Each
rei�cation category has a default meta-level
class and instance name. In the dispatch ex-
ample, the default names are MDispatch and
dispatch respectively. Consequentially, for an
object that has selected a MOP which includes
a reify Dispatch; statement, that object
will have a meta-level object called dispatch

which is an instance of the (meta-level) class
MDispatch. Also, the code generated for the
object by Iguana will use the dispatch object
to perform method dispatch.

The default meta-level class and instance
name can be overridden using two optional pa-
rameters to the reify command. The �rst of
these is the alternative class name. For ex-
ample, if a programmer had implemented their
own dispatching mechanism in a class called
MyDispatcher, a subclass of MDispatch, then
that can be installed as the dispatcher by using
reify Dispatch: MyDispatcher;.

The second optional parameter similarly
allows an alternative choice for the name
of the meta-level instance. Instead of us-
ing the default dispatch, a programmer
can select that their own identi�er be used;
e.g., reify Dispatch: MyDispatcher dis;,
which just means that method dispatch for ob-
jects that have selected the MOP containing
this statement will be directed at an object
named dis instead of the default dispatch.
Note, however, that the instance name param-
eter can only be present if it is preceded by the
class parameter.

The following are some possible examples of
reifying classes:

1. reify Class; Classes will be rei�ed and
exist at runtime as instance objects of the
default class MClass and named mclass.

2. reify Class: MyMetaClass; The classes
rei�ed by this statement will be instances
of the class MyMetaClass but will still be
given the default instance name of mclass.

3. reify Class: MyMetaClass myclass;

In this case, the rei�ed classes will be in-
stances of class MyMetaClass and name
myclass.

See Appendix A for a list of Iguana's rei�cation
categories.

4.3 MOP Declaration

Syntactically, de�ning a MOP in Iguana is not
unlike de�ning a C++ class. A MOP decla-
ration starts with the keyword protocol and

6

consists of a name, an optional list of base-
MOPs (as opposed to a class's list of base-
classes), and a brace-enclosed list of member
components separated into sections.
The member components of a MOP de�ni-

tion are either object declarations and rei�-
cation category declarations or references to
other MOP declarations. The former must ap-
pear in either the local, shared or global sec-
tions, while the latter denote a MOP depen-
dency relationship and must appear in the de-
pendent section. All sections are optional but
must appear in the following order:

1. The dependent section: In this section,
a programmer can list the other MOPs
upon which the one being declared is de-
pendent. This will tell Iguana that it must
ensure to include the dependent MOPs in
any associated objects meta-level. Note,
that this is not inheritance, but a hor-
izontal relationship between MOPs; i.e.,
one MOP cannot function correctly with-
out the presence of another contemporary
MOP.

2. The local section: Object declarations
and rei�cation category declarations in
this section will cause object model meta-
level objects to be instantiated privately
to an associated base-level object.

3. The shared section: Object declara-
tions and rei�cation category declarations
in this section will be shared by all base-
level objects associated with the MOP.
This is a similar concept to C++'s static
class members.

4. The global section: The global section
is used for declaring globally shared meta-
level objects and rei�cation category gen-
erated objects.

Thus a complete MOP de�nition could look
like:

protocol SuperMOP;

protocol FundamentalMOP;

protocol MyMOP : SuperMOP

{

dependent:

FundamentalMOP;

local:

Object myPrivateMetaObject;

reify Class : MClass

myPrivateClass;

shared:

Object objSharedByMetaLevel;

global:

Object objGloballyShared;

};

4.4 Protocol Selection

Protocol selection is the act of associating one
or more MOPs with a base-level object. In
Iguana terminology, a base-level object which
selects a MOP is said to be associated with
the MOP. There are four forms of selection in
Iguana: class protocol selection, default pro-
tocol selection, instance protocol selection and
expression protocol selection. All forms of se-
lection use the \selection operator" (==>) to
introduce a list of comma separated MOP iden-
ti�ers.

Class protocol selection is the most com-
mon mechanism for selecting MOPs. When
originally designing Iguana, we hypothesised
that the best person for deciding which MOPs
should be used with an object would be the
programmer/designer creating the class for the
object, as they would know the internal de-
tails of the class. During experimentation with
a prototype version of Iguana, we found that
this was too strict a generalization and that, in
fact, it would be useful to (a) set a default set
of MOPs which would be associated with all
classes in a �le (default protocol selection), (b)
associate a MOP with an object at the object's
instantiation (instance protocol selection), and
(c) be able to associate a MOP with an expres-
sion (expression protocol selection), a useful fa-
cility for some specialised cases.

7

4.4.1 Class Protocol Selection

Class protocol selection is the association of
one or more MOPs with class instances. In a
class declaration, the programmer can include
a list of MOPs which will form the meta-level
for instances of the class. The syntax for this is
placed between base-class inheritance (if there
are any) and the brace-enclosed list of mem-
bers. The selection operator (==>) is followed
by a list of the MOPs to be selected; e.g.:

class X : SuperX ==> MetaX, MetaX2

{ ...

};

Note that the meta-level association is made
between the class instance objects and not the
class itself. If classes are rei�ed, any of the
MOPs that a class has selected will not form
part of the class's meta-level. Instead, the
meta-level class of which the base-level will be
an instance must select the MOPs for its in-
stances.

4.4.2 Default Protocol Selection

For a common MOP, such as the standard
C++ MOP MetaCpp, it is useful to have a
mechanism for declaring that all classes should
select the given MOP. To do this, the default
protocol selection construct allows a MOP to
be selected by all classes from the declaration
to the end of the �le. The mechanism includes
the facility to turn o� the default selection on
a per MOP basis.
As an example, the following is used to en-

sure that all classes select the MetaCpp MOP
(line 1) while line 6 shows the MetaCpp MOP
being removed from the default protocol selec-
tion list before a class Y is de�ned and subse-
quently re-selected. In this case, Y would use
the standard black box implementation of the
C++ object model:

[1] protocol default ==>

[2] MetaCpp;

[3]

[4] class X {};

[5]

[6] protocol default ==>

[7] --MetaCpp;

[8] class Y {...};

[9] protocol default ==>

[10] ++MetaCpp;

Note that default MOP selection only provides
defaults for class protocol selection. Instance
and expression protocol selection are left un-
a�ected. Also note the ++ and -- operators.
These respectively add or remove a MOP from
the list of MOPs that will be associated with
a base-level object. When these operators are
left out of a MOP selection statement, the de-
fault behaviour is to add a MOP to the MOP
list. It is common practice not to use ++ op-
erator, especially with class protocol selections
where the additive behaviour is the most com-
mon.

4.4.3 Instance Protocol Selection

Whereas class protocol selection associates a
MOP with all instances of a class, instance pro-
tocol selection associates a MOP only with a
single instance object. The syntax involves fol-
lowing the object declaration with the selection
operator (==>) and a list of MOPs. For exam-
ple, given a MOP called Distributed which
implements support for distributed objects, a
distributed Integer can be declared as:

protocol Distributed;

Integer i ==> Distributed;

The actual implementation of this feature in-
volves replacing the declared class of the object
with a sub-class which contains the necessary
meta-level adjustments. In the above exam-
ple, the preprocessor would alter the declara-
tion to make it become Integer__Meta1 i;

and precede it with a de�nition for the
Integer__Meta1 class. Other instances of class
Integer will not be a�ected. New classes with
the __Meta su�x are only generated for in-
stance protocol selection and expression pro-
tocol selection where necessary. If there are

8

no other Integer instances which select the
Distributed MOP, then i in this case will be
the only instance of Integer__Meta1.

4.4.4 Expression Protocol Selection

We have found that in some cases it is use-
ful to have a part of a MOP used under very
specialised circumstances. As an example, con-
sider the following. We were using Iguana to
implement a re
ective user-space thread pack-
age. As a part of the thread packages im-
plementation, we had considered that a very
\clean" context switch could be written based
on object invocation. By clean we meant that
context switching should be both easy to write
and also easy to use.

By structuring the thread package to con-
text switch at an object invocation, program-
mers would be able to perform seamless context
switches by simply invoking the method of an
object. Thus, to switch context to a thread in
another object, a method in that object was
simply invoked.

The second bene�t related to implemen-
tation. It was easier to implement context
switching knowing that a context switch always
occurs at a method invocation boundary.3

Having decided that this was a good way of
implementing context switching for both the
scheduler and threads releasing control of the
CPU, our next problem was to actually imple-
ment it in Iguana. By reifying invocation using
class or instance protocol selection, all the invo-
cations in an object would also trigger context
switches, something we wanted to avoid.

Our solution is to use expression proto-
col selection, where a MOP to be used with
an expression is selected from within that
expression.4 The syntax involves enclosing the
expression in parenthesis and inserting a selec-
tion operator and a list of MOPs at the end

3As an aside, context switching on exit from a
method can be achieved by reifying MethodAccess.

4This does not prevent other MOPs which do not
reify invocation from coexisting.

of the expression, but before the closing paren-
thesis. For example:

[1] protocol ContextSwitchInvoke

[2] {

[3] local:

[4] reify Invocation:

[5] MContextSwitch;

[6] };

[7]

[8] class MContextSwitch:

[9] MInvocation

[10] { };

[11]

[12] void X::y (void)

[13] {

[14] (obj->method() ==>

[15] ContextSwitchInvoke);

[16] }

Notice how we do not have to include any con-
cepts such as context switching which would
be alien to the C++ (and hence Iguana) de�-
nition. By simply reifying an existing language
construct, in this case method invocation, we
can use that to insert the appropriate piece of
code which meets our requirement.

So, how does this work? Essentially, the
Iguana preprocessor will reify invocation for
the expression. This means that the method
invocation on obj will be transformed into a
meta-level invocation to a send method. In
this case, the send method is a member func-
tion of the class MContextSwitch. Thus the
line

(obj->method() ==>

ContextSwitchInvoke);

is transformed into a statement such as

(meta->invoke->send

(obj, Object::method, NULL));

This mechanism was originally called state-
ment protocol selection, but the tighter granu-
larity of expressions o�ers greater
exibility.

9

4.5 Meta-Level Invocations

Invoking a meta-level object is achieved
through the meta class member, i.e., in a
method, a programmer can invoke the send

method of an MInvocation meta-level object
via:

meta->invoke->send (...);

The address of a meta-level object is also avail-
able, so the following is valid code to copy the
invocation meta-level object to a local pointer:

MInvocation* myInvokerMLO =

meta->invoke;

As meta is a pointer, a base-level object is
dynamically bound to its meta-level objects.
Re-binding to a di�erent meta-level is simply a
matter of replacing one or more of the existing
meta-level objects. For example, for an object
to replace its invocation meta-level object, it
simply has to replace it with a new invocation
object:

MInvocation* tmp = meta->invoke;

meta->invoke =

new MInvocationType2;

delete tmp;

The old invocation meta-level object can only
be deleted if it is local, i.e., not shared with
other objects. It is also possible for an object
to replace its entire meta-level with one from
another class, such as:

Meta* tmp=meta;

meta = (Meta*) new

SomeOtherClass::Meta;

delete meta;

In this case, a new meta-level will be con-
structed for the object. This can, however,
be a somewhat hazardous process if the rei�-
cation categories of the meta-level's are di�er-
ent. There is as yet no process of migration
in Iguana to provide automatic checking for
meta-level compatibility like that provided by
the Apertos operating system [Yok93].

4.6 Meta-Level Class Library

The Iguana Meta-Level Class Library is a
library of meta-level classes that implement
meta-level language related concepts. For ex-
ample, it contains classes such as MClass,
MDispatch, MInvocation, etc. These provide
implementations of the default behaviour for
MOPs such as MetaCpp, the standard C++
MOP.

The Meta-Level Class Library consists of:

� A set of header �les for standard
MOP declarations (such as MetaCpp and
MinCpp standard C++ MOPs), identi�-
able through their \.mop" �le extensions.

� A set of header �les for the standard
classes which implement the standard
MOPs.

� An actual library containing the im-
plementation of the standard meta-level
classes, against which Iguana code can be
linked.

5 Example: C++ Active Ob-

jects

As an example of how Iguana can be used, con-
sider the implementation of active objects in
C++. For our example, we consider an ac-
tive object to be an object which has one or
more threads associated with it. In this partic-
ular case, we will be creating a thread for each
method within an object. This might seem
to be extravagant, but remember that we will
only be making active objects out of the in-
stances of those classes which actually select
the ActiveDispatcher, presented below, as
one of their MOPs. The beauty of this example
is that programmers can write multi-threaded
applications using the ActiveDispatcher MOP
without having to explicitly make thread and
locking calls in the base-level classes.

We begin by writing the actual MOP decla-
ration:

10

[1] protocol ActiveDispatcher

[2] {

[3] local:

[4] reify Dispatch:

[5] MActiveDispatcher;

[6] reify MethodAddress;

[7] reify StateAccess:

[8] MLockableAccessor;

[9] };

Here, we have declared that message dis-
patch (line 4), method addresses (line 6) and
state access (line 7) should be rei�ed; i.e., at
runtime message dispatch should be trapped,
the addresses of methods should be main-
tained, and accessing a component of an ob-
ject should be trapped. We have then cho-
sen the class MActiveDispatcher to imple-
ment the dispatching routine (line 5), and class
MLockableAccessor to implement state access
(line 8). Method addresses do not need a class
to be speci�ed because we want to use the de-
fault MMethod class (line 6).

Notice how we have not rei�ed any abstract
notions such as threads or locking. In a re
ec-
tive language, one can typically only reify ex-
isting language constructs. As neither Iguana,
nor its parent C++, have a language-level
thread construct, threads can not be rei�ed.
Instead, we must reify the language elements
that will allow us to implement what we desire
but using a thread class.

The code for class MActiveDispatcher in-
cludes the dispatchmethod which implements
the actual dispatching of method invocations:

class MActiveDispatcher:

MDispatcher

{

int size;

Bool* activities;

Thread** threads;

public:

MActiveDispatcher ();

void dispatch (MObject*,

MMethod*,MActFrame*);

};

MActiveDispatcher::

MActiveDispatcher (void)

{

size = methodAddress->size();

activities = new Bool [size];

threads = new Thread* [size];

for (int i=0; i<size; i++)

{

activities[i] = FALSE;

threads[i] =

new Thread (&BASE::method);

}

}

The method for implementing dispatch can
then be written as follows:

void MActiveDispatcher::

dispatch (MObject* obj,MMethod* m,

MActFrame* p)

{

int i=methodAddress->number(m);

threads[i]->queue

(new MInvocation(m,p));

}

As there are multiple threads executing in
a single object, some form of locking must be
implemented to ensure that data integrity is
maintained. By reifying state access to use the
MLockableAccessor, we can ensure that state
updates maintain integrity.
Finally, for an object to be an active object,

the ActiveDispatcher can be selected by that
object either through its class or at declara-
tion time. For example, the former situation
occurs with any instance of class Server while
the object client, an instance of the none-
active Client class (declaration not shown),
has selected the ActiveDispatcher in its dec-
laration.

class Server ==> ActiveDispatcher

{

int i;

public:

Server ();

11

Result& process (...);

};

Server serve;

Client client ==> ActiveDispatcher;

6 Performance

There are a number of factors that contribute
to the cost of applications compiled with
Iguana:

1. The number of indirections required to ini-
tiate dynamic binding;

2. The number of meta-level invocations;

3. The cost of computation at the meta-level;

4. The cost of object creation.

The following tests were all conducted on a
33MHz 486-DX PC running the Linux oper-
ating system.

6.1 Indirections

On our test platform, the number of indirec-
tions used by Iguana causes an extra four move
instructions5 to be used per invocation to ob-
tain a reference to the destination meta-level
object. This is a direct consequence of us-
ing the dynamically bound meta as a reference
pointer to an objects meta-level and dynami-
cally bound component references to the actual
meta-level objects. For example, the meta-
level invocation needed to invoke a meta-level
reception object of a base-level object obj is:

obj->meta->reception->receive (...);

An alternative approach would have been to

atten the references by using a non-reference
member object for the meta-level and to have

5All four of these move instructions were of the
more expensive register-memory format as opposed to
register-register | an indication of the limited general
purpose registers available on the test platform's 486-
based architecture.

separately identi�able component meta-level
objects. In such a case, the above statement
would become:

obj.meta_reception.receive (...);

We chose not to implement such a format be-
cause the performance gain was minimal and
could not be compared to the advantages of
(a) having a dynamically bound and adaptable
meta-level and (b) having a single encapsulated
meta-level for each object which can easily be
altered as a whole. See Section 4.5 for an ex-
ample of point (b) in use. The cost of Iguana
indirections per-meta-level invocation is given
in the table in Figure 2

6.2 Invocations and Computations

The number of meta-level invocations that
must be made to implement a base-level feature
relates to the number of rei�cation categories
that are used; an extra meta-level invocation
must be made for each rei�cation category. For
example, the following timings in Figure 2 were
gained by comparing a typical C++ object in-
vocation with a re
ective equivalent. The �rst
�gure shows the cost of a C++ invocation (and
function execution). Then, using Iguana, the
same invocation was timed using one rei�ca-
tion, i.e., Reception. This increased the cost
of the invocation by half as it added one in-
termediate meta-level invocation. Using three
rei�cations (namely, Invocation, Reception,
and Dispatch) adds the cost of an extra three
meta-level invocations on to the cost of the
base-level invocation and the subsequent time
is approximately four times that of the C++
invocation.6

It must be noted that the expense involved
with rei�cation categories is only paid by re-

ective objects because they have selected a

6In some simple cases where only one rei�cation was
used, Iguana has actually reduced the cost of method in-
vocation by 14%{17% over the equivalent C++. These
can be attributed to the
attening of some base-level in-
directions and virtual function dispatch by the Iguana
preprocessor.

12

Iguana Invocation Timings

Iguana Indirection 0.78 �secs.

C++ Invocation 2.064 �secs.
1 Rei�cation 3.009 �secs.
3 Rei�cations 8.535 �secs.
4 Rei�cations 21.646 �secs.

Figure 2: Rei�ed and non-rei�ed timings

for method invocation/dispatch.

protocol. Invocations between non-re
ective
C++ objects are not encumbered in any way.
This contrasts favourably to AL-1/D, which
does not support rei�cation categories or �ne-
grained MOPs, where modi�cations to sup-
port distributed computing caused a 20-fold in-
crease in local message communication [OI94].

What these �gures do not show is the cost
of meta-level computation, i.e., the particu-
lar functionality supported by a given meta-
level and the overhead that is involved. For
example, the performance of a meta-level im-
plementing distributed computing facilities has
by de�nition to be worse than a contemporary
non-re
ective, non-distributed C++ program,
as the former must include the cost of network
communication. An example of such compu-
tation is shown in our �nal entry in Figure 2.
In this case we used the same three rei�cation
categories from the previous test and added
DispatchAccess as the fourth. The imple-
mentation for the dispatch access meta-level
object used a naive lookup mechanism which,
although simple to implement, demonstrated
sub-optimal performance. This increased the
cost of the invocation to over ten times that of
the original C++. This emphasises the point
that meta-level programming can be expensive
when care is not taken in its implementation.

6.3 Object Creation

Another performance issue that requires con-
sideration when programming in Iguana is that
the creation of re
ective objects is more expen-
sive than the creation of their non-re
ective

counter-parts. This is due to the fact that a
re
ective object needs to have its meta-level
constructed at creation time. In the case where
an object uses only shared meta-level objects,
the cost is merely in terms of the number of
meta-level object references which have to be
bound to the shared meta-level objects. How-
ever, for non-shared local meta-level objects
each must be allocated and constructed as part
of the base-level object creation process.

7 Status

We are now in our second implementation of
Iguana. Our initial prototype implementation
was limited in two ways: �rst, for ease of im-
plementation, its parser was not designed to
parse all of the C++ base language. Sec-
ondly, as a prototype we did not implement
all of the categories of rei�cation (which also
meant that the prototype implementation's
Meta-Level Class Library was quite small).
Not only has Iguana's syntax changed from the
initial implementation, but we have also reor-
ganized and increased the number of rei�cation
categories.
As of writing, we are in the process of com-

pleting the implementation of the complete
Iguana language on Unix platforms using the
Cppp C++ front-end parser from Brown Uni-
versity. The new version will include support
for all of the C++ base language, code genera-
tion for the larger set of rei�cation categories,
and a more substantial Meta-Level Class Li-
brary.

8 Summary and Conclusion

In this paper, we presented the Iguana pro-
gramming language. Iguana is an extended
version of C++ which includes support for re-

ective programming.
To prevent incurring unnecessary overhead,

Iguana does not implement a \reify every-
thing" policy. Instead, programmers can se-
lectively choose which object model elements

13

(rei�cation categories) need to be rei�ed to
achieve their task at hand. This process of se-
lection occurs within a MOP declaration. For
a given MOP declaration, any number of the
rei�cation categories can be selected.
Iguana supports multiple MOPs, meaning

that there can be many actual MOP decla-
rations, each oriented towards a speci�c task.
Also a MOP can be said to be \instantiated",
i.e., each of the meta-level objects in the MOP
are instantiated. Iguana also supports the use
of multiple MOP instances. In this fashion,
di�erent base-level objects can have di�ering
meta-level objects instantiated from distinct
MOPs and which implement di�erent meta-
level features and rei�cations.

References

[Chi95] S. Chiba. A Metaobject Protocol
for C++. In 10th Conference on
Object-Oriented Programming Sys-
tems, Languages, and Applications,
pages 285{299, 1995.

[CM93] S. Chiba and T. Masuda. De-
signing an Extensible Distributed
Language with a Meta-Level Ar-
chitecture. In O.M. Nierstrasz,
editor, 7th European Conference
for Object-Oriented Programming,
ECOOP '93, Springer-Verlag LNCS
707, pages 482{501, July 1993.

[GC95] B. Gowing and V. Cahill. Making
Meta-Object Protocols Practical for
Operating Systems. In 4th Interna-
tional Workshop on Object Orien-
tation in Operating Systems, pages
52{55, 1995.

[Ish94] Y. Ishikawa. Metalevel Architecure
for Extended C++. Technical Re-
port TR-94024, Tsukuba Research
Center, 1994.

[KHL+93] G.E. Kaiser, W. Hseush, J.C. Lee,
S.F. Wu, E. Woo, E. Hilsdale, and

S. Meyer. MeldC: A Re
ective
Object-Oriented Coordination Lan-
guage. Technical Report CUCS-
001-93, Columbia University, NY,
January 1993.

[KRB92] G. Kiczales, J. Des Rivieres, and
D. G. Bobrow. The Art of the
Metaobject Protocol. MIT Press,
1992.

[NY93] S. Nishio and A. Yonezawa, editors.
Lecture Notes in Computer Science
742, Kanazawa, Japan, November
1993. Springer-Verlag.

[OI94] H. Okamura and Y. Ishikawa. Ob-
ject Location Control Using Meta-
level Programming. In M. Tokoro
and R. Pareschi, editors, 8th Euro-
pean Conference in Object-Oriented
Programming, LNCS 821, pages
299{319, Bologna, Italy, July 1994.
Springer-Verlag.

[OIT93] H. Okamura, Y. Ishikawa, and
M. Tokoro. Metalevel Decompo-
sition in AL-1/D. In Nishio and
Yonezawa [NY93], pages 110{127.

[Str91] B. Stroustrup. The C++ Program-
ming Language. Addison-Wesley, 2
edition, 1991.

[SW95] R.J. Stroud and Z. Wu. Us-
ing metaobject protocols to im-
plement atomic data types. In
9th European Conference on Object-
Oriented Programming (ECOOP),
pages 168{189, Aarhus, Denmark,
August 1995.

[Yok93] Y. Yokote. Kernel Structuring
for Object-Oriented Operating Sys-
tems: The Apertos Approach. In
Nishio and Yonezawa [NY93], pages
145{0.

14

A Iguana Rei�cation Categories

Iguana Rei�cation Categories

Name Default Class Default Instance Description

ActivationFrame MActFrame actFrame Rei�cation
of method activation frames, activa-
tion frame meta-level objects contain
method parameters.

Class MClass mclass Reify a class to exist as a meta-level
class instance at run-time.

Creation MCreation mcreate Rei�cation of object creation, similar
to overloading the new operator.

Deletion MDeletion mdelete The opposite to creation and bearing
a kinship with delete operator.

Dispatch MDispatch dispatch Rei�cation of the receipt of messages
and their dispatch to the appropriate
methods.

DispatchAccess MDispatchAccess dispatchAccess Rei�cation of the method lookup
mechanism.

Identity MIdentity identity An object's identity can be rei�ed as
an object.

Inheritance MInheritance inheritance Reify the inheritance mechanism of
C++; The MInheritance class does
not provide features such as evolution
or dynamic inheritance. These are left
to speci�c subclasses.

InheritanceTree MInheritanceTree inheritanceTree A rei�cation of an object's inheritance
tree. Can provide access to all the
super/base-classes of an object.

Invocation MInvocation invoke Method invocations are rei�ed to use
a meta-level implementation as op-
posed to the default C++ object mod-
els implementation.

Method MMethod method Methods are rei�ed to appear as ob-
jects at run time.

MethodAccess MMethodAccess methodAccess Rei�cation of the entering and exit
(access) of a method.

MethodAddress MMethodAddress methodAddress A method address table can be rei�ed
as an object. This provides access to
an explicit (and more complete) form
of the standard C++ virtual function
table.

MethodName MMethodName methodName Rei�cation of a table of method sym-
bolic names.

Object MObject object A meta-level reference for base-level
objects.

15

Iguana Rei�cation Categories (continued)

Name Default Class Default Instance Description

Reception MReception reception The act of receiving a message by
a base-level object before it is dis-
patched can be rei�ed.

State MState state An object's state information can be
made available as a distinct object.

StateAccess MStateAccess stateAccess Rei�cation of access to an object's
state information.

StateAddress MStateAddress stateAddress A table of addresses to the members
of an object's state.

StateName MStateName stateName A table of symbolic names used by ob-
jects to reference their state.

Source MSource source Runtime access to source code. Typi-
cally useful for debugging.

Type MType type The type of an object is rei�ed as an
object. The new draft C++ standard
is now proposing its own runtime type
system.

TypeSoft MTypeSoft typeSoft Reify a soft typing mechanism where
compile time type checking is not
performed. This is similar to the
Smalltalk/Objective-C type system
where messages can be sent to objects
even though it is not known if their is
a corresponding method to implement
the message.

16

