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Abstract 
 

Java is increasingly used to develop large server applications. In order to 
provide powerful platforms for such applications a number of projects have 
proposed Java Virtual Machines (JVMs) that are based on network of 
workstations. These JVMs employ the message-passing paradigm, i.e. all 
communication between the distributed instances of the virtual machine take 
place using remote method invocation (RMI) or socket stream 
communication.  
 
The JVM of Kaffemik is based on multiple instances of a JVM that 
communicate using the shared memory paradigm. All objects that are created 
by virtual machines are held in a shared heap that is supported by an 
underlying shared memory system. By exploiting the single address space 
abstraction it is possible to avoid overheads that are inherent to message 
passing. 
 
This paper presents our first experiences with a preliminary implementation 
of Kaffemik. It gives a detailed discussion of the design and implementation 
decisions and shows a number of performance measurements that 
demonstrate the advantage of our shared-memory approach. 

 
 
 
 
 
 



1 Introduction 
 
Java is rapidly becoming the object-oriented language of choice in both academia and 
industry. Moreover, Java is no longer confined to embedded systems and client-side 
computing (applets), but is increasingly used in server applications, e.g., the World Wide 
Web Consortiums (W3C) latest web-server, Jigsaw [4], is entirely implemented in Java.  
 
Cheap and scalable computer architectures are increasingly developed using a network of 
inexpensive workstations [5]. The Java execution model facilitates collaboration among 
virtual machines executing on this type of cluster through both function shipping (remote 
method invocations) and data shipping (object mobility). However, these mechanisms are 
made explicit in the programming model, which complicates the development of server 
applications on collaborating virtual machines. 
 
A standard implementation of an application server for Java on a cluster of common off the 
shelf (COTS) machines requires the application to be partitioned among the nodes in the 
cluster. Objects are made available in the memory of one node in the cluster and can be 
accessed through remote invocations, e.g. Sun’s RMI [6]. Thus, in order to access an object 
on a remote node, the system has to translate single address space Java references into the 
multiple address spaces used on the different nodes in the system, this translation is known 
as swizzling [7]. Furthermore, objects passed as parameters generally have to be converted 
to an exportable format or serialized before they are transferred to the other node. 
Serialization is performed automatically by RMI.  
 
Single address space architectures (SASA) [8,9,10, 11] provide the abstraction of a single 
shared virtual memory, i.e., an object is available on the same virtual address on all nodes 
in the system. This has the advantage that virtual addresses can be used as a system wide 
unique object identifiers.  
 
Kaffemik is a scalable distributed JVM implemented on SciOS/SciFS [12], a single address 
space architecture developed for SCI networks at INRIA Rhône-Alpes. The SCI network is a 
standard interconnect based on the Scalable Coherent Interface [3].  The single address space 
allows Kaffemik to offer the abstraction of a single shared object space across all nodes in the 
system. Among the advantages of a single shared object space are: it simplifies the 
development of multithreaded applications by eliminating the need for separate 
communication libraries (RMI, CORBA, etc.), it eliminates the overheads of swizzling and 
serialization because objects can be accessed directly in the main memory of a remote node 
and it allows programmers to cache objects in the memory of idle nodes. Also, caching is 
practical because access to objects in remote memory is faster than loading an object from 
local disk [5]. Caching objects in the memory of remote nodes means that the size of the 
application’s working set can be as large as the sum of the physical memory of all the nodes 
in the system. 
 
Kaffemik supports automatic and transparent distribution of objects; objects automatically 
migrate to the node where they are used. The location of execution is not transparent, i.e., 
the programmer has to specify the executing node when a thread is created, which gives 
some indirect control over where objects are located. When a thread invokes a method on 
an object located in remote memory, SciOS/SciFS migrates the page containing the object 
into local memory. This involves swapping memory pages if no local pages are free. 
Objects in remote memory are referenced with local object references and local object 
references can be passed as parameters in method invocations. Thus, neither swizzling nor 
serialization is required. 
 



We have compared the performance of method invocations on remote objects in our single 
address space architecture with remote method invocations among collaborative virtual 
machines. RMI is used to swizzle and serialize among the different address spaces. This 
evaluation shows that remote method invocations are at least an order of a magnitude faster 
using Kaffemik, than it is amongst two virtual machines using standard RMI.  
 
The rest of this paper is organized in the following way. Section 2 gives an overview of the 
Kaffemik architecture. Section 3 describes the implementation of the current Kaffemik 
prototype. In section 4, we present an evaluation that compares method invocations across 
multiple address spaces, realized using RMI, with Kaffemik. We present a comparison of 
our approach with related work in Section 5. Finally, our conclusions and directions for 
further work are presented in Section 6. 
 
 
2 Design of Kaffemik  
 
The design of Kaffemik has simplicity as its first priority. This simplicity finds its 
expression in two characteristics of Kaffemik. The first characteristic is Kaffemik’s support 
of Java’s standard API. This makes it possible to execute applications that have been 
developed on stand-alone JDKs on the distributed JVM. The second characteristic is 
Kaffemik’s simple design of a heap that is shared by all nodes of a cluster. The heap and 
subsequently all objects that are created in the heap are accessible by all nodes.  
 
Java defines the behaviour of memory accesses, synchronization and threads. Their 
definition is documented in the language specification [13], the virtual machine 
specification and the API. Kaffemik extends this definition by a set of method calls. These 
method calls expose distribution characteristics to the developer, primarily in the Thread 
class. However, all APIs that are defined by Java are supported in order to comply with the 
Java API definition and be able to run standard Java applications. 
 
Kaffemik is designed as a set of collaborative JVMs, which offer a single object space 
abstraction to the application. The design of the collaborative JVM is based on the freely 
available Kaffe Virtual Machine. The virtual machine (VM) )is extended into a distributed 
JVM running on top of a single address space architecture. In principal, the architecture of 
Kaffemik consists of two parts - a distributed shared memory infrastructure and a 
distributed Kaffe Virtual Machine, see figure 1.  
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Figure 1. The architecture of Kaffemik 



 
Kaffemik relies on a single address space architecture to provide for the single object space. 
The single object space forms a monolithic heap over all nodes in the cluster. Kaffemik 
allocates the monolithic heap from the single address space. All objects created by the Java 
application will be allocated from the monolithic heap. Because of the single address space 
architecture, every object is available at the same virtual address on all nodes in the system.  
Both the VM and Java applications allocate objects from the monolithic heap. Internal VM 
structures, e.g. internal hash tables, are also shared between the nodes as shown in figure 1, 
but these structures are allocated directly from the single address space.  
 
We have also redesigned the thread model. Kaffemik’s thread model allows the application 
programmer to start threads at specific nodes within the cluster. Wait and notify are 
enhanced to support inter-node thread synchronization.  
    
 
3 Kaffemik implementation 
 
The implementation of Kaffemik is based on two components: Kaffe and SciOS/SciFS. 
Kaffe [14] is an open-source, clean room implementation of Sun's Java environment. The 
sources of Kaffe are released under the Gnu Public License (GPL). The virtual machine of 
Kaffe is used as a basis for the implementation of Kaffemik’s distributed virtual machine. 
SciOS/SciFS is an open-source shared memory abstraction developed by INRIA Rhône-
Alpes. The following two subsections describe Kaffe and SciOS/SciFS respectively. The 
concluding subsection will detail our implementation of Kaffemik based on the two 
packages. 
 
 
3.1 Kaffe 
 
The Kaffe Virtual Machine environment consists of a virtual machine (VM), a compiler 
and a set of supporting class packages. The overall structure of the virtual machine is 
depicted in figure 2.  The VM consists of three levels of components. The base level 
contains components for memory management, synchronization management, thread 
management and a subsystem for calls to native code. The second level comprises of an 
execution engine. The top level holds a code verifier and a component for class 
management. 
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Figure 2: Components of the virtual machine 

 
The components of the virtual machine are loosely coupled with each other. Each 
component has a well-specified interface. An implementation of a component of the base 
level maps the functionality that is promised by the interface to the underlying system, 
which can be of type library, operating system, or another component.  This modular 



approach allows the exchange of one implementation of a component for another. The 
flexibility facilitated by the approach is harnessed to provide implementations for different 
hardware platforms and operating systems. The existing implementation of Kaffe provides 
a variety of implementations of thread and synchronization components. These 
implementations map the system to platforms such as Win32, BeOS, Unix-PThreads and 
Unix System V. 
 
The components of the base level are important for the distribution of the functionality of 
the virtual machine. The heap management defines functionality for the allocation and 
release of objects. The thread management allows the creation, administration and 
termination of threads of execution. The synchronization subsystem implements methods 
for concurrency control. The native subsystem provides an interface to system calls of the 
underlying platform.  
 
The memory management component implements heap management and a garbage 
collector. The heap management is responsible for the allocation of memory resources in 
order to store objects. All objects that are loaded into the virtual machine and most of the 
administrative structures of the virtual machine are located in the heap. 
 
The heap is organized in pages. The size of these pages generally matches the size of pages 
of the underlying (operating) system. The heap management keeps a record with 
information about the contents and state of each page. These records are kept partly in an 
array allocated in the data segment of the virtual machine and partly at the beginning of the 
individual memory pages. The information describes the size and the number of objects 
stored in a memory page. Each page can contain only objects of the same size. An 
additional list is kept that holds links to pages that hold objects of the same size, but not are 
entirely filled. When an object is created, the heap management tries to allocate memory 
from these partially filled pages. If the object does not fit in any of these pages, a free page 
is allocated from the heap. If no more pages are available on the heap, the garbage collector 
is invoked. 
 
The garbage collector of the virtual machine is a non-incremental, non-generational, 
conservative mark-and-sweep collector with a Boehm-like allocator. If an allocation fails, 
i.e., there are no free pages left, the garbage collector is invoked. The garbage collector uses 
heuristics to determine if it is cheaper to run a garbage collection or to allocate more 
memory for the heap. If the heap has already the maximal defined size a garbage collection 
is performed, otherwise more memory for the heap is allocated. 
 
The thread and synchronization management components are based on the underlying 
platform. The execution engine implements a thin layer that provides platform independent 
thread and synchronization primitives. This layer interfaces with the underlying platform 
dependent components. Kaffe provides a set of components for different platform including 
Unix-PThreads, Linux-Threads, Win32, BeOS-Native and Unix-JThreads.  
 
 
3.2 SciOS/SciFS 
 
The SciOS/SciFS1 prototype implements a distributed shared memory system on a SCI 
cluster of Intel PCs with Linux 2.0 or 2.2 kernels and Dolphin's 32-bit (D310) or 64-bit 
(D321) PCI-SCI adapters [15]. SciOS and SciFS are both implemented as kernel modules. 
Figure 3 shows the SciOS/SciFS architecture and how it interfaces with Kaffemik. 

                                                      
1 The SciOS/SciFS prototype sources and documentation  
   are freely available for download from http://sci-serv.inrialpes.fr. 
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Figure 3: SciOS/SciFS architecture 
 
SciFS implements the actual DSM, providing memory management and coherency 
protocols. SciFS relies on a lower layer, SciOS, which is also developed at INRIA Rhône-
Alpes. The SciOS layer is based on Dolphin's PCI-SCI adapters [15] and offers basic 
services for SCI clusters, such as messages, remote procedure calls and physical memory 
management.  
 
SciFS is implemented as a Linux distributed file system and interfaces to the Linux Virtual 
File System (VFS) facility. Since the file system is interfaced with the file mapping 
mechanism, SciFS allows for tight integration of SCI with the operating system's virtual 
memory system. The main abstraction in SciFS is memory mapped files. Shared memory 
segments are presented to the user as files and are accessed by using file operations such as 
the open, mmap, and close system calls. A process can open a file, map it in its virtual 
address space and use normal load and store instructions on the mappings thereby reading 
and modifying the file's contents. Multiple processes, possibly on different nodes, that open 
the same file and map it in their address space, share the data contained in the file.  
 
 
3.3 Kaffemik 
 
Enabling a distributed JVM to share data requires a number of data structures be allocated 
in the single address space to allow collaboration among the participating nodes in the 
cluster. In the following subsections we describe how SciOS/SciFS is incorporated with 
Kaffemik, and how the Kaffe VM is extended to support sharing of data, remote thread 
creation, and inter-node synchronization. At this point we have not fully incorporated the 
garbage collector component in Kaffemik. 
 
 



Kaffemik and SciOS/SciFS  
 
SciFS is used to supply Kaffemik with a single address space architecture. Kaffemik uses 
the SciFS file system to create, to map (i.e. share), and destroy the shared memory 
segments. The single object space that comprises Kaffemik’s monolithic heap is one of the 
shared memory segments allocated in the single address space. Besides the monolithic 
heap, Kaffemik shares cluster meta-data and internal VM structures.  
 
Figure 4 shows how every Kaffemik on each node maps and share all the information 
contained in the SciFS DSM.  
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Figure 4: Kaffemik’s mapping of DSM space 

 
 
 
 
To ensure data coherency, Kaffemik uses the locking mechanisms provided by SciFS. 
When a JVM needs to access data, it performs a regular memory reference and lets the 
DSM migrate, replicate or access remotely the information in the right physical memory. 
The data distribution and placement is transparent to Kaffemik. 
 
 
Cluster meta-data 
 
Meta-data describing the nodes in the cluster must be shared. This meta-data contains 
information about how many nodes there are in the cluster and the node id for each node. 
Since SciOS/SciFS abstracts shared memory segments as files, information about the file 
descriptors and the offsets into the processes’ virtual address space where the files must be 
mapped, have to be shared amongst the distributed JVMs.  
 
 
Heap component 
 
To support a distributed JVM with a monolithic heap requires sharing of the virtual 
machine’s heap component structures. Kaffemik’s heap management component currently 
maintains the same structures as Kaffe does. The meta-data Kaffe uses to describe the heap, 
and the freelists used to manage partially allocated pages, are shared in separate memory 



segments. These segments are not allocated from the monolithic heap. Sharing the meta-
data and the freelists enables all Kaffemik instances in the cluster to allocate objects from 
the monolithic heap. 
 
 
Internal VM structures 
 
Kaffe allocates a number of internal structures, such as hash tables for UTF-8 constants and 
strings to support management of classes loaded by the VM.  
 
Kaffe allocates two hash tables to manage references to String constants and UTF-8 
constants. These hash tables, like the UTF-8 and String objects are allocated on the heap. 
References to the objects are then inserted into the hash tables. Kaffemik separates the hash 
tables for the strings and UTF-8 constants from the heap and shares them in separate 
memory segments. This is necessary, because otherwise they are not guaranteed to be 
allocated at the same addresses when a new Kaffemik is started in the cluster, and also 
because Kaffe uses UTF-8 constants to lookup references to classes and methods. Even 
though these hash tables are allocated in separate memory segments, the UTF8 and string 
objects are still allocated on the monolithic heap with the references inserted into the shared 
structures. 
 
Kaffe’s internal types (e.g. char, int, and float) are also allocated on the heap. Kaffemik 
shares the internal types in a separate memory segments.  
 
A class pool manages references to classes that have been loaded by Kaffe. This class pool 
is represented as a hash table, but it is allocated outside the heap. Kaffe allocates classes on 
the heap, and puts the references in the class pool.  Kaffemik allocates the class pool in a 
shared segment, and maintains the references to loaded classes exactly as Kaffe. 
  
 
Remote threads 
 
Kaffemik supports thread creation on remote nodes. A Java application can spawn off 
threads on a remote Kaffemik instance, and then the remote Kaffemik instance will start the 
thread. To support remote thread creation, Kaffemik extends the Java API with a 
ThreadQueue thread. During the initialization of the VM, each Kaffemik instance starts a 
ThreadQueue thread. This thread is added to a globally shared thread queue array, which 
contains one ThreadQueue thread for each instance of Kaffemik in the cluster.  When the 
ThreadQueue thread is started, it waits for threads to be added to its local queue. As soon as 
a thread is added to the local queue, the ThreadQueue removes the thread from the queue 
and invokes the thread’s start() method.  
 
To support the application programmer with the mechanism of starting threads at remote 
nodes Kaffemik extends the Thread class with a new method called 
Thread.startAt(nodeid). The application programmer starts a thread on a remote 
node by calling startAt with the node id for the node on which the thread is going to be 
started. This adds the thread to the ThreadQueue on the corresponding Kaffemik instance.  
 
 
Wait and notify 
 
Kaffemik provides a wait and notify mechanism between threads running at different 
nodes. When one node’s thread releases a lock, it notifies a waiting thread, possibly waiting 
at another node. To avoid the problem of resuming this thread at the same node from which 



the notify originates, due to Kaffe’s thread model [14], we create a remote thread space 
shared amongst all nodes in the cluster. The remote thread space is an array with entries for 
every node in the cluster. Kaffe’s original threads are extended with a node id, which is set 
to the id of the node where the thread starts. When the thread holding the lock is about to 
resume the next thread waiting for the lock, it inspects the node id of the thread and if this 
thread originates at another node, the thread is put in the corresponding entry of the remote 
thread space. The node waiting for the lock polls its entry in the remote thread space and 
resumes the thread polled from the remote thread space. 
 
 
4 Kaffemik evaluation 
 
This evaluation uses Intel P-III 800MHz PCs equipped with 256MB of RAM, Linux 2.2.14, 
interconnected with 64-bit PCI-SCI adapters (D321). The PCI-SCI adapters are 
manufactured by Dolphin Interconnect Solutions [14].  
 
The evaluation measures the costs associated when a JVM has to cross multiple address 
spaces in order to access and modify data, and compare this with a single address space 
approach. The multiple address space approach is realised using Kaffe v1.0.6 with RMI and 
the single address space approach is realised using Kaffemik. 
 
 
4.1 Multiple address spaces vs. Single address space Experiment 
 
A matrix is used to measure the costs of crossing address space boundaries. The size of the 
matrix is 320x320. It is filled with 32-bit integers and occupies exactly 100 pages of 
memory as Intel based Kaffemik uses a page size of 4096 bytes. A matrix of this size can 
for example represent a database object in an object-oriented database, a CAD drawing or a 
web page with graphics in a web server application. These scenarios correspond to the 
areas where Kaffemik can be applied.  
  
 
Kaffe with RMI (local) 
 
The matrix is created on the client and passed as an argument in a remote method 
invocation to the server. At the server side the matrix is modified. Modifying the matrix is 
analogous to updating the data of a database object or assembling a web page. When the 
server is finished with the modification it sends the matrix back to the client. The test 
measures the time it takes to modify the matrix. Table 1 shows the result of this test. 
 

Touch  
(rows, columns) 

% of 
matrix 

Processing time 
(µs) 

(0,0) 0 4 
(80,320) 25 112 
(160,320) 50 430 
(240,320) 75 1046 
(320,320) 100 1934 

    
Table 1: Kaffe with RMI 

 
The touch column indicates how many rows/columns of the matrix are modified. It can be 
thought of as the time it takes to update a certain percentage of for example a database 
object. The processing time is the time Kaffe spent on modifying the matrix. Both the 



server and the client run locally, because we do not have a RMI implementation for SCI. 
This avoids penalising Kaffe RMI with the overheads of a slower local area network. 
 
 
Kaffemik (two nodes) 
 
In this case a client thread running at one of the two nodes creates the matrix. The matrix is 
the passed to a server thread running at the other node using a shared buffer. The server 
modifies the matrix, and puts it back into the buffer, and notifies the client thread, which 
then gains control over the matrix. The processing time is the time it takes for the server to 
modify the matrix. Table 2 shows the results from running Kaffemik on two nodes.  
 
 

Touch  
(rows, columns) 

% of 
matrix 

Processing time 
(µs) 

(0,0) 0 6175 
(80,320) 25 30270 
(160,320) 50 53800 
(240,320) 75 79100 
(320,320) 100 102195 

 
Table 2: Kaffemik (two nodes) 

 
The processing time is considerably higher compared to Kaffe RMI. This is because of the 
overhead induced by page migration between the nodes.  When optimised, SciOS/SciFS 
should be able to migrate one page in 125µs [12]. However, we currently use SciOS/SciFS 
with strict consistency, and with a number of flags activated for debugging information, 
timers, and internal sanity checks within SciOS/SciFS, which all slow down page 
migration. Moving to lazy release consistency, optimising the internal structures and 
deactivating the flags should lower processing time, but this assumption has not been 
tested.  
 
 
Total execution time 
 
A separate measurement looks at the total time taken from the point where the client 
initiates the request until it regains control over the matrix. In the RMI case, this time is 
measured from the point where the client invokes a remote method on the server passing 
the matrix as an argument. In Kaffemik, this time is measured from the point when the 
client puts the matrix in the shared buffer until the server notifies the client and the matrix 
is removed from the buffer. The results are displayed in the table 3. Efficiency gain is the 
result of dividing the total time of Kaffe with RMI with Kaffemik’s total time. 
 

Touch  
(rows, columns) 

Kaffe RMI (µs) 
(local) 

Kaffemik (µs) 
(2 nodes) 

Factor 

(0,0) 64252713 968181 66.31 
(80,320) 64215334 968366 66.31 
(160,320) 64231220 968267 66.34 
(240,320) 64179276 964340 66.55 
(320,320) 64162860 967653 66.31 

 
Table 3: Total execution time 

 



Using a single address space approach offers superior performance. Kaffemik is around 66 
times faster that Kaffe with RMI. Kaffe with RMI offers very poor performance. This poor 
performance is due partly on the serialisation of the matrix and partly on an inefficient 
implementation of RMI2. However, Kaffemik should offer even better performance. The 
main reason why better performance is not obtained with Kaffemik stems from the inter-
node wait/notify implementation. Acquire and release of locks consumes too much time. 
This is major concern for us since it hampers the scalability of Kaffemik, and is subject for 
redesign. 
 
 
4.2 Discussion 
 
Crossing address space boundaries is far more inefficient than using a single address space 
approach. In terms of overall performance, Kaffemik offers an extensive performance gain 
compared to Kaffe with RMI. However, there are problems related to SciOS/FS. The time 
spent on page migration cannot be neglected. This however can be addressed by optimising 
SciOS/SciFS’ page migration schema. For example, by using lazy release consistency and 
optimising the size of SciOS/SciFS’ internal page tables and file tables, we expect to 
achieve better performance. The main concerns derive from the implementation of the 
inter-node wait and notify mechanism, which must be redesigned to achieve better 
scalability. 
 
 
5 Related work 
 
Yu and Cox propose in Java/DSM [17] a virtual machine implementation on a software 
DSM system. Java/DSM employs TreadMarks [18] as underlying DSM system. 
TreadMarks implements a shared memory abstraction as a user level library using  
System V system calls. The motivation of this project - similar to the one presented in this 
paper – was to hide the distributed execution completely from the developer and exploit at 
the same time the ease of use of the shared memory paradigm.  
 
Java/DSM, in contrast to Kaffemik, assumes that communication between nodes is 
expensive. This assumption leads to a design that avoids communication. Every node 
employs its own garbage collector and a great number of structures are replicated on every 
node of the system. This design leads to a higher consumption of resources and to a higher 
complexity of the algorithms used inside the virtual machine. This can be avoided by 
sharing structures of the virtual machine and exploiting an underlying shared address space 
abstraction.  
 
KaffeOS [19] by Back et al proposes an integration of operating system characteristics into 
the JVM. The main characteristic that is considered in this implementation is the 
abstraction of processes. Every process (or application) requires its individual address 
space to provide a secure separation from other processes. In Java, the address space is 
represented by the heap, in which all objects of an application are accommodated. The 
virtual machine of KaffeOS maintains a kernel heap, individual heaps per process and 
shared heaps for sets of processes. The kernel heap holds objects that are needed by the 
virtual machine; individual heaps hold objects that are specific for an application and 
shared heaps hold objects that are accessible by one or more applications. 
 
The implementation of KaffeOS is a stand-alone implementation. Applications that are 
executed as processes on the same JVM can communicate through shared heaps without the 

                                                      
2 We have compared Sun’s RMI with Kaffe’s RMI and Sun’s RMI is substantially faster. 



need of serialization. The communication of applications on separated JVMs relies on a 
message passing mechanisms such as RMI or socket communication. This communication 
still requires serialization. 
 
Sirer et al propose with Kimera [20] a distributed virtual machine. The distribution in this 
project concentrates on the distribution of security services such as byte-code and 
parameter verification. Services are separated into static and dynamic services. Static 
services that can be performed before the execution of an application are located at a 
central server. Dynamic services such as parameter verification have to be performed at 
execution time and hence are located at the clients. The fixation of static services on a 
central server removes a number of tasks from virtual machines on clients and makes these 
lighter than common virtual machines. This approach suffers from the separation of address 
spaces on the clients. Applications that run on the clients have to rely on communication 
over RMI and have to serialize data that is transferred between the clients. 
 
 
6 Conclusions and future work 
 
In this paper we presented our ongoing work on a distributed Java virtual machine. The 
issue that we addressed is the communication among virtual machines in a cluster. The 
proposed solution evolves around a set of JVMs that share a heap. The sharing is facilitated 
by a component that provides a single-address space abstraction. We evaluated our design 
by comparing the costs that arise when the communication of clustered JVMs has to cross 
multiple address space boundaries with the cost for communication in our single address 
space approach. Our experiments showed that the exploitation of the single-address space 
abstraction gives the virtual machines extensive performance advantages in comparison to 
systems that rely on message passing. 
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