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Abstract. There are known classes of software systems that can benefit from dynamic software 
evolution, including 24x7 systems that require on-line upgrades and adaptive systems that need to 
adapt to frequent changes in their execution environment. This paper investigates the use of 
dynamic software architectures and architectural reflection in building adaptive systems. We 
introduce the K-Component model and its architecture meta-model for building a dynamic 
software architecture. We address the issues of the integrity and safety of dynamic software 
evolution by modelling dynamic reconfiguration as graph transformations on a software 
architecture, and cleanly separate adaptation-specific code from functional code by encapsulating it 
in reflective programs called adaptation contracts. The paper also introduces the prototype 
implementation of our K-Component model. 

1 Introduction 

Computer systems that support dynamic software evolution have the ability to change their 
implementation at runtime allowing them to extend, customise or upgrade the services that they 
provide without the need for system recompilation or reboot. Designers have traditionally sought 
alternatives to runtime change, usually because it is avoidable. Several techniques have been devised to 
circumvent the need for it, including regularly scheduled downtimes, redundancy, and manual 
overrides. There are, however, certain classes of systems that benefit from dynamic adaptability. These 
include 24x7 systems, such as telecommunication switches where shutting down and rebuilding the 
system for upgrades may result in unacceptable delays and increased cost, and adaptive systems that 
adapt their provided functionality in response to the frequent changes in their usage context [Pui98]. 
Mobile systems, in particular, benefit from dynamic adaptability. Dynamic software evolution allows a 
mobile system to adapt its provided functionality in response to the often frequent changes in the 
device’s context. There has already been much research into building middleware that supports 
dynamic software evolution [Blair01, Kon01, DC00].  

Dynamic software architectures can be used to build dynamically evolvable software systems by 
supporting the self-management and reconfiguration of the system’s architecture at run-time [Allen98]. 
Current approaches to specifying dynamic software architectures use an Architecture Description 
Language (ADL) [SG96] in conjunction with an Architecture Modification Language [Darwin95, 
Rapide95, Werm00] or a Co-ordination Language [Cuesta01]. Our approach to building a dynamic 
software architecture is to use architectural reflection [Caz00]. A system that supports architectural 
reflection reifies its software architecture, e.g. its configuration graph of components and connectors, as 
an architecture meta-model [DC01] that can be inspected and modified at run-time. Modifications of 
the architecture meta-model result in modifications of the software architecture itself, and the 
architecture is therefore reflective. We also provide a separate adaptation contract description 
language for writing reflective programs called adaptation contracts that allow programmers to specify 
how and when to reconfigure the software architecture at runtime. The reconfiguration operations over 
the architecture are implemented as graph transformations, guaranteeing the safety and integrity of the 
architecture both during and after reconfiguration. In our current implementation, the reconfiguration 
operations allow for the replacement of components and connector strategies, but maintain a static 
configuration graph of the software architecture. 



2 Architecture Meta-Model and Architectural Reflection 

We define architectural reflection as being concerned with the observation and manipulation of the 
configuration graph of a software architecture and its constituent vertices and edges at runtime. In this 
context, behavioural reflection supports dynamic software evolution by providing the ability to rewrite 
a software architecture’s configuration graph of components and connectors at runtime. Structural 
reflection [Blair01] for a software architecture is concerned with introspecting the architecture’s 
configuration graph and constituent components, connectors and interfaces. 

2.1 Architecture Meta-Model’s Configuration Graph  

We reify a software architecture configuration as a typed, connected graph, see Fig. 1, where the 
vertices are interfaces, labelled with components implementations, and the edges are connectors, 
labelled with connector properties. A vertex is modelled as an interface and implementation 
(component) pair, (i,c). An edge is modelled as a triple i ->l j, which contains the source and target 

vertices identifiers i and j, and the edge label l. The edge label represents reconfigurable properties of 
the connector such as the ability to change its communication protocol or set of installed interceptors. 
The root vertex of a configuration graph is a special type of vertex, the entry point in the program. It is 
normally the main() of a C++/Java implementation. Cycles are allowed in the graph and are modelled 
with cyclic connectors. A meta-level component, called the configuration manager [KM98, Werm00] 
(see Fig. 3), is responsible for the storage and management of the software architecture’s configuration 
graph. 
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Fig. 1. Typed Directed Configuration Graph 

2.2 Dynamic Reconfiguration as Configuration Graph Transformation 

As mentioned previously, we model dynamic reconfiguration as conditional graph transformations, 
specified in reflective programs called adaptation contracts . A graph transformation is a rule-based 
manipulation of the configuration graph, see Fig. 2. Rules define how and when a graph is transformed. 
The interfaces and connectors that represent the vertices and edges in our graph describe the part of the 
system that is preserved during a graph transformation. The components and connector properties that 
represent the labels of the vertices and edges in our graph respectively describe the part of the graph 
that is rewritten during a graph transformation. Therefore, our model of dynamic reconfiguration is 
constrained to replacing the components in a system’s configuration graph and changing the connector 
strategies. The alternative of allowing new services to be introduced to a system at runtime leaves open 
the problem of how existing components in the system and existing clients of the system become aware 
of and access these new service interfaces at runtime. For self-adaptive software, we do not see our 
model of dynamic reconfiguration as being overly restrictive. In fact, it can help programmers by 
constraining the system’s possible dynamic reconfigurations to meaningful ones.  
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Fig. 2. Dynamic Reconfiguration of a Software Architecture as a Graph Transformation 

Since graph transformations ensure that the result of a rule is again a graph, we can guarantee the 
integrity and consistency of the system if the graph rules are transactional operations over the graph. 
In practice, however, graph transformations may affect only part of the configuration graph and rather 
than locking the whole graph a reconfiguration protocol [KM98] can be used to ensure that only those 
vertices that are affected by the transformation must be in a safe state [Werm00]. Our reconfiguration 
protocol helps reduce the length of the reconfiguration phase and allows concurrent client invocation 
during the reconfiguration phase on components that are not “frozen”. Computation and adaptation 
code are related through the reconfiguration protocol as it freezes computation in components involved 
in a reconfiguration [Werm00]. Component state can only be changed by computation, not by 
reconfiguration operations.  

Our reconfiguration protocol is the following: 
1. Reconfiguration operation invoked to transform the configuration graph.  
2. Identify the new target configuration and sends a “freeze” message to only those components and 

connectors in the original configuration that will be updated in the target configuration. 
3. Perform the transformation of the configuration graph, i.e. unlink, create, transfer state, remove and 

link the new components and/or change connector strategy. 
4. Resume processing in “frozen” connectors. 

We assume that a reconfiguration operation finishes in finite time and its initiator, the component 
manager, knows when it ends. One of the other advantages of reconfiguration protocols is the 
maintenance of system state integrity by transferring component state from the old component to the 
new one. The successful transfer of component state requires that component developers implement a 
copy constructor interface for their component. A configuration manager is responsible for the 
implementation of the reconfiguration operations and the correct operation of the reconfiguration 
protocol. 

2.3 Adaptation Contracts  

To obtain a clean separation of concerns between the adaptation-specific code and the functional 
code, a separate language is used to specify the adaptation logic as adaptation contracts . An adaptation 
contract contains a series of conditional rules for the transformation of the software architecture’s 
configuration graph. Adaptation contracts are used to specify a system’s architectural constraints  
[Blair01], describing how and when to safely reconfigure the software architecture. Since architectural 
constraints represent properties of or assertions about configurations, components or connectors, our 
adaptation contracts require a mechanism for accessing these properties and assertions. We provide 
adaptation events as a mechanism for allowing adaptation contracts to poll architectural constraint 
information from meta-level configurations and base-level components and connectors. Adaptation 
events also have the advantage of decoupling the meta-level adaptation contract from the base-level 
components and connectors. In effect, they provide a run-time separation of concerns between the 
adaptation code and the functional code. This allows for adaptation contracts to be dynamically loaded 
and unloaded, since the base-level code cannot have any direct dependencies on them. 

Adaptation contracts are specified in the Adaptation Contract Description Language (ACDL). They 
consist of a series of conditional statements, testing for the occurrence of adaptation events, and 
associating reconfiguration operations with adaptation events. A configuration tool takes adaptation 
contracts  specified in the ACDL, the software architecture specification and produces an 
implementation in a concrete language, i.e. C++ in our prototype. It produces an executable 
implementation of the software architecture, and its architecture meta-model, by creating specialis ed 



and concrete implementations of the abstract and templated classes in the K-Component framework 
and binding them to the software architecture. Adaptation contracts are represented at runtime by meta-
level objects and are deployed in and managed by a configuration manager, see Fig. 3. 

3 The K-Component Model 

The K-Component architecture meta-model provides a configuration manager that stores the 
architecture meta-model and implements the reconfiguration (graph rewrite) operations over the 
architecture. The configuration manager is also a run-time container for the deployment, scheduling 
and execution of adaptation contracts and can optionally provide a procedural interface for the 
loading/unloading of adaptation contracts at runtime. It is implemented as an active object. 
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Fig. 3. Configuration Manager as a Meta-Level Adaptation Managersx 

3.1 Components and Connectors 

Interface Definition Language-3 (IDL-3) [CCM99] is used to define components and interfaces in the 
software architecture because it provides support for explicit dependency management through 
provides and uses interfaces. These explicit dependencies are used to help generate the 
configuration graph of components and connectors. IDL-3 emits and consumes events [CCM99] 
are used to specify adaptation events. Connectors are implemented as typed objects relating 
provides and uses interfaces, i.e. ports, on components . Connectors are automatically generated 
from IDL-3 component definitions by specialising and templating abstract connectors in the K-
Component framework. Connectors provide a reconfiguration interface, with operations such as 
link_component and unlink_component, and the configuration manager uses this interface to 
implement its graph rewrite operations. 

3.2 Specifying the Software Architecture and Generating the Architecture Meta-Model 

In our prototype implementation of K-Components, C++ is used instead of an ADL to specify the 
software architecture. This has the benefit of allowing the programmer to specify an application’s 
architecture without having to learn a new language. Several abstractions and programming idioms , 
however, are required to represent concepts commonly found in an ADL specification, such as 
interfaces, connectors and binding operations. In our C++ prototype implementation for example, 
(component) services can only be accessed via connectors  and interfaces. The following code shows 
how to bind a connector to an interface: 
Connector<Interface>* connector = Factory<Interface>::bind(); 

A configuration tool is used to automatically generate the architecture meta-model by building a 
dependency graph from both the component definitions, in IDL-3, and the connectors, defined in the 
system implementation language, i.e. C++. A configuration tool produces a typed, directed 
configuration graph of the system with interfaces as vertices and connectors as edges as an XML 



configuration descriptor. The programmer can bind the interfaces to actual component instances by 
editing the interface labels in the XML configuration descriptor to point to actual components. Once 
component instances have been specified for all the interfaces in the configuration graph and 
adaptation contracts have been attached to the architecture, the software architecture can be instantiated 
by the configuration tool. 

4 Future Applications – The 3-in-1 Phone 

The 3-in-1 phone is  an adaptable application that is based on a usage scenario for the Bluetooth 
intercom and cordless telephony profiles [Blu99, Blu99a]. The 3-in-1 phone dynamically adapts its 
software to function as three different types of phone. Within range of a Bluetooth access point (BAP), 
the phone functions as a cordless phone that incurs a fixed line charge. When the user leaves the range 
of the BAP, the phone dynamically reconfigures itself to function as a cellular phone incurring cellular 
charges. Finally, when the phone comes within range of another Bluetooth phone it functions as a 
"walkie-talkie" incurring no telephony charges.  
The 3-in-1 phone can be modelled as a K-Component software architecture containing three 
components – the handset, the voice/multimedia component that delivers the appropriate quality of 
service (depending on the bit-rate of the network connection) and the network component (Bluetooth or 
GPRS), see Fig. 4. An adaptation contract statement specifies when to reconfigure the architecture: 

if (BAP_Not_Available) change_configuration(“GPRS Config”); 
The dynamic reconfiguration of the 3-in-1 phone architecture, see Fig. 5, is triggered by an adaptation 
event BAP_Not_Available. Reconfiguration involves replacing the Bluetooth N/W component and 
its voice/multimedia playback component with GPRS equivalent components. The reconfiguration 
protocol handles the state transfer and component loading/unloading, linking and unlinking. 
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Conclusions 

Software architecture concepts , such as inter-object dependencies, have always been present in object-
oriented software, but their importance has increased with the advent of dynamically evolvable 
software. In this paper, we have presented the K-Component model as a framework for explicitly 
reifying the software architecture in object-based component systems as an architecture meta-model. 
We provide support  for safely reconfiguring the architecture using reflective programs , called 
adaptation contracts, that perform conditional graph transformations on the architecture. We also 
provide the adaptation contract description language for a clean separation of adaptation-specific code 
from functional code. The K-Component model can be used to build adaptive applications.  
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