
Kaffemik: Supporting a distributed JVM on a
single address space architecture

Johan Andersson*, Stefan Weber*, Emmanuel Cecchet†, Christian Jensen*

*Distributed Systems Group
Trinity College Dublin
Dublin, Ireland

Johan.Andersson@cs.tcd.ie
Stefan.Weber@cs.tcd.ie
Christian.Jensen@cs.tcd.ie

 †SIRAC
 INRIA Rhône-Alpes
 Grenoble, France

 Emmanuel.Cecchet@inrialpes.fr

Abstract

Java is increasingly used to develop large server applications. In order to
provide powerful platforms for such applications a number of projects have
proposed Java Virtual Machines (JVMs) that are based on network of
workstations. These JVMs employ the message-passing paradigm, i.e. all
communication between the distributed instances of the virtual machine take
place using remote method invocation (RMI) or socket stream
communication.

The JVM of Kaffemik is based on multiple instances of a JVM that
communicate using the shared memory paradigm. All objects that are created
by virtual machines are held in a shared heap that is supported by an
underlying shared memory system. By exploiting the single address space
abstraction it is possible to avoid overheads that are inherent to message
passing.

This paper presents our first experiences with a preliminary implementation
of Kaffemik. It gives a detailed discussion of the design and implementation
decisions and shows a number of performance measurements that
demonstrate the advantage of our shared-memory approach.

1 Introduction

Java is rapidly becoming the object-oriented language of choice in both academia and
industry. Moreover, Java is no longer confined to embedded systems and client-side
computing (applets), but is increasingly used in server applications, e.g., the World Wide
Web Consortiums (W3C) latest web-server, Jigsaw [4], is entirely implemented in Java.

Cheap and scalable computer architectures are increasingly developed using a network of
inexpensive workstations [5]. The Java execution model facilitates collaboration among
virtual machines executing on this type of cluster through both function shipping (remote
method invocations) and data shipping (object mobility). However, these mechanisms are
made explicit in the programming model, which complicates the development of server
applications on collaborating virtual machines.

A standard implementation of an application server for Java on a cluster of common off the
shelf (COTS) machines requires the application to be partitioned among the nodes in the
cluster. Objects are made available in the memory of one node in the cluster and can be
accessed through remote invocations, e.g. Sun’s RMI [6]. Thus, in order to access an object
on a remote node, the system has to translate single address space Java references into the
multiple address spaces used on the different nodes in the system, this translation is known
as swizzling [7]. Furthermore, objects passed as parameters generally have to be converted
to an exportable format or serialized before they are transferred to the other node.
Serialization is performed automatically by RMI.

Single address space architectures (SASA) [8,9,10, 11] provide the abstraction of a single
shared virtual memory, i.e., an object is available on the same virtual address on all nodes
in the system. This has the advantage that virtual addresses can be used as a system wide
unique object identifiers.

Kaffemik is a scalable distributed JVM implemented on SciOS/SciFS [12], a single address
space architecture developed for SCI networks at INRIA Rhône-Alpes. The SCI network is a
standard interconnect based on the Scalable Coherent Interface [3]. The single address space
allows Kaffemik to offer the abstraction of a single shared object space across all nodes in the
system. Among the advantages of a single shared object space are: it simplifies the
development of multithreaded applications by eliminating the need for separate
communication libraries (RMI, CORBA, etc.), it eliminates the overheads of swizzling and
serialization because objects can be accessed directly in the main memory of a remote node
and it allows programmers to cache objects in the memory of idle nodes. Also, caching is
practical because access to objects in remote memory is faster than loading an object from
local disk [5]. Caching objects in the memory of remote nodes means that the size of the
application’s working set can be as large as the sum of the physical memory of all the nodes
in the system.

Kaffemik supports automatic and transparent distribution of objects; objects automatically
migrate to the node where they are used. The location of execution is not transparent, i.e.,
the programmer has to specify the executing node when a thread is created, which gives
some indirect control over where objects are located. When a thread invokes a method on
an object located in remote memory, SciOS/SciFS migrates the page containing the object
into local memory. This involves swapping memory pages if no local pages are free.
Objects in remote memory are referenced with local object references and local object
references can be passed as parameters in method invocations. Thus, neither swizzling nor
serialization is required.

We have compared the performance of method invocations on remote objects in our single
address space architecture with remote method invocations among collaborative virtual
machines. RMI is used to swizzle and serialize among the different address spaces. This
evaluation shows that remote method invocations are at least an order of a magnitude faster
using Kaffemik, than it is amongst two virtual machines using standard RMI.

The rest of this paper is organized in the following way. Section 2 gives an overview of the
Kaffemik architecture. Section 3 describes the implementation of the current Kaffemik
prototype. In section 4, we present an evaluation that compares method invocations across
multiple address spaces, realized using RMI, with Kaffemik. We present a comparison of
our approach with related work in Section 5. Finally, our conclusions and directions for
further work are presented in Section 6.

2 Design of Kaffemik

The design of Kaffemik has simplicity as its first priority. This simplicity finds its
expression in two characteristics of Kaffemik. The first characteristic is Kaffemik’s support
of Java’s standard API. This makes it possible to execute applications that have been
developed on stand-alone JDKs on the distributed JVM. The second characteristic is
Kaffemik’s simple design of a heap that is shared by all nodes of a cluster. The heap and
subsequently all objects that are created in the heap are accessible by all nodes.

Java defines the behaviour of memory accesses, synchronization and threads. Their
definition is documented in the language specification [13], the virtual machine
specification and the API. Kaffemik extends this definition by a set of method calls. These
method calls expose distribution characteristics to the developer, primarily in the Thread
class. However, all APIs that are defined by Java are supported in order to comply with the
Java API definition and be able to run standard Java applications.

Kaffemik is designed as a set of collaborative JVMs, which offer a single object space
abstraction to the application. The design of the collaborative JVM is based on the freely
available Kaffe Virtual Machine. The virtual machine (VM))is extended into a distributed
JVM running on top of a single address space architecture. In principal, the architecture of
Kaffemik consists of two parts - a distributed shared memory infrastructure and a
distributed Kaffe Virtual Machine, see figure 1.

J a va a p p lic a t io n

S in g le
O b je c t
S p a c e

J V M J V M J V M

L in u x L in u x L in u x

S C I

J a va th re a d

K a f fe m ik

S c iO S /F S
S in g le a d d re s s

s p a ce
a rc h ite c tu re

In te rn a l V M s tru c tu re

P a g e w ith J a va o b je c ts

Figure 1. The architecture of Kaffemik

Kaffemik relies on a single address space architecture to provide for the single object space.
The single object space forms a monolithic heap over all nodes in the cluster. Kaffemik
allocates the monolithic heap from the single address space. All objects created by the Java
application will be allocated from the monolithic heap. Because of the single address space
architecture, every object is available at the same virtual address on all nodes in the system.
Both the VM and Java applications allocate objects from the monolithic heap. Internal VM
structures, e.g. internal hash tables, are also shared between the nodes as shown in figure 1,
but these structures are allocated directly from the single address space.

We have also redesigned the thread model. Kaffemik’s thread model allows the application
programmer to start threads at specific nodes within the cluster. Wait and notify are
enhanced to support inter-node thread synchronization.

3 Kaffemik implementation

The implementation of Kaffemik is based on two components: Kaffe and SciOS/SciFS.
Kaffe [14] is an open-source, clean room implementation of Sun's Java environment. The
sources of Kaffe are released under the Gnu Public License (GPL). The virtual machine of
Kaffe is used as a basis for the implementation of Kaffemik’s distributed virtual machine.
SciOS/SciFS is an open-source shared memory abstraction developed by INRIA Rhône-
Alpes. The following two subsections describe Kaffe and SciOS/SciFS respectively. The
concluding subsection will detail our implementation of Kaffemik based on the two
packages.

3.1 Kaffe

The Kaffe Virtual Machine environment consists of a virtual machine (VM), a compiler
and a set of supporting class packages. The overall structure of the virtual machine is
depicted in figure 2. The VM consists of three levels of components. The base level
contains components for memory management, synchronization management, thread
management and a subsystem for calls to native code. The second level comprises of an
execution engine. The top level holds a code verifier and a component for class
management.

Code verifier Class management

System call
subsystem

Thread
subsystem

Heap
management

Synchronization
subsystem

Execution engine

Figure 2: Components of the virtual machine

The components of the virtual machine are loosely coupled with each other. Each
component has a well-specified interface. An implementation of a component of the base
level maps the functionality that is promised by the interface to the underlying system,
which can be of type library, operating system, or another component. This modular

approach allows the exchange of one implementation of a component for another. The
flexibility facilitated by the approach is harnessed to provide implementations for different
hardware platforms and operating systems. The existing implementation of Kaffe provides
a variety of implementations of thread and synchronization components. These
implementations map the system to platforms such as Win32, BeOS, Unix-PThreads and
Unix System V.

The components of the base level are important for the distribution of the functionality of
the virtual machine. The heap management defines functionality for the allocation and
release of objects. The thread management allows the creation, administration and
termination of threads of execution. The synchronization subsystem implements methods
for concurrency control. The native subsystem provides an interface to system calls of the
underlying platform.

The memory management component implements heap management and a garbage
collector. The heap management is responsible for the allocation of memory resources in
order to store objects. All objects that are loaded into the virtual machine and most of the
administrative structures of the virtual machine are located in the heap.

The heap is organized in pages. The size of these pages generally matches the size of pages
of the underlying (operating) system. The heap management keeps a record with
information about the contents and state of each page. These records are kept partly in an
array allocated in the data segment of the virtual machine and partly at the beginning of the
individual memory pages. The information describes the size and the number of objects
stored in a memory page. Each page can contain only objects of the same size. An
additional list is kept that holds links to pages that hold objects of the same size, but not are
entirely filled. When an object is created, the heap management tries to allocate memory
from these partially filled pages. If the object does not fit in any of these pages, a free page
is allocated from the heap. If no more pages are available on the heap, the garbage collector
is invoked.

The garbage collector of the virtual machine is a non-incremental, non-generational,
conservative mark-and-sweep collector with a Boehm-like allocator. If an allocation fails,
i.e., there are no free pages left, the garbage collector is invoked. The garbage collector uses
heuristics to determine if it is cheaper to run a garbage collection or to allocate more
memory for the heap. If the heap has already the maximal defined size a garbage collection
is performed, otherwise more memory for the heap is allocated.

The thread and synchronization management components are based on the underlying
platform. The execution engine implements a thin layer that provides platform independent
thread and synchronization primitives. This layer interfaces with the underlying platform
dependent components. Kaffe provides a set of components for different platform including
Unix-PThreads, Linux-Threads, Win32, BeOS-Native and Unix-JThreads.

3.2 SciOS/SciFS

The SciOS/SciFS1 prototype implements a distributed shared memory system on a SCI
cluster of Intel PCs with Linux 2.0 or 2.2 kernels and Dolphin's 32-bit (D310) or 64-bit
(D321) PCI-SCI adapters [15]. SciOS and SciFS are both implemented as kernel modules.
Figure 3 shows the SciOS/SciFS architecture and how it interfaces with Kaffemik.

1 The SciOS/SciFS prototype sources and documentation
 are freely available for download from http://sci-serv.inrialpes.fr.

Linux VFS

SCI driver

Kaffemik

Dolphin PCI-SCI adapter

Linux
kernel
space

User
space

Linux
kernel
space

Linux
kernel
space

Socket Interface

Application Application

SciSocketSciOS
modules

SciOS

SciFS

Linux
kernel
space

Figure 3: SciOS/SciFS architecture

SciFS implements the actual DSM, providing memory management and coherency
protocols. SciFS relies on a lower layer, SciOS, which is also developed at INRIA Rhône-
Alpes. The SciOS layer is based on Dolphin's PCI-SCI adapters [15] and offers basic
services for SCI clusters, such as messages, remote procedure calls and physical memory
management.

SciFS is implemented as a Linux distributed file system and interfaces to the Linux Virtual
File System (VFS) facility. Since the file system is interfaced with the file mapping
mechanism, SciFS allows for tight integration of SCI with the operating system's virtual
memory system. The main abstraction in SciFS is memory mapped files. Shared memory
segments are presented to the user as files and are accessed by using file operations such as
the open, mmap, and close system calls. A process can open a file, map it in its virtual
address space and use normal load and store instructions on the mappings thereby reading
and modifying the file's contents. Multiple processes, possibly on different nodes, that open
the same file and map it in their address space, share the data contained in the file.

3.3 Kaffemik

Enabling a distributed JVM to share data requires a number of data structures be allocated
in the single address space to allow collaboration among the participating nodes in the
cluster. In the following subsections we describe how SciOS/SciFS is incorporated with
Kaffemik, and how the Kaffe VM is extended to support sharing of data, remote thread
creation, and inter-node synchronization. At this point we have not fully incorporated the
garbage collector component in Kaffemik.

Kaffemik and SciOS/SciFS

SciFS is used to supply Kaffemik with a single address space architecture. Kaffemik uses
the SciFS file system to create, to map (i.e. share), and destroy the shared memory
segments. The single object space that comprises Kaffemik’s monolithic heap is one of the
shared memory segments allocated in the single address space. Besides the monolithic
heap, Kaffemik shares cluster meta-data and internal VM structures.

Figure 4 shows how every Kaffemik on each node maps and share all the information
contained in the SciFS DSM.

K a f f e m i k
J V M

K a f f e m i k
J V M

K a f f e m i k
J V M

.

K a f f e m i k J V M s h a r e d m e t a d a t a
(T h r e a d s , m e m o r y m a n a g e m e n t , . . .)

O b j e c t s

C l a s s

M e t h o d s F i e l d s

N o d e 0 N o d e 1 N o d e n

D i s t r i b u t e d
S h a r e d

M e m o r y
a d d r e s s

s p a c e

U s e r
p r o c e s s
a d r e s s
s p a c e

Figure 4: Kaffemik’s mapping of DSM space

To ensure data coherency, Kaffemik uses the locking mechanisms provided by SciFS.
When a JVM needs to access data, it performs a regular memory reference and lets the
DSM migrate, replicate or access remotely the information in the right physical memory.
The data distribution and placement is transparent to Kaffemik.

Cluster meta-data

Meta-data describing the nodes in the cluster must be shared. This meta-data contains
information about how many nodes there are in the cluster and the node id for each node.
Since SciOS/SciFS abstracts shared memory segments as files, information about the file
descriptors and the offsets into the processes’ virtual address space where the files must be
mapped, have to be shared amongst the distributed JVMs.

Heap component

To support a distributed JVM with a monolithic heap requires sharing of the virtual
machine’s heap component structures. Kaffemik’s heap management component currently
maintains the same structures as Kaffe does. The meta-data Kaffe uses to describe the heap,
and the freelists used to manage partially allocated pages, are shared in separate memory

segments. These segments are not allocated from the monolithic heap. Sharing the meta-
data and the freelists enables all Kaffemik instances in the cluster to allocate objects from
the monolithic heap.

Internal VM structures

Kaffe allocates a number of internal structures, such as hash tables for UTF-8 constants and
strings to support management of classes loaded by the VM.

Kaffe allocates two hash tables to manage references to String constants and UTF-8
constants. These hash tables, like the UTF-8 and String objects are allocated on the heap.
References to the objects are then inserted into the hash tables. Kaffemik separates the hash
tables for the strings and UTF-8 constants from the heap and shares them in separate
memory segments. This is necessary, because otherwise they are not guaranteed to be
allocated at the same addresses when a new Kaffemik is started in the cluster, and also
because Kaffe uses UTF-8 constants to lookup references to classes and methods. Even
though these hash tables are allocated in separate memory segments, the UTF8 and string
objects are still allocated on the monolithic heap with the references inserted into the shared
structures.

Kaffe’s internal types (e.g. char, int, and float) are also allocated on the heap. Kaffemik
shares the internal types in a separate memory segments.

A class pool manages references to classes that have been loaded by Kaffe. This class pool
is represented as a hash table, but it is allocated outside the heap. Kaffe allocates classes on
the heap, and puts the references in the class pool. Kaffemik allocates the class pool in a
shared segment, and maintains the references to loaded classes exactly as Kaffe.

Remote threads

Kaffemik supports thread creation on remote nodes. A Java application can spawn off
threads on a remote Kaffemik instance, and then the remote Kaffemik instance will start the
thread. To support remote thread creation, Kaffemik extends the Java API with a
ThreadQueue thread. During the initialization of the VM, each Kaffemik instance starts a
ThreadQueue thread. This thread is added to a globally shared thread queue array, which
contains one ThreadQueue thread for each instance of Kaffemik in the cluster. When the
ThreadQueue thread is started, it waits for threads to be added to its local queue. As soon as
a thread is added to the local queue, the ThreadQueue removes the thread from the queue
and invokes the thread’s start() method.

To support the application programmer with the mechanism of starting threads at remote
nodes Kaffemik extends the Thread class with a new method called
Thread.startAt(nodeid). The application programmer starts a thread on a remote
node by calling startAt with the node id for the node on which the thread is going to be
started. This adds the thread to the ThreadQueue on the corresponding Kaffemik instance.

Wait and notify

Kaffemik provides a wait and notify mechanism between threads running at different
nodes. When one node’s thread releases a lock, it notifies a waiting thread, possibly waiting
at another node. To avoid the problem of resuming this thread at the same node from which

the notify originates, due to Kaffe’s thread model [14], we create a remote thread space
shared amongst all nodes in the cluster. The remote thread space is an array with entries for
every node in the cluster. Kaffe’s original threads are extended with a node id, which is set
to the id of the node where the thread starts. When the thread holding the lock is about to
resume the next thread waiting for the lock, it inspects the node id of the thread and if this
thread originates at another node, the thread is put in the corresponding entry of the remote
thread space. The node waiting for the lock polls its entry in the remote thread space and
resumes the thread polled from the remote thread space.

4 Kaffemik evaluation

This evaluation uses Intel P-III 800MHz PCs equipped with 256MB of RAM, Linux 2.2.14,
interconnected with 64-bit PCI-SCI adapters (D321). The PCI-SCI adapters are
manufactured by Dolphin Interconnect Solutions [14].

The evaluation measures the costs associated when a JVM has to cross multiple address
spaces in order to access and modify data, and compare this with a single address space
approach. The multiple address space approach is realised using Kaffe v1.0.6 with RMI and
the single address space approach is realised using Kaffemik.

4.1 Multiple address spaces vs. Single address space Experiment

A matrix is used to measure the costs of crossing address space boundaries. The size of the
matrix is 320x320. It is filled with 32-bit integers and occupies exactly 100 pages of
memory as Intel based Kaffemik uses a page size of 4096 bytes. A matrix of this size can
for example represent a database object in an object-oriented database, a CAD drawing or a
web page with graphics in a web server application. These scenarios correspond to the
areas where Kaffemik can be applied.

Kaffe with RMI (local)

The matrix is created on the client and passed as an argument in a remote method
invocation to the server. At the server side the matrix is modified. Modifying the matrix is
analogous to updating the data of a database object or assembling a web page. When the
server is finished with the modification it sends the matrix back to the client. The test
measures the time it takes to modify the matrix. Table 1 shows the result of this test.

Touch
(rows, columns)

% of
matrix

Processing time
(µs)

(0,0) 0 4
(80,320) 25 112
(160,320) 50 430
(240,320) 75 1046
(320,320) 100 1934

Table 1: Kaffe with RMI

The touch column indicates how many rows/columns of the matrix are modified. It can be
thought of as the time it takes to update a certain percentage of for example a database
object. The processing time is the time Kaffe spent on modifying the matrix. Both the

server and the client run locally, because we do not have a RMI implementation for SCI.
This avoids penalising Kaffe RMI with the overheads of a slower local area network.

Kaffemik (two nodes)

In this case a client thread running at one of the two nodes creates the matrix. The matrix is
the passed to a server thread running at the other node using a shared buffer. The server
modifies the matrix, and puts it back into the buffer, and notifies the client thread, which
then gains control over the matrix. The processing time is the time it takes for the server to
modify the matrix. Table 2 shows the results from running Kaffemik on two nodes.

Touch
(rows, columns)

% of
matrix

Processing time
(µs)

(0,0) 0 6175
(80,320) 25 30270
(160,320) 50 53800
(240,320) 75 79100
(320,320) 100 102195

Table 2: Kaffemik (two nodes)

The processing time is considerably higher compared to Kaffe RMI. This is because of the
overhead induced by page migration between the nodes. When optimised, SciOS/SciFS
should be able to migrate one page in 125µs [12]. However, we currently use SciOS/SciFS
with strict consistency, and with a number of flags activated for debugging information,
timers, and internal sanity checks within SciOS/SciFS, which all slow down page
migration. Moving to lazy release consistency, optimising the internal structures and
deactivating the flags should lower processing time, but this assumption has not been
tested.

Total execution time

A separate measurement looks at the total time taken from the point where the client
initiates the request until it regains control over the matrix. In the RMI case, this time is
measured from the point where the client invokes a remote method on the server passing
the matrix as an argument. In Kaffemik, this time is measured from the point when the
client puts the matrix in the shared buffer until the server notifies the client and the matrix
is removed from the buffer. The results are displayed in the table 3. Efficiency gain is the
result of dividing the total time of Kaffe with RMI with Kaffemik’s total time.

Touch
(rows, columns)

Kaffe RMI (µs)
(local)

Kaffemik (µs)
(2 nodes)

Factor

(0,0) 64252713 968181 66.31
(80,320) 64215334 968366 66.31
(160,320) 64231220 968267 66.34
(240,320) 64179276 964340 66.55
(320,320) 64162860 967653 66.31

Table 3: Total execution time

Using a single address space approach offers superior performance. Kaffemik is around 66
times faster that Kaffe with RMI. Kaffe with RMI offers very poor performance. This poor
performance is due partly on the serialisation of the matrix and partly on an inefficient
implementation of RMI2. However, Kaffemik should offer even better performance. The
main reason why better performance is not obtained with Kaffemik stems from the inter-
node wait/notify implementation. Acquire and release of locks consumes too much time.
This is major concern for us since it hampers the scalability of Kaffemik, and is subject for
redesign.

4.2 Discussion

Crossing address space boundaries is far more inefficient than using a single address space
approach. In terms of overall performance, Kaffemik offers an extensive performance gain
compared to Kaffe with RMI. However, there are problems related to SciOS/FS. The time
spent on page migration cannot be neglected. This however can be addressed by optimising
SciOS/SciFS’ page migration schema. For example, by using lazy release consistency and
optimising the size of SciOS/SciFS’ internal page tables and file tables, we expect to
achieve better performance. The main concerns derive from the implementation of the
inter-node wait and notify mechanism, which must be redesigned to achieve better
scalability.

5 Related work

Yu and Cox propose in Java/DSM [17] a virtual machine implementation on a software
DSM system. Java/DSM employs TreadMarks [18] as underlying DSM system.
TreadMarks implements a shared memory abstraction as a user level library using
System V system calls. The motivation of this project - similar to the one presented in this
paper – was to hide the distributed execution completely from the developer and exploit at
the same time the ease of use of the shared memory paradigm.

Java/DSM, in contrast to Kaffemik, assumes that communication between nodes is
expensive. This assumption leads to a design that avoids communication. Every node
employs its own garbage collector and a great number of structures are replicated on every
node of the system. This design leads to a higher consumption of resources and to a higher
complexity of the algorithms used inside the virtual machine. This can be avoided by
sharing structures of the virtual machine and exploiting an underlying shared address space
abstraction.

KaffeOS [19] by Back et al proposes an integration of operating system characteristics into
the JVM. The main characteristic that is considered in this implementation is the
abstraction of processes. Every process (or application) requires its individual address
space to provide a secure separation from other processes. In Java, the address space is
represented by the heap, in which all objects of an application are accommodated. The
virtual machine of KaffeOS maintains a kernel heap, individual heaps per process and
shared heaps for sets of processes. The kernel heap holds objects that are needed by the
virtual machine; individual heaps hold objects that are specific for an application and
shared heaps hold objects that are accessible by one or more applications.

The implementation of KaffeOS is a stand-alone implementation. Applications that are
executed as processes on the same JVM can communicate through shared heaps without the

2 We have compared Sun’s RMI with Kaffe’s RMI and Sun’s RMI is substantially faster.

need of serialization. The communication of applications on separated JVMs relies on a
message passing mechanisms such as RMI or socket communication. This communication
still requires serialization.

Sirer et al propose with Kimera [20] a distributed virtual machine. The distribution in this
project concentrates on the distribution of security services such as byte-code and
parameter verification. Services are separated into static and dynamic services. Static
services that can be performed before the execution of an application are located at a
central server. Dynamic services such as parameter verification have to be performed at
execution time and hence are located at the clients. The fixation of static services on a
central server removes a number of tasks from virtual machines on clients and makes these
lighter than common virtual machines. This approach suffers from the separation of address
spaces on the clients. Applications that run on the clients have to rely on communication
over RMI and have to serialize data that is transferred between the clients.

6 Conclusions and future work

In this paper we presented our ongoing work on a distributed Java virtual machine. The
issue that we addressed is the communication among virtual machines in a cluster. The
proposed solution evolves around a set of JVMs that share a heap. The sharing is facilitated
by a component that provides a single-address space abstraction. We evaluated our design
by comparing the costs that arise when the communication of clustered JVMs has to cross
multiple address space boundaries with the cost for communication in our single address
space approach. Our experiments showed that the exploitation of the single-address space
abstraction gives the virtual machines extensive performance advantages in comparison to
systems that rely on message passing.

References

[1] G. Antoniu, L. Bougé, P. Hatcher, M. MacBeth, K. McGuigan, and R. Namyst.

Compiling multithreaded Java bytecode for distributed execution.
In Proceeding of Euro-Par 2000: Parallel Processing, August 2000.

[2] Y. Aridor, M. Factor, and Avi Teperman.
cJVM: A single system image of a JVM on a cluster.
In Proceedings of the 1999 IEEE Internation Conference on Parallel Processing
(ICPP-99), September 1999.

[3] IEEE Std 1596-1992.
IEEE Standard for Scalable Coherent Interface (SCI)
The Institute of Electrical and Electronics Engineers, Inc., 1993.

[4] World Wide Web Consortium.
W3C's Java Server.
http://w3c.org/jigsaw , 2000.

[5] M. M. Feeley, W. E. Morgan, F. H. Pighin, A. R. Karlin, H. M. Levy, and C. A.
Thekkath.
Implementing Global Memory Management in a Workstation Cluster.
In Proceedings of the 15th ACM Symposium on Operating System Principals
(SOSP'95), December 1995.

[6] Sun Microsystems.
JavaTM Remote Method Invocation (RMI).
http://www.java.sun.com/products/jdk/rmi/ , 2000.

[7] P. R. Wilson and S. V. Kakkad.
Pointer swizzling at page fault time: Efficiently and compatibly supporting huge

addresses on standard hardware.
In 1992 International Workshop on Object Orientation in Operating Systems,
Dourdan, France, 1992. IEEE, IEEE Computer Society Press.

[8] J. Chase, H. M.Levy, E. Lazowska, and M. Baker-Harvey.
Opal: A Single Address Space System for 64-Bit Architectures.
In Proceedings of IEEE Workshop on Workstation Operating Systems,
April 1992

[9] K. Murray, T. Wilkinson, P. Osmon, A. Saulsbury,T. Stiermerling, and P. Kelly.
Angel: Resource Unification in a 64-bit Micro Kernel.
In Proceedings of th 27th Hawaii International Conference on System Science,
September 1993.

[10] G. Heiser, K. Elphinstone, S. Russell, and J. Vochteloo.
Mungi: A Distributed Single Address-Space Operating System.
In Proceedings of the 17th Australasian Computer Science Conference, January
1994.

[11] P. Déchamboux, D. Hagimont, J. Mossière, and X. Rousset de Pina.
The Arias Distributed Shared Memory: An Overview.
23rd Seminar on Current Trends in Theory and Practice of Informatics, Milovy,
Czech Republic, Nov. 1996.

[12] Povl T. Koch, E. Cecchet, and X. Rousset de Pina.
Global management of coherent shared memory on an SCI cluster.
In Proceedings of SCI Europe'98, September 1998.

[13] Tim Lindholm and Frank Yellin.
The Java Virtual Machine Specification.
Addison Wesley, Reading Massachsetts, 1996.

[14] T. Wilkinson.
Kaffe: A java virtual machine.
http://www.kaffe.org, 1996.

[15] Dolphin Interconnect Solutions.
PCI-SCI cluster adapter specification. May 1996.

[16] Gabriel Antoniu, Luc Bougé, and Raymond Namyst.
Generic distributed shared memory: the DSM-PM2 approach.
Research Report RR2000-19, LIP, ENS Lyon, Lyon, France, May 2000.

[17] W. M. Yu and A. L. Cox.
Java/DSM: A platform for heterogeneous computing.
In Proc. of Java for Computational Science and Engineering-Simulation and
Modeling Conf., June 1997.

[18] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, and
W. Zwaenepoel.
Treadmarks: Shared memory computing on networks of workstations.
IEEE Computer, February 1996.

[19] Godmar Back, Wilson C. Hsieh, and Jay Lepreau.
Processes in KaffeOS: Isolation, Resource Management, and Sharing in Java.
In Proceedings of the 4th Symposium on Operating Systems Design and
Implementation, October 2000.

[20] Emin Gün Sirer, Robert Grimm, Arthur J. Gregory, and Brian N. Bershad.
Design and implementation of a distributed virtual machine for networked
computers.
In Proceedings of the 17th ACM Symposium on Operating System Principals
(SOSP'99), December 1999.

	Abstract
	1	Introduction
	
	
	
	
	
	
	2	Design of Kaffemik

	3	Kaffemik implementation
	
	
	
	
	
	3.1	Kaffe

	3.2	SciOS/SciFS
	
	
	
	
	
	
	3.3	Kaffemik

	Cluster meta-data
	Heap component
	Internal VM structures
	Remote threads

	Wait and notify
	4	Kaffemik evaluation
	
	
	
	
	
	
	4.1	Multiple address spaces vs. Single address space Experiment

	Kaffe with RMI (local)
	Kaffemik (two nodes)
	Total execution time
	
	
	
	
	
	
	4.2	Discussion

	6	Conclusions and future work
	References

