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Abstract. Many programming models have been proposed to facilitate
the development of context-aware applications. However, previous work
does not offer support for building customised systems and has largely
been targeted at a single application domain. In this paper, we describe
MoCoA, a flexible middleware framework that permits the rapid devel-
opment of context-aware applications and supports deployment scenarios
ranging from augmented artefacts to city-wide smart-space applications.
Crucially, MoCoA supports a small set of programming abstractions that
are suitable for building a wide range of context-aware applications for
deployment in a fixed or (ad hoc) mobile environment. For each of these
abstractions, MoCoA provides a set of implementations via a library of
components. We present three applications of the MoCoA framework
that demonstrate both the use of the programming abstractions and the
flexibility of the framework.

1 Introduction

Enabled by recent and expected developments in new sensor technologies, by
wireless networking, and by miniaturisation of computational devices, context-
aware mobile computing has become a reality. We can now envision a class
of applications involving large collections of collaborating mobile devices that
operate by sensing their surrounding environment and adapting their behaviour
accordingly without human intervention [1]. These applications will typically
address areas such as environmental monitoring, independent living, intelligent
transportation systems, mobile robotics, and city-wide smart spaces.

Even though many programming models, supported by associated middle-
ware, have been proposed to facilitate the development of context-aware applica-
tions, to date, none offers the flexibility required by the application space. They
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are typically only appropriate for a single application domain or deployment
scenario, e.g., smart spaces [2, 3], tracking of valuable goods [4, 5] or robotics [6,
7]. Moreover, they fail to handle some or all of the non-functional requirements
expected of emerging context-aware applications such as timeliness, reliability,
mobility and scalability.

The main contribution of this paper is the identification of a small set of
abstractions that can be used to support a wide range of context-aware (mobile)
applications. These abstractions have been implemented in MoCoA, a flexible
middleware framework for building context-aware applications for deployment
in fixed or (ad hoc) mobile environments. We describe how context-aware ap-
plications can be modeled with these abstractions and describe their implemen-
tation in a library of commonly-required and optional components that permits
the rapid development of applications. Examples of components include spe-
cific sensors and actuators and high-level services such as context acquisition,
event-based communication, and intelligent reasoning. These components can
be assembled and specialised by developers to form customised middleware that
fits application requirements exactly. The use of replaceable components and
well-defined interfaces improves code reuse and allows the MoCoA framework to
address multiple combinations of non-functional requirements, and therefore to
be suitable for a wide range of applications.

To demonstrate the use of the programming abstractions and the flexibility
of MoCoA, we have designed a number of representative context-aware appli-
cations that exhibit a variety of different non-functional requirements. Among
these, we describe in this paper a sensor-augmented sofa with application in
independent living, an autonomous mobile robot, and a simulated urban traffic
control system. These experiments in assembling and customising components
from our library serve to validate our approach.

The remainder of this paper is structured as follows. In Section 2, we describe
three applications used in the paper to demonstrate the potential of MoCoA and
introduce the key requirements of context-aware (mobile) applications. In Sec-
tion 3, we present the programming abstractions and components supported by
MoCoA. Then, in Section 4, we describe and discuss the use of these abstrac-
tions and of MoCoA in the application scenarios. Finally, Section 5 and Section
6 present related work and our conclusions respectively.

2 Application Requirements

Customisable middleware supporting common programming abstractions for the
envisaged generation of context-aware applications is a key requirement for sup-
porting a range of deployment scenarios. As discussed below, such middleware
need to support non-functional requirements in order to cope with large-scale
distributed applications, composed of heterogeneous and mobile devices inter-
acting closely with a changing environment. This section presents examples of
representative applications exhibiting non-functional requirements and derives
requirements that context-aware applications have on middleware.



2.1 Application Scenarios

We introduce a few scenarios that are representative of expected classes of sensor-
driven context-aware applications and indicate their main requirements.

The Sentient Sofa Falls present a serious health risk. Among older adults, falls
are the leading cause of injury deaths and the most common cause of injuries
and hospital admissions for trauma [8]. [9] argues that “technological devices
such as alarm systems that are activated when patients try to get out of bed or
move unassisted may be useful”.

Motivated by these observations, we have designed the “sentient sofa” as a
prototype of a bed for elderly or disabled people that raises an alarm if the
occupant leaves the bed, for example, as a result of a fall. This scenario is rep-
resentative of the augmented artefact class of context-aware application, where
sensor-enabled systems are embedded in everyday environments, and addresses
one of the most important application domains for this technology in the future,
independent living.

The sentient sofa can identify the person lying in the bed, monitor her/his
movements and autonomously decide to alert carers in case of unexpected be-
haviour. To achieve this, the sofa is equipped with a fixed number of load sensors
enabling the mass currently on it to be measured. This assisted living application
is relatively small scale and doesn’t require mobility support.

Sentient Traffic Lights Traffic congestion is an increasing problem in urban
areas but is alleviated to some extent by urban traffic control (UTC) systems
that control and coordinate traffic signal timings in order to reduce journey times
and delays [10, 11]. Future UTC systems may be able to exploit a wide variety
of fine-grained sensor data, e.g., GPS position data from individual vehicles, to
inform attempts to optimise signal timings.

To explore these possibilities, we have designed a city-scale (simulated) UTC
system in which traffic light controllers use sensor data from local vehicles to
inform their decision making [12]. In this scenario, the traffic light controllers
also exchange views of their environment describing the traffic conditions sensed
locally through sensor data fusion. By incorporating these views into their rea-
soning, traffic light controllers can establish convergent views of the congestion
level, which can in turn inform their local decisions as to which signal phase
is currently most appropriate. Positive (or negative) feedback from the envi-
ronment (e.g., a decrease or increase in the local congestion level) reinforces
(or discourages) the selection of such phases and enables good strategies to be
learned over time.

This scenario is representative of the class of city-wide smart space applica-
tions, that are typically large-scale and composed of many geographically dis-
persed entities. Traffic light controllers in this application are not mobile, but
they need to communicate with a variable collection of anonymous mobile ve-
hicles as well as a fixed collection of nearby junction controllers. A completely



decentralised learning technique is required so that consensus can be established
on the optimal phases to choose at a junction.

Sentient Robots An autonomous mobile robot is a mechanical device that per-
forms its tasks under real-time conditions, in a previously unknown environment,
without human supervision. Potential applications include dull or dirty tasks like
floor cleaning, transportation and surveillance, and tasks that are dangerous for
humans, such as military missions [13] and emergency rescue [14].

To represent this class of application, we have designed simple sentient robots
that navigate autonomously towards some destination, while avoiding obstacles
and obeying traffic lights they encounter en route. In order to complete their
mission, the sentient robots are equipped with various sensors, as illustrated in
Figure 1. The outputs of these sensors are fused together in order to determine
the robots’ context with respect to obstacles and traffic lights and thereby infer
what are the appropriate actions to take in order to avoid collisions. In this
scenario, timely communication is required in order to ensure that the robots
can react in time, for example, in response to a change of the traffic light colour.

Fig. 1. The sensor-augmented robot

This scenario is typical of robotics applications, where mobility and safety
constraints are key requirements. As robots are mobile, they spontaneously com-
municate with anonymous neighbours that they discover in their vicinity, e.g.,
traffic lights or other robots. Furthermore, strong real-time constraints on com-
munication, decision-making and reaction have typically to be guaranteed in
order to ensure safety for this type of application.

2.2 Fundamental Requirements

From the scenarios studied previously, we can establish a list of requirements
that middleware for (mobile) context-aware applications should support.

– Spontaneous interaction: Applications will be composed of a dynamically
changing population of interacting devices. Hence, unanticipated interaction
between nearby devices has to be supported, enabling a device to dynami-
cally establish connections to other devices within its current vicinity.



– Geographical dispersion: Unlike current embedded systems, future context-
aware applications will integrate components that are scattered over build-
ings, countries, and continents.

– Mobility: Parts of an application will possess the ability to move geographi-
cally (by virtue of being carried by a mobile device) or between hosts possibly
on different networks, while remaining in continuous operation.

– Large-scale: Applications may be composed of millions of interacting hard-
ware and software components and will be able to expand indefinitely.

– Autonomy: Typical context-aware applications will operate independently
of human control and will be able of acting in a decentralised fashion ac-
cording to their own knowledge.

– Inference and learning: Applications will typically have to cope with
changing conditions during their lifetime. Not only must they be designed to
reason about these changes according to their factual knowledge, but they
must also gain knowledge through experience, e.g., by learning appropriate
behaviour through trial-and-error interactions with their environment.

– Time criticality: These applications will interact with the physical envi-
ronment within a given time interval, and will have to cope with its pace,
regardless of adverse conditions due to scale and technology shortcomings.

– Safety criticality: As such applications are based on mobile devices embed-
ded in everyday environments, they must obey strong safety requirements
to interact with human users, whose well-being will frequently rely on them.

3 MoCoA: Middleware for Context-aware Applications

In this section, we describe the programming abstractions that are supported by
MoCoA for the development of context-aware mobile applications. For each of
the abstractions, we propose optional components that are available in MoCoA’s
library and that can be composed and customised to build the applications.

3.1 Sentient Objects, Sensors and Actuators

In the MoCoA framework, applications are structured using the sentient ob-

ject abstraction [15, 16]. Sentient objects are mobile intelligent entities, that
extract, interpret and use context information obtained from sensors, other sen-
tient objects, and their computational infrastructure, to drive their behaviour.
The granularity of a sentient object is not constrained: a robot, a component of
a robot, or a traffic light controller are all potential examples of sentient objects.

In this model, a sensor is seen as an entity that produces software events in
reaction to a real-world stimulus and is an abstraction of some physical device. To
act upon their environment, sentient objects use actuators. An actuator is any
component that consumes software events and reacts by attempting to change
the state of the real-world via some physical device. To facilitate mobility as well
as loose coupling between dynamically varying collections of anonymous mobile
devices, a sentient object is both a producer and a consumer of asynchronous



events. As explained above and illustrated in Figure 2, a sentient object can
also receive events from its infrastructure. Notice also that sentient objects may
communicate directly by means of events or indirectly via the environment.

Sensor Actuator

Object
Sentient Sentient

Object

Sensor

Sentient Object

Indirect Communication

Infrastructure
Event

Fig. 2. An example of a sentient object

The behaviour of all sentient objects follows the same pattern. First, a sen-
tient object may receive input from a variety of sources (sensors, sentient objects
and infrastructure) that needs to be integrated before being used in determining
the overall context of the sentient object. As an example, our robots are equipped
with ultrasonic, orientation, and location sensors. The outputs of these sensors
are fused together with input from nearby traffic lights in order to determine the
robots’ context with respect to obstacles, traffic lights, and their destination.

Context recognition determines the current context, based on fused data and
past history. For example, that someone has left their bed is inferred from his-
torical information that someone was in the bed and new sensor input indicating
that they are no longer present.

Sentient objects are then expected to change their behaviour or act upon their
environment based on some rules. This implies some form of intelligent reason-
ing captured in an inference component. Rules may be predefined or learned
over time. In the robot scenario, the inference component reasons on a set of
predefined rules, in order to take actions and/or to derive a higher-level context.
For example, the detection of an obstacle results in a transition to the obstacle
avoidance context, followed by a braking process. In the UTC scenario, rules are
used to choose the appropriate signal phase given the current congestion level
of the system and are learned based on feedback from the environment.

3.2 Events, Event Channels, and Proximities

While the basic concept of event-based communication is simple, there are a
number of difficult issues to be tackled in large-scale and geographically dispersed
applications in which large volumes of events are raised. In MoCoA, we support
two abstractions to control event propagation: proximities and event channels.

Filtering ensure that events are only propagated to consumers that have
expressed an interest in them [17]. Filters have typically been applied to the



subject or the content of an event. In addition to these filters, MoCoA also
supports proximity-based filtering which is used to define geographical areas,
proximities, within which events are valid. Such proximity-based filtering con-
fines propagation of events to a geographical area surrounding the producer since
locality considerations suggest that the closer event consumers are located to a
producer the more likely they are to be interested in the events that it produces.

Proximities not only serve as a unit of scoping large-scale systems into areas of
localised interaction, but also provide the basis for time-bounded event delivery,
even in wireless networks. Event channels are defined to specify constraints on
propagation and delivery of asynchronous events within a proximity. An event
channel is specific to an event type and allows a producer to define the real-time
guarantees that have to be maintained within a given geographical area.

In the robot scenario, only the local geographical environment is required to
be sensed, all other information outside the vicinity of the individual robots is
not relevant and can be filtered out. Similarly, traffic lights disseminate their
status to a nearby proximity over an event channel providing real-time delivery.

To support event-based communication with event channels and proximi-
ties, the MoCoA framework uses different instantiations of the STEAM event
service [18]: STEAM for use in wireless ad hoc networks, and RT-STEAM for
soft and hard real-time in ad hoc environments. In STEAM, proximities can
be circular or hull-shaped. The set of filters available depends on the type of
event parameters. For example, if the parameter is a location, the following fil-
ters can be used: distanceIncreases, distanceDecreases, withinRange, and
beyondRange. Parameter types include location, time, integer, double and string.

Remote and Local Event Channels Given that sentient objects may com-
municate with collocated sensors and actuators, wireless communication is not
always necessary. For instance, the ultrasound sensors mounted on the robots
are a priori known and their location is fixed. In this case, when communica-
tion with identified sensors and actuators that are not discovered dynamically
is required, STEAM uses local event channels. In contrast, communication via
the network is required to support spontaneous interactions with anonymous
producers of events that are discovered dynamically, e.g., remote event channels
are used between robots and traffic lights encountered en route.

Event Channels with Timeliness Constraints To interact in the real-world,
sentient objects may require temporal guarantees. To provide them, even where
changes in the quality of communication are frequent, the proximities in which
events are to be delivered are adapted to reflect changes in the underlying in-
frastructure under a model known as space-elastic adaptation [19].

In essence, when there is a change, like a disconnection or a significant de-
crease in message-delivery latency, that would prevent the temporal properties
required by an event channel being achieved, the underlying infrastructure no-
tifies the event producer by means of an adaptation event (an example of an
event raised by the infrastructure) describing a revised proximity in which the



required guarantees can be met. The producer is then free to dynamically adapt
its behaviour in order to respect the safety and timeliness requirements of the
application. Even in an ad hoc network subject to partitions, this model provides
well-defined guarantees to applications allowing stringent safety constraints to
be enforced. For example, even if communication between one of our sentient
robots and the traffic lights in its path is not possible, it is still possible to guar-
antee that no robot will ever pass through a red light. In this case, the traffic
light adapts its behaviour when it realises that messages are not being delivered
in a large enough proximity for the robots to stop safely [20].

In MoCoA, the RT-STEAM component is used to support the definition of
hard real-time event channels and space-elastic adaptation. RT-STEAM is im-
plemented using RTAI [21] and relies on further components providing real-time
resource reservation and routing in ad hoc networks, as well as time-bounded
media access control [22, 23].

3.3 Readings and Facts

Sensor fusion is used to manage the uncertainty of data captured from the real-
world and to derive higher-level context information. In MoCoA, the fusion pro-
cess relies on a set of pipelines, each pipeline being composed of a combination
of generic and sharable components (c.f. Figure 3). Input events in a pipeline
are processed through different stages.

Fig. 3. Example of two pipelines

First, a pipeline extracts readings (i.e., raw values produced by a sensor,
a sentient object, or the local infrastructure) from events. Then, a sequence of
transformations is applied to the readings by the components present in the
pipeline. The final result is a piece of higher-level information, in the form of
one or more observed facts.

A pipeline may be composed of different components: handler, smoothing,
buffer, and fusion (see Table 1). MoCoA already provides a set of implementa-
tions of these components, e.g., fusion can perform a sum, an average function or
might rely on a Bayesian network. However, we expect developers to implement
their own (targeted to real-time usage or not), extending the existing library.



Handler Extracts readings from events and propagates them in the pipeline.

Smoothing Preprocesses readings before fusion.

Buffer Stores readings delivered at different times, allowing synchronised
fusion or smoothing.

Fusion Derives high-level observed facts from readings.

Table 1. Types of pipeline components

3.4 Contexts

Context is defined as any information currently available in the environment
that can be used to characterise the situation of an entity [24], such as its current
location, the presence of other sentient objects in its vicinity or the state of its
underlying infrastructure. In MoCoA, the contexts in which a sentient object can
be during its lifetime are organised as a context graph, where only a subset of
contexts can be transitioned to from the current context. Not only are contexts
useful to structure complex applications, contexts are also the basic abstraction
for Context-Based Reasoning [25] within a sentient object allowing the set of
event channels, pipelines, facts, rules and actions that are relevant at any time to
be filtered. When in a context, only one pipeline is active thereby constraining the
set of event channels being used. Because the number of pipelines is restricted,
only some facts may be asserted in this context. Subsequently, as depicted in
Figure 4, only a subset of rules needs to be evaluated and the permitted actions
are limited.

Fig. 4. The MoCoA architecture

3.5 Rules and Actions

The knowledge of a sentient object is structured into facts. To ultimately de-
termine the appropriate behaviour of a sentient object in response to its envi-
ronment, an inference engine is used to infer knowledge (i.e., to assert derived



facts) from previously asserted facts and to select the actions to be taken. Table
2 summarises the different types of action that an object is able to perform.
The action selection decision within a sentient object is based on rules. Rules
may be predefined as applicable within specific contexts, or rules defining what
actions to take in specific contexts may be learned.

Fact assertion Action that asserts a fact.

Fact retraction Action that retracts a fact.

Event production Action that produces an event.

Execution of code Action that carries out a portion of code.

Table 2. Types of actions

In MoCoA, a first order logic inference engine reasons about a set of facts and
predefined rules in order to derive intelligent behaviour. The rules take the form
of condition/actions. Conditions are expressed in terms of asserted facts and
can include operators, e.g., &&, ||, ∃ and ∀. The actions associated with a rule
are executed when the condition evaluates to true. The inference engine that we
have implemented uses forward-chaining. Rules are only evaluated when a fact
relevant to their condition is asserted or retracted, i.e., by relevant changes to
the set of facts. For example, the transition rule (onCourse && !atWaypoint)

in the robot scenario is only evaluated if the facts onCourse or atWaypoint are
changed in the knowledge base.

Since the set of actions available is typically fixed (e.g., constrained by the
available actuators) rules may be learned by attempting actions in different sit-
uations. Depending on the feedback returned from the environment, this process
attempts to learn the long term reward of choosing these actions again given the
current context.

Collaborative reinforcement learning (CRL), is a technique for building de-
centralised coordination models, that extends reinforcement learning [26] with
feedback models to update an agent’s (in this case, a sentient object’s) policy
and enables a consensus to emerge between individual policies [27]. Each sen-
tient object uses its own policy to decide probabilistically on which action to
take to attempt to achieve its goal. In dynamic distributed systems, sentient
objects may also have a changing number of neighbouring sentient objects that
can be used to help achieve the goal. For example, when a sentient object either
cannot achieve the goal locally or when the estimated cost of achieving it locally
is higher than the estimated cost of a neighbour solving it, an event is sent to its
neighbour to delegate the action. Furthermore, each sentient object maintains a
local view of its neighbours by exchange of advertisements.



3.6 Composition

Through an high-level API in Java, software architects can design sentient ob-
jects using the basic abstractions. To describe the services provided and required
by a component, as well as the dependencies between components, we are defin-
ing an architecture description language using XML descriptors. As each compo-
nent of the library exhibits its dependencies with a descriptor, MoCoA can select
the appropriate components according to application requirements, customises
them, and finally generates the executable code of the sentient object.

The code generation currently provides C++, but as it is decoupled from the
object design process, different languages may be easily incorporated. Addition-
ally, an XML descriptor of the sentient object, reusable in other applications,
may be generated. To further assist the construction of sentient objects, we are
currently extending MoCoA with a graphical interface.

4 Modeling the Application Scenarios

We have designed some scenarios representative of different classes of context-
aware applications. As they expose different requirements, different components
from the MoCoA library are employed. In this section, we describe how the
abstractions outlined above are used to model these diverse applications and the
components necessary to support each application.

4.1 The Sentient Sofa

Sentient Objects, Sensors and Actuators To monitor movements on the
sofa, four load cell sensors fitted to the legs are used. Another sensor is employed
to register new users with a keyboard. For this application, two sentient objects
have been defined. As they are collocated and identified, local communication
is used to support their interactions within a proximity that corresponds to the
sofa. While the sentient sofa object produces events for the current mass on
the sofa and its position, a recogniser sentient object uses this information to
identify the user or to register him/her when necessary. Finally, to alert carers,
an actuator producing an audio stream via a set of speakers is used.

Events, Event Channels and Proximities Sensor fusion consists of summing
readings extracted from the events of the four load sensors in order to determine
the total weight of the person (each reading corresponding to the weight applied
to one of the legs of the sofa). The location is then determined by comparing
each sensor reading with the average of the four readings: a person is said to
be in one quarter if the load measured by the corresponding sensor is greater
or equal to the average of the loads read on all sensors. Consequently, sum and
average are used for the fusion of sensor information in this scenario.



Contexts The context graph of the sentient sofa is small, one context is
identified as Empty when there is no one on the sofa and a composite context is
InUse when there is someone on it. Fifteen distinct sub contexts of InUse can
be transitioned to depending on the location and movements of the patient.

Rules and Actions The behaviour of the sentient sofa object is rule-based
and consists of the publication of events of type massChanged when its context
changes for consumption by the recogniser sentient object, that in turn raises
an alarm in case of unexpected behaviour, or registers a new person if the new
mass does not correspond to the weight of a previous user. An example transition
rule is illustrated below, where mass and average are observed facts asserted
by the fusion components. This rule states that if the load cell sensors on the
bottom right and bottom left are measuring a mass greater than the average
mass on the sofa, whilst load cell sensors on the top are measuring a mass less
than the average, then a transition to the context bottom is triggered.

(mass.id == bottomleft && mass.value > average)

&& (mass.id == bottomright && mass.value > average)

&& (mass.id == topleft && mass.value < average)

&& (mass.id == topright && mass.value < average)/

transition(bottom)

The evaluation of this rule followed by the context switch takes approxi-
mately 91µs. Since the sofa and its sensors/actuators occupy a fixed location,
components supporting mobility are not included in the application.

The sentient sofa runs on Debian GNU/Linux and stores user profiles in a
relational database. It was first developed with a CORBA interface, including
in total 1789 lines of code. The new implementation of the sofa generated with
MoCoA represents for the two sentient objects around 900 lines of code and
requires only 287 additional lines for the database access. Using MoCoA, even
for a small sensor-augmented artefact, reduces the need for complex and error-
prone programming.

4.2 Sentient Traffic Lights

Sentient Objects, Sensors and Actuators In this large-scale and highly
decentralised application, which aims to minimise the average waiting time of
all vehicles in the network, we have modeled traffic light controllers as sentient
objects. Each controller manage a 4-way crossroad and obtain information about
its local environment from simulated location sensors attached to nearby vehicles.
Simulated actuators are responsible to change the light phases.

Events, Event Channels and Proximities A custom sensor fusion compo-
nent is required to provide per-approach vehicle counts. To enable convergence
towards a shared view of the congestion in the surrounding area, traffic light



controllers have to share their local view of the congestion at their junction with
neighbouring controllers. Therefore, traffic light controllers advertise via events
their view of the level of congestion associated with a particular approach from
a neighbouring junction. As there is no real-time requirement, STEAM is used
between traffic light controllers.

Contexts As a 4-way crossroad comprises 17 possible phases, sentient traffic
light controllers can take 17 possible actions: stay in the current phase or switch
to another phase. Each sentient object as part of its context has a representation
of the congestion on each approach (i.e., high, medium or low). Sentient traffic
light controllers are then composed of a 17 x 34 = 1377 contexts corresponding to
different signal phases and levels of congestion on the approaches to the junction.

Rules and Actions Instead of using predefined rules, we use the CRL infer-
ence engine component to learn the appropriate action to take within a particular
context. With the incorporation of neighbour views into the knowledge base, the
engine chooses a particular action to take, such as changing from one phase
to another at a particular junction. This is achieved by sending an event to a
simulated actuator responsible for changing the phases at this junction. Subse-
quently, a reward from the environment for taking this action is received, e.g.,
change in the velocities of vehicles on the various approaches to the junction.

Running the simulator described in [28] on Debian GNU/Linux 3.1 and using
a map of Dublin with relevant junction information, we simulated a flow of
vehicles in the city. Our initial results show that an individual sentient object
at a junction can learn the different vehicle flow patterns across the junction
and that the set of sentient objects in the system can optimise their collective
behaviour.

4.3 Sentient Robots

Sentient Objects, Sensors and Actuators In this scenario, traffic lights and
cars that navigate towards some destination are both implemented as sentient
objects. In order to complete their mission, the vehicles are equipped with various
sensors. Location and orientation information is received from a GPS receiver
and digital compass respectively. Six ultrasonic sensors are also mounted on
the vehicles to allow obstacle detection. Furthermore, traffic lights periodically
produce events to inform approaching cars of their states. Once the cars have
infered the actions to take in their current context, they send commands to the
actuator, a software component that controls the gear and the wheels.

Events, Event Channels and Proximities As robots are mobile, they spon-
taneously communicate with anonymous traffic lights that they discover in their
vicinity. To ensure that the robots can react in time to a message, e.g., by brak-
ing if the light is red, the traffic light must have timely communication within a



large enough coverage area. Traffic lights are guaranteed to receive adaptation
events from their infrastructure in time when there is a significant change in the
size of their proximity. As a consequence, they will always have time to adopt
a fail-safe behaviour if communication with nearby robots is not possible, i.e.,
turn to green when they can not communicate with cars. This way, no car will
ever pass through the traffic light when it is red [20]. Real-time wireless com-
munication between remote and anonymous traffic lights and robots is provided
by RT-STEAM. However, local event channels are used between the sensors
mounted on a car and the car itself. Finally, as robots are mobile and only have
interest in their local environment, proximity-based filtering filters out irrelevant
events occurring in the environment.

Readings and Facts The autonomous vehicle uses four pipelines - Command,
ObstacleDetection, AcquireWayPoint and ObeyTrafficLight - to produce
observed facts. In the following, we only look in detail at the ObstacleDetection
pipeline. The ObstacleDetection pipeline uses readings from the ultrasonic
sensors to assert facts concerning obstacles near the vehicle. To fuse information
and handle uncertainty, the Bayesian network defined in the MoCoA’s library is
used and, as a result, the observed fact obstacleLeft/Right/StraightAhead

is asserted when an obstacle is detected with some associated probability. On
average, a fact is asserted 100µs after a sensor reading is received by the Bayesian
network. Training the network beforehand is necessary to obtain the probabilities
of these hypotheses given available evidence from sensors.

Contexts The context hierarchy for the autonomous vehicle is too complex to
examine in detail here (see Figure 5). Instead, we will look at the AvoidObstacle
major context and some of the rules associated with that context. Notice that
several contexts in the context graph can be active at the same time: the robots
may be trying to avoid an obstacle while still obeying a relevant traffic light.

Rules and Actions To drive the behaviour of the autonomous robots, rules
have been defined using the rule-based inference engine. For instance, the Avoid-
Obstacle context is transitioned to when an obstacle is detected, i.e., each con-
text which can transition to this context has a rule of the form:

obstacleRight||obstacleLeft||obstacleStraightAhead/

transition(AvoidObstacle).

In turn, the new context changes the behaviour of robots by changing the
state of their actuator, e.g., raise(leftCommand).

The rule below is an example of a behavioural rule defined in the RelevantTL
context. Cars might have to stop if a traffic light is on their way and will be red
by the time they arrive at it. The decision to start braking is made when the car
reaches the braking distance from the traffic light. This rule expresses a condition
on derived (e.g., brakingDistance) and observed (e.g., trafficLight) facts.



Fig. 5. Context graph of the sentient robots

distanceTo is a function that compares the current position of a robot with the
position of a traffic light. If the condition is true, a stopCommand event is sent
to the actuator that will apply the brakes.

distanceTo(trafficLight.position) == brakingDistance

&& trafficLight.colour == red/

raise(stopCommand)

This scenario represents 588 lines of high-level code and the complete appli-
cation has been entirely generated by the MoCoA framework in 538ms.

4.4 Discussion

As space in this paper is limited, we cannot discuss in detail the different sce-
narios and the implementation of the components used, instead we prefer to
highlight the flexibility and generality of our framework. Our experience and
the above applications show that providing high-level abstractions for sensor-
oriented computing allows to develop easily complex applications ranging from
augmented artefacts to autonomous mobile robots to city-wide smart space ap-
plications. The developer needs only to identify facts, contexts and possibly rules,
then MoCoA automatically selects the appropriate components and generates
(most of the time) the complete code for the specified application.

5 Related Work

There have been numerous efforts at providing middleware to ease the develop-
ment of context-aware applications. However, as discussed below, context-aware



frameworks are often limited to an application domain and fail to provide a
generic solution for all types of context-aware applications.

Dey et al. [29] provide a toolkit which enables the integration of context data
into applications, but do not provide mechanisms for systematically performing
sensor fusion or reasoning about context in a mobile ad hoc environment, as our
framework does. Other work provides mechanisms for reasoning about context
[24] but still does not provide a well-defined programming model and does not
address the challenges of mobility.

More recently, Solar [30] has been developed. This software infrastructure
supports context collection, aggregation and dissemination, and provides a small
composition language, allowing applications to construct a graph of operators
in order to compute desired context from appropriate sources. Our middleware
provides a more generic way of specifying the behaviour of context-aware ap-
plications using different reasoning and learning mechanisms and is not limited
to infrastructure-based applications. Gaia [31] provides different components to
support sensor fusion and reasoning about context. However, it fails to address
the challenges of mobility and is primarily targeted at smart space applications.

Cooperative artefacts [32] are also restrained to one class of context-aware
applications and additionally do not provide much support when reasoning about
contexts. Context-based reasoning is not used to filter the relevant facts/rules/actions.
Similarly, intelligent agents [33] select an action that is expected to bring them
closer to a goal, given their built-in knowledge and the evidences that they per-
ceive from the environment. Although they present powerful mechanisms to deal
with uncertain knowledge, reason and learn, the agents do not exhibit a context-
driven behaviour. As such, decision-making is less efficient and therefore seems
suitable only for small-scale applications.

Another class of middleware for mobile context-aware applications based on
tuple spaces exists. LIME [34] enables mobile coordination by abstracting com-
munication into a tuple space that contains the data available on all connected
devices. EgoSpaces [35], evolved from LIME, defines views that do not require
distributed transactions to be maintained. The goals of these systems are in
line with our objectives but their solutions do not allow decentralised optimisa-
tion through collaboration and are not suitable for applications with timeliness
requirements.

6 Conclusion

The MoCoA middleware framework provides a systematic approach to the de-
velopment of a wide range of context-aware applications in fixed or mobile ad
hoc environments. Through its common programming abstractions, MoCoA de-
scribes a family of possible middleware platform addressing multiple combina-
tions of non-functional requirements. The middleware framework builds on sen-
tient objects, which support sensor fusion, context extraction, reasoning and
event-based communication over fixed or wireless ad hoc networks with the pos-
sibility to include real-time support. Multiple off-the-shelf components offering



implementations of these abstractions are provided by the MoCoA library. In
order to illustrate the generality of our approach, we have successfully instanti-
ated MoCoA for three different types of sensor-based applications, which involve
context-aware entities with different requirements in terms of safety and mobil-
ity. We are currently investigating the behaviour of context-aware application
developers using MoCoA.
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