

Dynamic Software Evolution and The K-Component Model

Jim Dowling and Vinny Cahill

Distributed Systems Group
 Department of Computer Science

Trinity College Dublin
Jim.Dowling@cs.tcd.ie, Vinny.Cahill@cs.tcd.ie

Abstract. There are known classes of software systems that can benefit from dynamic software
evolution, including 24x7 systems that require on-line upgrades and adaptive systems that need to
adapt to frequent changes in their execution environment. This paper investigates the use of
dynamic software architectures and architectural reflection in building adaptive systems. We
introduce the K-Component model and its architecture meta-model for building a dynamic
software architecture. We address the issues of the integrity and safety of dynamic software
evolution by modelling dynamic reconfiguration as graph transformations on a software
architecture, and cleanly separate adaptation-specific code from functional code by encapsulating it
in reflective programs called adaptation contracts. The paper also introduces the prototype
implementation of our K-Component model.

1 Introduction

Computer systems that support dynamic software evolution have the ability to change their
implementation at runtime allowing them to extend, customise or upgrade the services that they
provide without the need for system recompilation or reboot. Designers have traditionally sought
alternatives to runtime change, usually because it is avoidable. Several techniques have been devised to
circumvent the need for it, including regularly scheduled downtimes, redundancy, and manual
overrides. There are, however, certain classes of systems that benefit from dynamic adaptability. These
include 24x7 systems, such as telecommunication switches where shutting down and rebuilding the
system for upgrades may result in unacceptable delays and increased cost, and adaptive systems that
adapt their provided functionality in response to the frequent changes in their usage context [Pui98].
Mobile systems, in particular, benefit from dynamic adaptability. Dynamic software evolution allows a
mobile system to adapt its provided functionality in response to the often frequent changes in the
device’s context. There has already been much research into building middleware that supports
dynamic software evolution [Blair01, Kon01, DC00].

Dynamic software architectures can be used to build dynamically evolvable software systems by
supporting the self-management and reconfiguration of the system’s architecture at run-time [Allen98].
Current approaches to specifying dynamic software architectures use an Architecture Description
Language (ADL) [SG96] in conjunction with an Architecture Modification Language [Darwin95,
Rapide95, Werm00] or a Co-ordination Language [Cuesta01]. Our approach to building a dynamic
software architecture is to use architectural reflection [Caz00]. A system that supports architectural
reflection reifies its software architecture, e.g. its configuration graph of components and connectors, as
an architecture meta-model [DC01] that can be inspected and modified at run-time. Modifications of
the architecture meta-model result in modifications of the software architecture itself, and the
architecture is therefore reflective. We also provide a separate adaptation contract description
language for writing reflective programs called adaptation contracts that allow programmers to specify
how and when to reconfigure the software architecture at runtime. The reconfiguration operations over
the architecture are implemented as graph transformations, guaranteeing the safety and integrity of the
architecture both during and after reconfiguration. In our current implementation, the reconfiguration
operations allow for the replacement of components and connector strategies, but maintain a static
configuration graph of the software architecture.

2 Architecture Meta-Model and Architectural Reflection

We define architectural reflection as being concerned with the observation and manipulation of the
configuration graph of a software architecture and its constituent vertices and edges at runtime. In this
context, behavioural reflection supports dynamic software evolution by providing the ability to rewrite
a software architecture’s configuration graph of components and connectors at runtime. Structural
reflection [Blair01] for a software architecture is concerned with introspecting the architecture’s
configuration graph and constituent components, connectors and interfaces.

2.1 Architecture Meta-Model’s Configuration Graph

We reify a software architecture configuration as a typed, connected graph, see Fig. 1, where the
vertices are interfaces, labelled with components implementations, and the edges are connectors,
labelled with connector properties. A vertex is modelled as an interface and implementation
(component) pair, (i,c). An edge is modelled as a triple i ->l j, which contains the source and target

vertices identifiers i and j, and the edge label l. The edge label represents reconfigurable properties of
the connector such as the ability to change its communication protocol or set of installed interceptors.
The root vertex of a configuration graph is a special type of vertex, the entry point in the program. It is
normally the main() of a C++/Java implementation. Cycles are allowed in the graph and are modelled
with cyclic connectors. A meta-level component, called the configuration manager [KM98, Werm00]
(see Fig. 3), is responsible for the storage and management of the software architecture’s configuration
graph.

Interface
ComponentVertex

Connector
[Label]

Interface
ComponentCyclic

Connector
[Label]

Label = [Local | Remote,
Compression | Interceptor]

Vertex = {Interface, Component}

Fig. 1. Typed Directed Configuration Graph

2.2 Dynamic Reconfiguration as Configuration Graph Transformation

As mentioned previously, we model dynamic reconfiguration as conditional graph transformations,
specified in reflective programs called adaptation contracts . A graph transformation is a rule-based
manipulation of the configuration graph, see Fig. 2. Rules define how and when a graph is transformed.
The interfaces and connectors that represent the vertices and edges in our graph describe the part of the
system that is preserved during a graph transformation. The components and connector properties that
represent the labels of the vertices and edges in our graph respectively describe the part of the graph
that is rewritten during a graph transformation. Therefore, our model of dynamic reconfiguration is
constrained to replacing the components in a system’s configuration graph and changing the connector
strategies. The alternative of allowing new services to be introduced to a system at runtime leaves open
the problem of how existing components in the system and existing clients of the system become aware
of and access these new service interfaces at runtime. For self-adaptive software, we do not see our
model of dynamic reconfiguration as being overly restrictive. In fact, it can help programmers by
constraining the system’s possible dynamic reconfigurations to meaningful ones.

Interface A
Comp A'

Root

Graph
Transformation

Interface B
Comp B'

Interface D
Comp D'

Interface C
Comp C'

Interface A
Comp A''

Root

Interface B
Comp B'

Interface D
Comp D''

Interface C
Comp C'

Rule Triggers a

local remote

Fig. 2. Dynamic Reconfiguration of a Software Architecture as a Graph Transformation

Since graph transformations ensure that the result of a rule is again a graph, we can guarantee the
integrity and consistency of the system if the graph rules are transactional operations over the graph.
In practice, however, graph transformations may affect only part of the configuration graph and rather
than locking the whole graph a reconfiguration protocol [KM98] can be used to ensure that only those
vertices that are affected by the transformation must be in a safe state [Werm00]. Our reconfiguration
protocol helps reduce the length of the reconfiguration phase and allows concurrent client invocation
during the reconfiguration phase on components that are not “frozen”. Computation and adaptation
code are related through the reconfiguration protocol as it freezes computation in components involved
in a reconfiguration [Werm00]. Component state can only be changed by computation, not by
reconfiguration operations.

Our reconfiguration protocol is the following:
1. Reconfiguration operation invoked to transform the configuration graph.
2. Identify the new target configuration and sends a “freeze” message to only those components and

connectors in the original configuration that will be updated in the target configuration.
3. Perform the transformation of the configuration graph, i.e. unlink, create, transfer state, remove and

link the new components and/or change connector strategy.
4. Resume processing in “frozen” connectors.

We assume that a reconfiguration operation finishes in finite time and its initiator, the component
manager, knows when it ends. One of the other advantages of reconfiguration protocols is the
maintenance of system state integrity by transferring component state from the old component to the
new one. The successful transfer of component state requires that component developers implement a
copy constructor interface for their component. A configuration manager is responsible for the
implementation of the reconfiguration operations and the correct operation of the reconfiguration
protocol.

2.3 Adaptation Contracts

To obtain a clean separation of concerns between the adaptation-specific code and the functional
code, a separate language is used to specify the adaptation logic as adaptation contracts . An adaptation
contract contains a series of conditional rules for the transformation of the software architecture’s
configuration graph. Adaptation contracts are used to specify a system’s architectural constraints
[Blair01], describing how and when to safely reconfigure the software architecture. Since architectural
constraints represent properties of or assertions about configurations, components or connectors, our
adaptation contracts require a mechanism for accessing these properties and assertions. We provide
adaptation events as a mechanism for allowing adaptation contracts to poll architectural constraint
information from meta-level configurations and base-level components and connectors. Adaptation
events also have the advantage of decoupling the meta-level adaptation contract from the base-level
components and connectors. In effect, they provide a run-time separation of concerns between the
adaptation code and the functional code. This allows for adaptation contracts to be dynamically loaded
and unloaded, since the base-level code cannot have any direct dependencies on them.

Adaptation contracts are specified in the Adaptation Contract Description Language (ACDL). They
consist of a series of conditional statements, testing for the occurrence of adaptation events, and
associating reconfiguration operations with adaptation events. A configuration tool takes adaptation
contracts specified in the ACDL, the software architecture specification and produces an
implementation in a concrete language, i.e. C++ in our prototype. It produces an executable
implementation of the software architecture, and its architecture meta-model, by creating specialis ed

and concrete implementations of the abstract and templated classes in the K-Component framework
and binding them to the software architecture. Adaptation contracts are represented at runtime by meta-
level objects and are deployed in and managed by a configuration manager, see Fig. 3.

3 The K-Component Model

The K-Component architecture meta-model provides a configuration manager that stores the
architecture meta-model and implements the reconfiguration (graph rewrite) operations over the
architecture. The configuration manager is also a run-time container for the deployment, scheduling
and execution of adaptation contracts and can optionally provide a procedural interface for the
loading/unloading of adaptation contracts at runtime. It is implemented as an active object.

«interface»

«interface»

«interface»

Base-Level

Meta-Level

+reconfiguration_ops()

-config_graph

ConfigurationManagerConnectionContract

Connector

Connector

ConfigurationContract

1 10..* 1

-External

1 *

Adaptation
Events

Fig. 3. Configuration Manager as a Meta-Level Adaptation Managersx

3.1 Components and Connectors

Interface Definition Language-3 (IDL-3) [CCM99] is used to define components and interfaces in the
software architecture because it provides support for explicit dependency management through
provides and uses interfaces. These explicit dependencies are used to help generate the
configuration graph of components and connectors. IDL-3 emits and consumes events [CCM99]
are used to specify adaptation events. Connectors are implemented as typed objects relating
provides and uses interfaces, i.e. ports, on components . Connectors are automatically generated
from IDL-3 component definitions by specialising and templating abstract connectors in the K-
Component framework. Connectors provide a reconfiguration interface, with operations such as
link_component and unlink_component, and the configuration manager uses this interface to
implement its graph rewrite operations.

3.2 Specifying the Software Architecture and Generating the Architecture Meta-Model

In our prototype implementation of K-Components, C++ is used instead of an ADL to specify the
software architecture. This has the benefit of allowing the programmer to specify an application’s
architecture without having to learn a new language. Several abstractions and programming idioms ,
however, are required to represent concepts commonly found in an ADL specification, such as
interfaces, connectors and binding operations. In our C++ prototype implementation for example,
(component) services can only be accessed via connectors and interfaces. The following code shows
how to bind a connector to an interface:
Connector<Interface>* connector = Factory<Interface>::bind();

A configuration tool is used to automatically generate the architecture meta-model by building a
dependency graph from both the component definitions, in IDL-3, and the connectors, defined in the
system implementation language, i.e. C++. A configuration tool produces a typed, directed
configuration graph of the system with interfaces as vertices and connectors as edges as an XML

configuration descriptor. The programmer can bind the interfaces to actual component instances by
editing the interface labels in the XML configuration descriptor to point to actual components. Once
component instances have been specified for all the interfaces in the configuration graph and
adaptation contracts have been attached to the architecture, the software architecture can be instantiated
by the configuration tool.

4 Future Applications – The 3-in-1 Phone

The 3-in-1 phone is an adaptable application that is based on a usage scenario for the Bluetooth
intercom and cordless telephony profiles [Blu99, Blu99a]. The 3-in-1 phone dynamically adapts its
software to function as three different types of phone. Within range of a Bluetooth access point (BAP),
the phone functions as a cordless phone that incurs a fixed line charge. When the user leaves the range
of the BAP, the phone dynamically reconfigures itself to function as a cellular phone incurring cellular
charges. Finally, when the phone comes within range of another Bluetooth phone it functions as a
"walkie-talkie" incurring no telephony charges.
The 3-in-1 phone can be modelled as a K-Component software architecture containing three
components – the handset, the voice/multimedia component that delivers the appropriate quality of
service (depending on the bit-rate of the network connection) and the network component (Bluetooth or
GPRS), see Fig. 4. An adaptation contract statement specifies when to reconfigure the architecture:

if (BAP_Not_Available) change_configuration(“GPRS Config”);
The dynamic reconfiguration of the 3-in-1 phone architecture, see Fig. 5, is triggered by an adaptation
event BAP_Not_Available. Reconfiguration involves replacing the Bluetooth N/W component and
its voice/multimedia playback component with GPRS equivalent components. The reconfiguration
protocol handles the state transfer and component loading/unloading, linking and unlinking.

3-in-1 Telephone
Handset

Receiver
Voice/Multimedia

Playback
N/W Protocol

Base-Level

Meta-Level

Adaptation
Contract

Adaptation
Events

Pluggable ComponentsReconfigurable Connector

Configuration
Manager

Architecture
Meta-Model

Fig. 4. 3-in-1 Phone Application as a K-Component Application

3-in-1 Telephone
Handset

Reconfigurable Connector

Voice/Multimedia
Playback

Bluetooth N/W
Component

Receiver

GPRS Voice
Playback

GPRS N/W
Component

BAP_Not_Available
Adaptation Event

State TransferState Transfer

Old Configuration New Configuration

 Fig. 5. Dynamic Reconfiguration of the 3-in-1 Phone Application from a Bluetooth Profile to a GPRS Profile

Conclusions

Software architecture concepts , such as inter-object dependencies, have always been present in object-
oriented software, but their importance has increased with the advent of dynamically evolvable
software. In this paper, we have presented the K-Component model as a framework for explicitly
reifying the software architecture in object-based component systems as an architecture meta-model.
We provide support for safely reconfiguring the architecture using reflective programs , called
adaptation contracts, that perform conditional graph transformations on the architecture. We also
provide the adaptation contract description language for a clean separation of adaptation-specific code
from functional code. The K-Component model can be used to build adaptive applications.

Bibliography

[Allen98] Robert J. Allen, Remi Douence, and David Garlan, “Specifying and Analyzing Dynamic Software
Architectures”, Conference on Fundamental Approaches to Software Engineering, March 1998.

[Blair01] Gordon Blair et Al., “The Design and Implementation of Open ORB v2”, DS Online Vol. 2, No. 6 2001.
[Blu99] Bluetooth Consortium, K4: Intercom Profile, Bluetooth Specification Version 1.0, 1999.
[Blu99a] Bluetooth Consortium, K3: Cordless Telephony Profile, Bluetooth Specification Version 1.0, 1999.
[Caz00] Walter Cazzola, Andrea Savigni, Andrea Sosio, and Francesco Tisato, “Explicit Architecture and

Architectural Reflection”. In Proceedings of the 2nd International Workshop on Engineering Distributed
Objects (EDO 2000), LNCS. Springer-Verlag.

[CCM99] OMG, The CORBA Component Model, orbos/99-07-01.
[Cuesta01] Carlos E. Cuesta, Pablo de la Fuenta and Manuel Barrio Solrazano, “Dynamic Coordination

Architecture through the use of Reflection”, Coordination Models, Languages and Applications Special
Track of ACM SAC, 2001.

[Darwin95] J. Magee, N. Dulay, S. Eisenbach and J. Kramer, “Specifying Distributed Software Architectures”, In
Proceedings of 5th European Software Engineering Conference, Sept. 1995.

[DC01] Jim Dowling and Vinny Cahill, “The K-Component Architecture Meta-Model for Self-Adaptive
Software”, Reflection 2001 The Third International Conference on Metalevel Architectures and Separation
of Crosscutting Concerns, Kyoto, Japan September 25-28, 2001.

[DC00] Jim Dowling and Vinny Cahill, “Building a Dynamically Reconfigurable minimumCORBA Platform
with Components, Connectors and Language-Level Support”, In IFIP/ACM Middleware'2000 Workshop on
Reflective Middleware, New York, USA, April 2000.

[KM98] Jeff Kramer and Jeff Magee, “Analysing Dynamic Change in Distributed Software Architectures”, IEEE
Proceedings – Software, 145(5):146-154, October 1998.

[Kon01] Fabio Kon, Tomonori Yamane, Christopher K. Hess, Roy H. Campbell and M. Dennis Mickunas,
“Dynamic Resource Management and Automatic Configuration of Distributed Component Systems”,
USENIX COOTS'2001.

[OGT99] Peyman Oreizy , Michael M. Gorlick, Richard N. Taylor, Gregory Johnson, Nenad Medvidovic, Alex
Quilici, David S. Rosenblum, and Alexander L. Wolf, “An Architecture-Based Approach to Self-Adaptive
Software”, IEEE Intelligent Systems, May/June 1999.

[Pui98] Salber, D., Abowd, G. "The Design and Use of a Generic Context Server ," Technical Report GIT-GVU-
98-32, Georgia Institute of Technology, 1998.

[Rapide95] David C. Luckham and James Vera, “An Event-Based Architecture Definition Language”, IEEE
Transactions on Software Engineering, Vol 21, No 9, pp.717-734. Sep. 1995.

[SG96] M. Shaw and D. Garlan, Software Architecture: Perspecitves on an Emerging Discipline. Prentice Hall,
Englewood Cliffs, NJ, 1996.

[Werm00] Michel Wermelinger, Specification of Software Architecture Reconfiguration, PhD Thesis Universidade
Nove de Lisboa, 2000.

