
Language-Independent Aspect-Oriented Programming
Donal Lafferty

Donal.Lafferty@cs.tcd.ie
Vinny Cahill

Vinny.Cahill@cs.tcd.ie
Distributed Systems Group

Department of Computer Science
Trinity College Dublin

ABSTRACT
The term aspect-oriented programming (AOP) has come to describe
the set of programming mechanisms developed specifically to
express crosscutting concerns. Since crosscutting concerns cannot
be properly modularized within object-oriented programming, they
are expressed as aspects and are composed, or woven, with
traditionally encapsulated functionality referred to as components.

Many AOP models exist, but their implementations are typically
coupled with a single language. To allow weaving of existing
components with aspects written in the language of choice, AOP
requires a language-independent tool.

This paper presents Weave.NET, a load-time weaver that allows
aspects and components to be written in a variety of languages and
freely intermixed. Weave.NET relies on XML to specify aspect
bindings and standardized Common Language Infrastructure to
avoid coupling aspects or components with a particular language.

By demonstrating language-independence, Weave.NET provides a
migration path to the AOP paradigm by preserving existing
developer knowledge, tools, and software components. The tool’s
capabilities are demonstrated with logging aspects written in and
applied to Visual Basic and C# components.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifications -
Language Constructs and Features – multiparadigm languages; D.1
[Software]: Programming Techniques – Aspect-Oriented
Programming

General Terms
Design, Experimentation, Standardization, Languages.

Keywords
Aspect-oriented programming, Weave.NET, Common Language
Infrastructure, language-independence.

1. INTRODUCTION
Crosscutting concerns are “properties or areas of interest” [8] that
normally defy object-oriented (OO) modelling, because the
deployment of functionality to support them does not align with the

composition operations available in an object model [3]. Even
conceptually simple crosscutting concerns, such as tracing during
debugging and synchronization, lead to tangling, in which code
statements addressing the crosscutting concern become interlaced
with those addressing other concerns within the application.
“To ameliorate this problem, AOP offers aspects: mechanisms
beyond subroutines and inheritance for localizing the expression of
a crosscutting concern.” [8] An aspect [15] provides a unit of
encapsulation that couples the behaviour of a crosscutting concern
with a join point specification that details where in component code
the behaviour is to be applied. In the context of AOP, components
[15] correspond to units of well-encapsulated behaviour be it source
code or binaries. The aspects and components of an application are
composed, or woven, to produce a single program.
The principle AOP technologies [8], express a unique view of AOP
in terms of their aspect model. The Demeter group [23] focuses on
the succinct expression of object graph traversals to simplify
programming concerns that crosscut object hierarchies. Multi-
Dimensional Separation of Concerns (MDSOC) research [33]
breaks up the different concerns that an object must address into
separate programming tasks by providing special composition
operators that compose classes from a set of partially complete
behaviours called hyperslices. The Composition Filters (CF) model
[1] exposes message passing between objects for the purposes of
writing behaviour that requires high level coordination amongst
objects. Finally, the AspectJ project [13] augments the Java object
model with an explicit aspect construct that provides mechanisms to
specify and manipulate the control-flow of a program.
Unfortunately, none of these AOP technologies is language
independent, in that they do little to present their composition model
as decoupled from source code, or demonstrate in their
implementation strategies the ability to intermix aspects and
components written in a variety of languages. AspectJ [14] views
aspect and component implementation as a Java coding exercise.
Aspects are only present in source code, and after compilation they
are no longer discernable. Extending this aspect model to other
languages is left to researchers outside the AspectJ team, and no
provision is made to allow reuse of aspects across different
languages. Demeter’s aspect model is based around object graph
traversal, which exists in most, if not all, object models. The latest
Demeter technology, DJ [22], focuses on supporting graph traversal
within the context of Java. Although DJ is based on a library, it
cannot be easily decoupled from Java. As with previous Demeter
implementations [23], the work does not present evidence of
allowing aspects written within one language to operate within the
context of another. MDSOC’s hyperslice work focuses on software
evolution. Its implementation focuses on binary composition [24],
and in its current realisation, Hyper/J, composition is independent of
source. However, composed behaviours must be written in Java, i.e.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
OOPSLA’03, October 26–30, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-712-5/03/0010…$5.00.

aspect and component behaviour cannot be written in a variety of
languages. The CF model is described in terms of how it is applied
to an object model, but implementation strategies identified in [2]
are compilers that address filters in one language or another. CF
research does not look at how filters written in one language could
be applied to objects of another. Moreover, use of a compiler
implies that component source is required to affix filters correctly.
The crux of the matter is that with some effort each aspect model
could be interpreted as supporting language independence, but in
practice none succeeds in making this mapping.
The status quo of allowing AOP to be tied to a particular language is
both paradoxical and wasteful. Speaking philosophically, the
motivation of AOP should be to break the “tyranny of the dominant
decomposition” paradigm [33] of a particular programming
language. Producing a system in which aspects or components are
all written in only one language would seem to reinforce this
tyranny. Certainly, such an approach would do little to improve the
reusability of aspects as compared to one in which aspects written in
one language could be applied to code written in another. Reuse
should not be viewed as a concern specifically of software
components. Programmer knowledge needs to be preserved by
allowing current skills to be reapplied in new paradigms. It would
seem absurd that having mastered writing components in a particular
language that this skill would be discarded. However, coupling
implementation language with AOP composition does just that. The
same is true of development tools for which current approaches
provide no migration path to AOP.
Weave.NET exploits the multi-language support of Microsoft’s
Common Language Infrastructure (CLI) [7], developed for the .NET
Framework, to provide a solution for these problems. Weave.NET is
a language-independent aspect weaver that avoids coupling aspects
or components with a particular language. Weave.NET performs
binary-level composition according to an XML-based composition
script, meaning that the composition specification is not written in
terms of, or using extensions to, a particular programming language.
The script is applied at load-time, well after component and aspect
behaviour is compiled to binary form. As such, the weaver is
oblivious as to the implementation language of these behaviours.
The programming model of Weave.NET is derived from AspectJ
and its architecture based on the CLI. The actual aspect model
implemented in Weave.NET is a generalisation of that of AspectJ
[34]. In particular, Weave.NET shares AspectJ’s join point model
and aims to make available the same pointcut and advice
abstractions. AspectJ uses pointcuts to specify sets of join points,
where one of these sets constitutes a crosscut. Advice affects an
application’s implementation by selecting behaviour that executes
relative to, or instead of, the join points of a pointcut. Weave.NET
supports both, albeit via an XML schema rather than the language
extensions advocated by AspectJ. The format for binaries woven by
Weave.NET is provided by the CLI. The CLI mandates that
extender1 code generation tools target the CLI’s common
intermediate language (CIL, or simply IL), which is analogous to
Java byte-code. IL alone does not contain sufficient information to
identify all join points, but with the CLI’s metadata standard [21] it
is possible to do so without the need for the source code used to
generate a type. Moreover, the CLI’s common type system (CTS)

1 “Compilers that are designed to both produce and extend [a library

consisting of CLS-compliant code] are referred to as ‘extenders’”[7]

allows aspect behaviour written in any language to be applied to any
type written in any other language.
With a subset of advice and pointcut statements, Weave.NET has
been able to demonstrate language-independent AOP. That is, we
have been able to weave aspects whose behaviour is written in one
language with components written in another. Specifically, test cases
have involved applying logging aspects written in C# and Visual
Basic to an I/O library written in C# and a client application of the
I/O library written in Visual Basic.
The rest of the paper is organized as follows. Section 2 explains the
Weave.NET programming model. Section 3 relates elements of our
aspect model to the corresponding CLI architectural element.
Section 4 presents Weave.NET’s XML weaving specification
schema. Section 5 discusses the weaver’s architecture. Section 6
provides an initial assessment of Weave.NET’s language-
independence and performance. Section 7 discusses related work.
Finally, section 8 concludes with a discussion of our findings and a
roadmap to future work.

2. PROGRAMMING MODEL
The Weave.NET programming model addresses two issues: how to
specify aspects, and what architecture is used to compose those
aspects with components. We provide an introduction to both issues
and then contrast the Weave.NET approach to aspect specification
in AspectJ.

2.1 Specifying Aspects
Our aspect writing system is drawn from the experience of the
AspectJ project, according to which “AO languages have three
critical elements: a join point model, a means of identifying join
points, and a means of affecting implementation at join points” [13].
For these three elements, it was convenient to draw on the semantics
of AspectJ [34], since its model was well documented and, in our
opinion, easy to grasp. Fortunately, this aspect model is sufficiently
general that its join points can be identified in CLI types. The
AspectJ pointcut language, including its primitive pointcut
designators, is used to specify sets of join points. Manipulation at
join points is conducted using its advice operators.
AspectJ syntax allows aspects to contain the same members as Java
classes in addition to a set of exclusively AO constructs, such as
pointcuts and advice; however, Weave.NET keeps AO constructs
separate. In Weave.NET the cross-cutting details of an aspect are
written in an XML deployment script. Non-AO type members, and
indeed the behaviour of aspect advice, are obtained from an existing
type implementation.
Weave.NET allows aspect behaviour and components to be
implemented in any language that targets the CLI. Weave.NET
places the declarative elements of an aspect in an XML file separate
from source code. The declarative elements reference binaries that
implement aspect behaviour, while the target components are
specified when the Weave.NET API is called. Thus, aspect
behaviour, as well as that of components, is compiled separately
from the weaving process. The aspect programmer can then choose
a suitable implementation language for aspect behaviour without
affecting the ability to apply that behaviour in a crosscutting
manner.

2.2 Weaving Aspects
At the centre of the composition architecture is the Weave.NET tool
as shown in Figure 1. The input to Weave.NET is an existing CLI
binary component, packaged as a .NET assembly, and an XML file
containing the crosscutting specifications of an aspect. The
behaviour of an aspect is provided separately in another assembly.
Weave.NET recreates the input assembly, but in this new version
join points are bound to behaviour in the aspect assembly as per the
advice statements in the XML. Unlike .NET approaches that bind
components and aspects via proxies [20, 30], Weave.NET modifies
the CIL of the components to access aspect behaviour via method
calls. As a result, clients of components are unaffected by weaving
and weaving on call join points is fully supported.

Figure 1 User-level view of weaving

2.3 Contrasting Weave.NET and AspectJ
Figures 2 and 3 contrast the approach to implementing a logging
aspect in AspectJ and Weave.NET respectively. We start by
explaining the aspect’s function using the AspectJ example, and
then review the Weave.NET implementation looking for contrasts
with the AspectJ approach.
Broadly speaking, the logging aspect is meant to report the data
being written to I/O by a terminal emulator package called tcdIO.
This I/O library was developed for introductory OO and C#
instruction [4], and is referred to in examples throughout this paper.
In the AspectJ implementation of Figure 2, the body of an advice
statement implements the aspect’s behaviour. Arrow 1 highlights
how before advice references another member of the aspect type,
LogWrite, to print data to the logging output. The before
advice is applied to join points identified by the Write named
pointcut, as indicated by arrow 2. Write specifies an intersection of
execution join points specified with the execution and args
primitive pointcut designators The execution designator
identifies the output methods of a Terminal type, while the args
designator selects from among these methods those that take a single
argument2. args also exposes this parameter for manipulation by
aspect advice. Among the join points selected is the execution of the
WriteLine method as indicated by arrow 3. At compile time,
AspectJ composes the aspect with component behaviour such that
the execution of WriteLine initially transfers control to the before
advice, as visualised by arrow 4.
The Weave.NET aspect of Figure 3 has all the elements of the
aspect of Figure 2, but in a slightly different form. The crosscutting
details of a Weave.NET aspect are specified in XML. An abridged
version of the XML for the logging aspect is shown on the right of
Figure 3. The behaviour of an advice statement is contained in a
type referenced by the XML, as shown by arrow 1a. The behaviour

2 The object type has certain wildcard characteristics that allow it to

match parameters of any type.[34]

of a specific advice statement corresponds to methods within that
type as shown by arrow 1b. In the current implementation of
Weave.NET, advice statements reference named pointcuts rather
than using primitive pointcut designators themselves. As such, the
before advice references a named pointcut as shown by arrow 2.
Finally, the XML primitive tags articulate the same
specification as the primitive pointcut designators of Figure 2 as
shown by arrow 3. The transfer of control from component to aspect
that results from weaving is visualised by arrow 4.

3. MAPPING THE ASPECT MODEL TO
CLI
The aspect model in Weave.NET is derived from that of AspectJ. In
this section we summarize this model’s elements, and where
possible, relate the elements to CLI architecture.

3.1 Join Point Model
The Weave.NET aspect model contains only dynamic join points.
Dynamic join points are “well-defined points in the execution flow
of the program” [13]. In contrast, static join points correspond to
types to which new members can be added. The focus on dynamic
join points stems from their identification as core to the AspectJ
aspect model [13].
Dynamic join points are best understood by organising them into
three categories: execution join points, call join points and field
access join points. This organisation is show in Table 1. AspectJ
documentation [34] provides a better characterisation of specific
join point types.

Join point category Join point types
Execution Method execution

Initializer execution
Constructor execution
Static initializer execution
Handler execution
Object initialization

Call Method call
Constructor call
Object pre-initialization

Field access Field reference
Field assignment

Table 1 Categorization of dynamic join points

Execution join points roughly correspond to the execution of a
block of code, as opposed to a call or dispatch to that block. In the
simplest case, the block may correspond to the body of a method.
However, finer distinctions exist when it comes to the execution of
exception handlers and the sequence of constructor executions and
data member initializations during object creation.

Figure 3 Weave.NET equivalent of Figure 2

Weave.NET execution join points correspond to blocks of CIL. In a
.NET assembly, IL code is located on a method by method basis.
The assembly’s metadata identifies which block of IL code
corresponds to which method signature. This is true for constructors
as well, since constructor bodies are modelled as methods with
special names, such as .ctor in case of an instance constructor,
and with certain metadata flags used to distinguish them from other
methods.

Fine grained join points are resolved by closer inspection of the
implementation of the method body. In the case of exception
handlers, extra metadata tables associated with the method’s code
identify blocks of exception handling code. For execution join
points related to object instantiation, it is necessary to examine the
IL at the start of the constructor to distinguish constructor execution
from object initialization. This is because data member initialization
and flow of control between different constructors in a class’

Figure 2 Interpretation of an AspectJ aspect.

inheritance hierarchy is written explicitly into each constructor
method.

Figure 4 An execution join point

To clarify the concept of execution join points, the example in
Figure 4 shows C# source code and corresponding IL of an
execution join point in the tcdIO library. The start and end of the
execution join point are identified relative to the CIL with embedded
comments in bold font.
Call join points are present on the calling side of a method
invocation or when the new operator is called for object
construction. These points are observed as IL opcodes of type
InlineMethod. These opcodes indicate the target method with a
metadata token. Using this token, it is possible to lookup the
signature of the method being called. The signature also indicates
where on the stack the call context is located. Constructors present a
special case. They may be accessed as part of a call join point, for
instance as part of a new operation, or they can be accessed as part
of an execution join point, for instance via this() and super()
calls in Java. Fortunately, these two cases are distinguished by the
opcode used to access the constructor, which is NewObj in the case
of a constructor call join point.
Revisiting the example in Figure 4, we can identify two call join
points. In Figure 5, we highlight the call join point for the
invocation of the WriteLine method in bold font.

Figure 5 A call join point

The final category of join point is that of field access, which
corresponds to a read or write access to a data member, or field in
CLI terminology. These join points do not include final fields,
i.e. constant fields emitted as literals in IL. These join points are
observed as special IL opcodes used to access static and non-static
fields. These opcodes are associated with a metadata token
identifying the signature of the field being accessed.

3.2 Identifying Join Points
To a large extent, the point of our aspect model is to allow succinct
identification of join points and expose portions of their execution
context. To do so, we adopt AspectJ’s pointcut mechanism and its
join point selection operators, called primitive pointcut designators,
used to specify pointcuts. A pointcut selects from among all the join
points in a component those that are relevant to a particular crosscut.
To do so it relies on primitive pointcut designators that select from
certain join point types, as defined by that designator, those whose
metadata description matches the designator’s argument. Thus, this
argument is usually a signature or type pattern, depending on the
designator. Finally, several designators can be used together with
logical operators that take the union or intersection of their join
point sets.
Designators can be broken into three categories according to the
argument that they take. Table 2 identifies designators that identify
join points in control flow directly from signatures or type patterns
associated with the source of these join points. Table 3 identifies
designators that identify join points relative to those of another
pointcut. Finally, Table 4 identifies designators that select join
points according to objects and arguments used in the execution
context of the join point. These designators can also be used to
expose the join point’s execution context to the aspect.

Table 2 Designators specified with a signature or type pattern.

Table 3 Designators specified with a pointcut.

Designator Joint points selected
call(Signature) Method and constructor calls.
execution(Signature) Method and constructor execution.
initialization
 (Signature)

Object initializer execution.

get(Signature) Field reference.
set(Signature) Field assignment.
handler(TypePattern) Exception handler execution.
staticinitialization
 (TypePattern)

Static initializer execution.

within(TypePattern) All join points defined by the selected
type.

withincode
 (Signature)

All join points defined within method or
constructor matching declarations

Designator Joint points selected
cflow(pointcut) All join points encountered during the

execution of join points identified by the
pointcut.

cflowbelow(
 pointcut)

Identical to cflow, but does not include the
join points identified by the pointcut
argument.

Designator Joint points selected
this(
 TypePattern or Id)

Join points in which the object bound to
this is an instance of a particular type.

target(
 TypePattern or Id)

Join points in which the object on
which a call or field operation is applied
to is an instance of a particular type.

args(
 TypePattern or Id,
 ...)

Join points where there are arguments
whose types match those listed by the
designator.

Table 4 Designators that can expose execution context.
In the case of signatures and type patterns, Weave.NET supports
both name-based crosscutting and property-based crosscutting [13].
Name-based crosscutting corresponds to the literal expression of
signatures and type patterns. Thus, with name-based crosscutting the
signatures and type patterns used in a pointcut must match those of
the targeted join points exactly. The CLI provides the
System.Reflection API to access this data. Property-based
crosscutting exploits wildcards to partially specify designator
arguments. In property-based crosscutting, the signatures and type
patterns used in a pointcut correspond to regular expressions.
Fortunately, the CLI supplies a library to support regular expression
use that greatly simplifies resolving these wildcards.
Pointcuts imply a traversal of all join points in the targeted source
code. The CLI provides limited tools for directly accessing
metadata, but none for accessing IL directly. Fortunately, there is a
performance-conscious library called CLIFile Reader [5] that allows
direct access to IL streams.

3.3 Modifying Join Point Behaviour
Weave.NET specifies aspect intersession in join points in terms of
advice constructs described by AspectJ [14]. An advice statement
specifies how to execute behaviour relative to, or rather than join
points, in a pointcut. In principle there are three kinds of advice.
Before advice executes just before the join point. After advice
executes after the join point. Finally, around advice executes in
place of the join point, but retains the capability to activate the join
point.
There are three conditions for the execution of after advice
depending on whether a join point completes normally or as part of
an exception throw. These three categories are named accordingly as
after returning, after throwing, and after advice depending on
whether the join point returns normally, on account of a throw or
due to either. Another difference between these is what variables in
the execution context of a join point may be exposed. In after
advice, the return type is not known. In contrast, after returning
advice can expose the declared return type or an object reference to
it. Likewise, after throwing advice can expose the thrown object.
Code generation in the .NET Framework is supported by the
System.Refleciton.Emit API, but strictly speaking this API
is not supposed to support the modification of existing .NET
assemblies [25]. Weave.NET work on code generation indicates the
current limitation is due to difficulties accessing method IL as a
stream. Using the CLIFile Reader library, sufficient detail can be
obtained to create an assembly at runtime, i.e. a dynamic assembly,
based on an existing persistent assembly.

4. XML SPECIFICATION
The XML schema used in Weave.NET [19] was developed from a
BNF grammar extracted from the Language Semantics Appendix of

the AspectJ programming guide [34], and implemented in the W3C
XML Schema Language [9]. The appendix was chosen as the
specification for AspectJ for its easy to digest descriptions and
supporting examples. However, the difficulty of specifying a
language in a non-rigorous manner emerged when some unexpected
contradictions in the language semantics3 were discovered.
Concentrating on consistency with language syntax, rather than
usability, resulted in an overly verbose XML schema. Recall how
the aspect in Figure 2 was so much more compact than the abridged
Weave.NET version in Figure 3.
As much as possible, the schema exploits the validation capabilities
of W3C Schema. First, aspects are expressed mainly in terms of
XML tags rather than XML tag attributes. The organisation of the
tags and their contents are defined by complex types that can then
validate the grammar of user aspects. Naturally, some tags such as
identifiers and type patterns must contain data. These tags are
described with simple types whose data is limited according to
regular expressions. This removes the need to support a great deal of
error checking in the weaver itself.
As observed in Figure 3, binding to aspect behaviour is done by
name. The aspect’s implementation type is selected by naming the
implementation class and the containing assembly. The
implementation type is selected on an aspect-wide basis to simplify
aspect instantiation to a matter of instantiation of the implementing
class. Binding advice to implementing behaviour is done by having
the XML advice description select the method implementing the
required behaviour. This method’s parameter list must match the
advice’s typed formal parameters. Typed formal parameters
correspond to the list of declarations for variables bound to
execution context in a named pointcut and advice statement [34].
Admittedly, this is a simplification of the AspectJ model as it does
not provide advice with access to metadata objects describing the
join point execution context. However convenient to aspect writers,
reflective access to join point context is not core to AOP, and thus
not crucial at Weave.NET’s current stage of development.

5. WEAVER IMPLEMENTATION
Weave.NET is an aspect weaver implemented as a .NET
component. Its weaving interface accepts as input a reference to a
component assembly and to an XML document that contains the
specification for an aspect. The result of calling this interface is a
new version of the component assembly that is bound to aspect
behaviour at the IL level.
The weaver implementation has two subsystems: code generation
and aspect modelling. The aspect modelling system is responsible
for interpreting the XML aspect specification, modelling aspects in
terms of their pointcuts and advice, and detecting whether join
points match any aspect advice. The code generation system is
responsible for converting an existing assembly to a dynamic
assembly and instantiating objects to represent join points. The
bridge between these two systems is the JoinPoint class

3 In the context of a type pattern [34]: “There is a special type name, *,

which is also a type pattern. * picks out all types, including primitive
types. So call(void foo(*))picks out all call join points to void
methods named foo, taking one argument of any type.” But in the next
paragraph “The * wildcard matches zero or more characters”. In this
case , call(void foo(*))picks out all call join points to void
methods named foo, taking one or zero arguments of any type.”

hierarchy. Instances of this hierarchy encapsulate join point details
for examination by the aspect modelling system. They also provide
code generation capabilities for embedding advice for use by the
code generation system. In this section we will review the code
generation system and examine how it interacts with JoinPoint
objects. Next, we will review the aspect modelling system, and
examine how it too interacts with JoinPoint objects.

5.1 Code Generation Architecture
The code generation system creates a dynamic assembly, i.e. a
System.Reflection.Emit object hierarchy, corresponding to
the assembly targeted for weaving. Were it not for the modifications
specified by the aspect, this hierarchy would be emitted as a new,
but functionally identical assembly. However, as per the aspect,
there will be some differences. The principle classes used by the
Emit library to model a dynamic assembly are shown in Figure 6.
Here, a module corresponds to a physical file. Thus, an assembly
can span files. Types and their constituent members are contained in
one module or another.
The System.Reflection API has been suggested as a tool for
introspecting on existing assemblies [30], but, as noted previously,
this API lacks the ability to directly access the IL stream. Without
access to IL it is impossible to expose call join points, so the code
generation system bypasses the convenience of the Reflection
library and examines the assembly metadata directly with the
CLIFile Reader API [5]. The CLIFile Reader library provides
abstractions to access intra-method details such as the IL stream and
exception handling table. Directly accessing the file was considered,
but CLIFile Reader provides decompression, metadata table
modelling and greatly simplifies resolving cross-references within
table entries.

Figure 6 Dynamic assembly as modelled by Emit library.

The major drawback with using CLIFile Reader is that the metadata
in a .NET assembly is organised on a module basis. That is, type
members are keyed with module-wide identifiers that do not
immediately identify their containing type. In contrast, the Emit
library expects a type to directly reference its constituents. To bridge
these two views, we introduce wrappers for each object class in the
Emit library hierarchy to provide both views, as shown in Figure 7.

Figure 7 Resolving Emit object hierarchy and CLI metadata

indexing.
In this system, conversion to a dynamic assembly requires a
complete traversal of the CIL of every method. This traversal gives
the code generation system an opportunity to expose supported join
points. The join points are modelled by the class hierarchy defined
in Figure 8, where JoinPoint and JoinPointMethodSig are
abstract classes. Currently, Weave.NET only exposes call and
execution join points.
As far as code generation is concerned, JoinPoint classes embed
aspect advice by marshalling parameters and then calling the method
that implements aspect advice. Embedding is requested by the code
generation system before and after it emits the code corresponding
to the join point. Separate classes are required to model each join
point type as the opcodes required for marshalling parameters vary
according to join point type.

Figure 8 JoinPoint class hierarchy.

Aspect instances are associated with class objects through a field
added during code generation. Proper instantiation of aspect
instances requires advance knowledge of which component types
are associated with which aspect instances. Our single-pass weaver
cannot determine this information in advance, which leads to the
addition of potentially unused fields corresponding to aspect
instances. Thus, our work on aspect instantiation is incomplete.

5.2 Aspect Modelling Architecture
Aspect modelling is first activated in order to validate the aspect’s
XML and then convert it into the object hierarchy shown at
the top of Figure 9. The .NET Framework provides the
System.Xml library for modelling XML documents and
System.Xml.Schema for modelling XML Schemas specifically.
These APIs provide support for XML validation and W3C DOM
[11] access for navigating the XML document. Specifically, the
DOM API builds a navigable object graph corresponding to the

XML file. References to nodes in this graph, rather than copies of
their data, are stored by the objects of classes in portion 1 of Figure
9.
An Aspect class object stores details that are static with respect to
the advice and named pointcuts such as a reference to the type
implementing advice behaviour. Specialisations of the Advice
class exist for each kind of advice. Having the ability to modify
existing assemblies allows all types of advice to be supported.
However, the around advice is more reminiscent of method
intersession in reflective programming and well supported in that
domain by, for instance, the Iguana model [27]. As a consequence,
in Weave.NET’s current implementation, we have chosen to focus
on before and after advice. With respect to the three kinds of after
advice, code generation techniques allow any of these options.
However, for an initial implementation, supporting returning after
advice is sufficient as it can be expected that most methods complete
normally, and that experimentation with after advice in general is
most interesting when it is possible to act on the result of the join
point. Regardless of whether they are named or not, all pointcuts are
modelled as named pointcuts. NamedPointcut objects retain a
reference to the XML element corresponding to the root of the
pointcut description. The named pointcut also references its typed
formal parameters. These correspond to the context variables that
the pointcut exposes to advice.
The bottom portion of Figure 9 is instantiated by the code
generation system whenever a join point is identified. The
JoinPoint object contains the join point’s signature and
references to ContextVar objects describing the variables in the
context of the join point. These variables are the parameters used to
activate the join point as opposed to the set of all accessible
variables within the scope of the join point.
The centre of Figure 9 arises when an Aspect object is asked to
generate a PointcutBinding object for a particular join point.
This involves the Aspect object traversing its list of named
pointcuts asking each to determine if the join point is selected by its
pointcut declaration. Matching with named pointcuts, rather than
advice, reduces the maximum number of pointcut traversals to one,
since multiple advice statements can reference the same named
pointcut. The PointcutBinding object produced is used by the
join point to determine which advice statements to apply and which
context variables correspond to each typed formal parameter in the
pointcut. Currently, the typed formal parameters in the advice
method must match the type and order of those in the named
pointcut.
For the purposes of prototyping, the most obvious designators to
support would be the execution and call pointcut designators,
as they are simple to conceptualize and are used in API
programming. In terms of complexity, execution and call map
directly to a particular type of join point, whereas other pointcut
designators, such as within, select groups of join points that span
the three categories of join points. With respect to APIs, the ability
to capture execution join points in an API’s implementation and call
join points during its use allows interesting tests to be formulated to
demonstrate Weave.NET, as we will see in section 6. As far as
implementation is concerned, execution and call designators
can be identified by signature alone. In contrast, cflow pointcuts
must track the stack at runtime to determine when they have
returned to their starting point.

Figure 9 Aspect modelling and join point matching architecture.

As far as context exposure is concerned, our prototype focuses on
the args designator, because it provides quite a bit of detail on the
context in which a join point is called. For completeness, our system
also allows a typed formal parameter to be bound to the value
returned by after-returning advice.

6. INITIAL ASSESSMENT
Our initial assessment examines two areas of interest to potential
users of Weave.NET. Since the focus of our tool is language
independence, our first assessment examines the application of
aspect behaviour, written in different languages, to components,
again written in different languages. Next, our performance analysis
examines the practicality of Weave.NET aspects in terms of their
ability to implement crosscutting concerns and the load-time and
runtime overheads they introduce into an application.

6.1 Cross Language Weaving
To demonstrate cross language weaving, we formulated two
crosscutting scenarios and implemented them with aspect behaviour
written in two languages, for a total of four instances of weaving.
These test cases are captured in Figure 10.
In the first scenario, an execution primitive pointcut designator
is used to perform service-side engineering in the tcdIO library.
The term service-side engineering captures the modification of the
capabilities of an API. In this scenario, tcdIO is modified to log
the use of its output methods, which, in a broader context, can be
useful during teaching laboratories for diagnosis of student problems
as well as grading during student demonstrations.

Figure 10 Language-independence test cases

In this test, the modified tcdIO library is created at runtime by calls
to the Weave.NET API and this modified library is used by a test
suite. Normally, tcdIO would be tested by a test suite that
exercises each of its I/O calls. That test suite has its own entry point
in the form of a public static method called Main. In our test, we
modify the entry point to the test suite to be a different version of
Main that first calls the weaver to apply the logging aspect to the
tcdIO library and then passes control to the Main of the original
test suite. The parameters to the weaving API are the target
assembly, its location, the XML file detailing the aspect to be
applied, and the location of this XML file. When control is passed to
the test suite, the presence of logging calls indicates that the weaving
was successful.
The test is formulated twice. In the first instance, the aspect
behaviour is written in C#. This test is analogous to application of
the aspect described in Figure 3. In the second instance, the aspect
behaviour is written in the Visual Basic of Figure 11.

Figure 11 Simple logging implemented with Visual Basic

In our second crosscutting specification, we perform client-side
engineering on a test suite for tcdIO. The term client-side
engineering captures the modification of the way in which
assemblies call an API. Specifically, call primitive pointcut
designators are used to apply logging advice to calls to tcdIO
during testing. Such logging functionality is suited to the automation
of assignment grading, where we wish to standardize input to
student assignments or verify the results in an automated fashion.
The test procedure is the same used when we attempted service-side
engineering, albeit with the test suite targeted for weaving rather
than the tcdIO library. Again, this test is performed in two
instances where the language implementing the logging
functionality is varied between C# and Visual Basic. These tests are
captured in the composition ovals in the lower half of Figure 10.
The figure accurately describes the aspect functionality in the second
scenario as being reused from the first scenario.
The exact procedure of the test involved calling the weaving API
with the location of the XML document and the component
assembly. While not cited, the aspect behaviour had to be available
at weave time in order to properly generate the woven component.

Based on this testing, two recommendations were made. A metadata
object describing the join point context would make the logging
capabilities more interesting by allowing them to report which
methods they were bound to. Also, the weaver needs to implement
the full XML schema. At present, the weaver lacks the ability to
distinguish join points by accessibility. As a consequence, logging
in the first scenario reports the execution of private methods with
signatures matching the pointcut specification, but whose execution
is of no real interest. This issue will be addressed as we continue
development on Weave.NET.

6.2 Performance
Our examination of performance focuses on establishing the
practicality of Weave.NET. This assessment starts by asking what
problems Weave.NET aspects can in theory solve. Having
investigated its potential for improving programming, we look at
whether applications that make use of Weave.NET will face
unreasonable execution time overheads.
AOP in general has been justified through its ability to improve
performance and at the same time address program complexity by
reducing the number of lines of code [15], and these goals are met
by Weave.NET. Weave.NET addresses tangling in a similar manner
to AspectJ and can thus be expected to have a similar effect on the
number of lines of code in an application. Indeed, this is confirmed
when we compare the number of lines of code required to
implement the components of Figure 10 with logging to the number
of lines of code that Weave.NET requires to implement the same
functionality. This comparison is shown in Table 5, which provides
the source code line count for implementing component and aspect
behaviour separately and for a new implementation in which the two
are combined or tangled. The separately compiled versions
correspond to the source code base when Weave.NET is used, while
the tangled versions correspond to when it is not used. In Table 5,
the aspect behaviour contributes 8 lines of source to the untangled
implementations. This line count is on the code size of the Visual
Basic implementation. Unfortunately, our comparison is somewhat
naïve as the Weave.NET source code size does not take into account
the XML specification of the logging aspect.

Table 5 Comparison of lines of source code in test components
before and after logging calls added manually.

As far as improving application performance by making aspects
available, the tool being used is less of an issue as compared to the
AOP constructs available and their usefulness. Currently
Weave.NET supports a subset of the dynamic crosscutting
constructs of AspectJ. Due to type checking, the current design fails
to support introduction statements required to support static
crosscutting. The full set of dynamic crosscutting constructs
specified, as well as their Weave.NET support, is documented in
Tables 6, 7 and 8. Although the current implementation is limited,
the underlying design and schema used by Weave.NET should be
sufficient to fully support the full set of dynamic crosscutting
operators. Thus, the ability of Weave.NET aspects to improve
application performance is comparable to the ability of AspectJ to
do the same.

Component targeted
for logging

Lines of source in
untangled version

Lines of source in
tangled version

tcdIO test suite 90 141

tcdIO library 361 394

Pointcut designators Supported?
Call Yes
Execution Yes
Get No
Set No
Handler No
Initialization No
Staticinitialization No
Within Yes
Withincode No
Cflow No
Cflowbelow No
This Yes
Args Yes
Target No

Table 6 Primitive pointcut designator support currently
implemented in Weave.NET.

Advice Supported?
Before Yes
Around No
After Yes
After returning Yes
After throw No

Table 7 Advice support currently implemented in Weave.NET.

Aspect Instantiation Supported?
Singleton Yes
Perthis No
Pertarget No
Percflow No
Percflowbelow No

Table 8 Aspect instantiation support currently implemented in
Weave.NET.

Where Weave.NET distinguishes itself from AspectJ is in the use of
load-time weaving. By weaving at load-time, Weave.NET
introduces application overhead not present when AspectJ
applications execute. To put this overhead into perspective, we have
devised a simple test to relate the time required to weave with
Weave.NET to that required by AspectJ to weave pre-runtime.
Although AspectJ is known as a source-level weaver, the most
recent release makes available byte-code weaving so that byte-code
in existing .jar files can be targeted. While it still appears that
source is required for the aspect, the byte-code level component
weaving is not unlike the task carried out by Weave.NET. So, we
have taken a Java version of tcdIO, very similar in design to the
.NET version, and measured the amount of time required for
AspectJ to weave logging into the Java based tcdIO binary.
Logging was also added to a Java port of the tcdIO test suite.

A side by side comparison of weaving times required by
Weave.NET and AspectJ is shown in Table 9 and Weave.NET
compares favourably. The times were recorded during trials on a 1.7
GHz Pentium 4 based PC with 512 MB of RAM running
WindowsXP. Weave.NET ran in the .NET Framework, version
1.1.4322, while AspectJ ran in J2RE version 1.4.2. Weaving was
launched from a command shell, and a mean average taken of the
three best trials among five tests. In examining the results, it should
be pointed out that the AspectJ aspect differed from that used by

Weave.NET in the number of pointcuts required to specify logging.
In the CLI, an object reference can be obtained for any type,
including what Java terms primitive types. Thus, the primitive
pointcut args(Object) matches all methods with a single
parameter in Weave.NET, but in AspectJ it does not include
methods whose single parameter is a primitive type.
The execution times in Table 9 indicate that Weave.NET weave
time is not unreasonable with respect to that of AspectJ. However, it
should be pointed out that the test was performed on a very small
component. Moreover, the version of Weave.NET tested may
benefit from supporting a smaller set of join point types and
primitive pointcut designators than AspectJ. Finally, AspectJ’s
weaving appears to scale better than that of Weave.NET as its weave
time increases more slowly as the size of the component being
woven increases.

Table 9 Load-time overhead Weave.NET compared to similar
weaving in AspectJ (time in milliseconds).

Finally, we would look for Weave.NET to not introduce any run-
time overheard. Beyond aspect instantiation, the current
implementation does not introduce any runtime structures. This will
change as support is added to allow reflection on join point context
and to allow control flow pointcuts that must dynamically track
execution context. So, after accounting for the load-time weaving,
Weave.NET overhead should be zero. This is worth verifying, as
performance has been a major problem for other technologies that in
some sense intercede in normal program execution. For instance, the
runtime reflective programming tool IguanaJ initially reported that
object instantiation time increased by 25 times when the object’s
class was targeted for intercession. [26]. Table 10 provides a
comparison of the execution of tcdIO and its test suite with
logging added by Weave.NET in the first case and added with
manual embedded method calls in the second case. The test platform
and procedure for collecting results here is the same as for the
previous test. The results indicate that Weave.NET introduces no
appreciable increase in runtime overhead in this case.

Table 10 Comparison execution time of Weave.NET and
manually written logging (time in milliseconds).

7. RELATED WORK
The AOSD community website (http://www.aosd.net) provides links
to several other AOSD tools and languages, both supported and
experimental, as well as a host of AOSD methodologies. Among
these are the long standing AOP technologies, MDSOC [24],
Demeter [22], Composition Filters model [2] and AspectJ [14],
examined when section 1 established an absence of language-
independence in AOP technology.
The use of XML in Weave.NET contrasts with previous approaches
that have used CLI custom attributes in expressing crosscutting. The
work on WrapperAssistent [30] has succeeded in providing an
aspect-specific language for expressing fault tolerance, which is
implemented with an aspect specific weaver. Join points are

Weaving task Weaving time for
Weave.NET

Weaving time for
AspectJ

tcdIO weaving 502.5 3568

test suite weaving 365.8 2967

Weave.NET woven logging Manually introduced logging
380.145 381.116

identified by embedding declarative statements in the component
code, which is a matter of great debate within the AO community.
Depending on the importance placed on making join points
oblivious to aspects [10], such annotations would be less preferable
to an approach that required no modification of the component code.
In a more recent version of WrapperAssistent, named Loom.NET
[29], join point selection has become a GUI activity and support has
been added for the aspect specific templates mechanism first
described in [30]. Aspect specific templates provide a way to write
proxies using macros that map to declarative elements in the
component being proxied. The code surrounding these macros is
C#. So, while a component written in any language can be targeted,
the aspects must be written in C#. As part of Loom.NET work a
dynamic library has emerged [31] that provides a mechanism for
weaving aspects at runtime time on an object by object basis. The
aspect model is reminiscent of composition filters in that method
calls to the woven object are delegated to an aspect instance. By
using only CLI elements, the dynamic system should theoretically
allow aspects written in any language to be applied to components
written in any language, but cross language support has not been
verified.
The use of XML to specify aspects is not without precedence.
CLAW [20] and AOP# [32] each present a strategy for language-
independence that relies on XML to specify the crosscutting
elements of an aspect. CLAW explores weaving using a profiling
interface specific to the .NET Framework in order to build dynamic
proxies for aspect weaving. Although CLAW promises to be
language-independent, it lacks an aspect model to dictate how join
points are selected or manipulated. For instance, there is no XML
schema defined for describing aspects. AOP# presents the concept
of aspectual polymorphism in which the implementation used for an
aspect bound to an object will vary according to the context in
which the object is used. Another interesting property is the ability
for aspects to specify requirements in the form of methods that target
components must support. These requirements are mapped to
elements of the component in an XML script. Most recently, the
project has changed name to AOP.NET [28], and produced a
composition library that exploits the .NET Framework’s profiling
interface; however an implementation of the aspect model has yet to
emerge.
Work on AspectC# [16] predates that of Weave.NET. AspectC#
provides an aspect model for C# in which weaving is specified in
XML to avoid extending language syntax. The weaving mechanism
works by manipulating an abstract syntax tree (AST) representation
generated from component source. However, this AST cannot
currently model all languages that target the CLI. Continuing work
on AspectC# centres on plans to adopt the Weave.NET XML
schema for specifying aspect composition.
The code modification mechanism of Weave.NET is explored in the
domain of byte-code instrumentation, which has been exploited by
JMangler [17] [18] to provide an AOP composition mechanism that
allows aspect users to avoid conflicts during composition of
independently developed aspects. JMangler allows transformations
to be written in XML for Java by supplying a new implementation
of the class loader.
Load-time instrumentation was explored at the same time in Binary
Component Adaptation (BCA) [12] and JOIE [6]. BCA allows
adaptation of component interfaces in Java to simplify component
integration in light of evolving component interfaces. With respect

to AOP, BCA is a language specific solution to the interface
evolution crosscutting concern. JOIE characterises the concept of
load-time transformation in the context of a transformation library
that is analogous to the Emit API of the CLI summarized in Figure
6.

8. CONCLUSION AND FUTURE WORK
The purpose of Weave.NET is to make AOP language independent
in so far as the behaviour of aspects and the components to which
they are applied can be written in any language. In contrast to
previous efforts, Weave.NET allows aspect writers to choose the
language in which they implement aspect behaviour. More
importantly, Weave.NET allows existing code to be targeted by
aspects, regardless of implementation language, broadening the set
of components to which AOP can be applied. As a result,
programmers can avoid discarding their existing skills in order to
adopt the AOP paradigm.
This paper describes the operation of Weave.NET from a
programmer’s point of view, and provides details on the underlying
aspect model. The aspect model is drawn from AspectJ, while
language interoperability is based on the Common Language
Infrastructure (CLI) designed for the .NET Framework. The aspect
programmer is responsible for implementing aspect behaviour in the
language of their choice and generating the corresponding binary
component. The crosscutting statements of the aspect are written
with an XML script based on the syntax of AspectJ, and they apply
behaviour from the aspect’s binary component. The schema for this
script is rigorously specified in W3C XML Schema language. The
weaver is implemented with two subsystems, one responsible for
code generation and the other for aspect modelling. Interchange
between the two systems is achieved using objects that model join
points in terms of the details required to match join points to
crosscutting statements in an aspect and the code generation
capabilities required to compose join points with aspect behaviour.
Language-independence was verified in service-side and client-side
engineering scenarios. Specifically, logging, written in C# and
Visual Basic code, was added to the execution of methods in an I/O
package written in C# and to calls to this API by a test suite written
in Visual Basic. Weave.NET’s CLI focus is shared by other
technologies, but these do not match its language-independence
capabilities. Neither do the implementations of other popular aspect
models.
Future work in Weave.NET will involve broadening its crosscutting
capabilities and reflection support to allow for more interesting
aspect behaviour. While the aspect XML schema is complete, the
full set of primitive pointcut designators and advice statements are
not supported, which limits the effectiveness of our aspects. For
example, our initial assessment noted proper logging requires
signature specification be broadened to include accessibility
modifiers. Also, testing indicates the need to make available a
metadata object to provide aspects with reflective access to the join
point’s execution context.

9. ACKNOWLEDGMENTS
We would like to acknowledge Microsoft Research for their
sponsorship of the Weave.NET project, as well as Jim Dowling and
especially Elisa Baniassad for their helpful comments on the final
text.

10. REFERENCES
1. Bergmans, L. The Composition-Filters Object Model. PhD

Thesis, Department of Computer Science, University of Twente,
1994.

2. Bergmans, L. and Aksit, M. “Composing Crosscutting Concerns
Using Composition Filters”. Communications of the ACM, 44
(10), October 2001, pp.51-57.

3. Booch, G. Object-oriented Analysis and Design with
Applications. Benjamin/Cummings, Redwood City, California,
1994.

4. Cahill, V. and Lafferty, D. Learning to Program the Object-
Oriented Way with C#. Springer-Verlag UK, London, 2002.

5. Cisternino, A. CLIFileReader Library, C# Source Code,
http://dotnet.di.unipi.it/MultipleContentView.aspx?code=103,
2002.

6. Cohen, G., Chase, J. and Kaminsky, D., Automatic Program
Transformation with JOIE. In USENIX Annual Technical
Conference ‘98, (1998).

7. ECMA International. Standard ECMA-335 Common Language
Infrastructure (CLI), ECMA Standard, http://www.ecma-
international.org/publications/standards/ecma-335.htm, 2003.

8. Elrad, T., Filman, R.E. and Bader, A. “Aspect-oriented
Programming”. Communications of the ACM, 44 (10), October
2001, pp.29-32.

9. Fallside, D.C. XML Schema Part 0: Primer, W3C
Recommendation, http://www.w3.org/TR/2001/REC-
xmlschema-0-20010502/, 2001.

10. Filman, R.E. and Friedman, D.P., Aspect-Oriented
Programming is Quantification and Obliviousness. In OOPSLA
2000 Workshop on Advanced Separation of Concerns,
(Minneapolis, USA, 2000).

11. Hors, A.L., Hégaret, P.L., Wood, L., Nicol, G., Robie, J.,
Champion, M. and Byrne, S. Document Object Model (DOM)
Level 2 Core Specification, Website,
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-
20001113, 2000.

12. Keller, R. and Hölzle, U., Binary Component Adaptation. In
ECOOP, (Brussels, Belgium, 1998), Springer-Verlag, pp.309-
329.

13. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J. and
Griswold, W.G. “Getting Started with AspectJ”.
Communications of the ACM, 44 (10), October 2001, pp.59-65.

14. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J. and
Griswold, W.G., An Overview of AspectJ. In ECOOP 2001,
(Budapest, Hungary, 2001), Springer-Verlag, pp.327-355.

15. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,
C.V., Loingtier, J.-M. and Irwin, J., Aspect-Oriented
Programming. In The 1997 European Conference on Object-
Oriented Programming (ECOOP’97), (Jyväskylä, Finland,
1997), Springer-Verlag, pp.220-242.

16. Kim, H. AspectC#: An AOSD implementation for C#. MSc
Thesis, Comp.Sci, Trinity College, Dublin, Dublin, 2002.

17. Kniesel, G., Costanza, P. and Austermann, M., Independent
Extensibility for Aspect-Oriented Systems. In ASC Workshop,
ECOOP 2001, (Budapest, Hungary, 2001).

18. Kniesel, G., Costanza, P. and Austermann, M., JMangler - A
Framework for Load-Time Transformation of Java Class Files.
In IEEE International Workshop on Source Code Analysis and
Manipulation (SCAM 2001), (Florence, Italy, 2001).

19. Lafferty, D. W3C XML Schema for AspectJ Aspects, XML
Schema,
http://aosd.dsg.cs.tcd.ie/XMLSchema/aspect_Schema.xsd, 2002.

20. Lam, J. Cross Language Aspect Weaving, Demonstration,
AOSD 2002, Enschede, 2002.

21. Lidin, S. Inside Microsoft .NET IL Assembler. Microsoft Press,
Redmond, Washington, 2002.

22. Lieberherr, K., Orleans, D. and Ovlinger, J. “Aspect-Oriented
Programming with Adaptive Methods”. Communications of the
ACM, 44 (10), October 2001, pp.39-41.

23. Lieberherr, K.J. Adaptive Object-Oriented Software: The
Demeter Method with Propagation Patterns. PWS Publishing
Company, Boston, 1996.

24. Ossher, H. and Tarr, P. “Using Multidimensional Separation of
Concerns to (Re)Shape Evolving Software”. Communications of
the ACM, 44 (10) 2001, pp.43-50.

25. Rajan, J. Re: Reflection.Emit question, Newsgroup posting,
http://discuss.develop.com/archives/wa.exe?A2=ind0012B&L=
DOTNET&P=R2535, 2002.

26. Redmond, B. and Cahill, V., Supporting Unanticipated Dynamic
Adaptation of Application Behaviour. In ECOOP 2002,
(Malaga, Spain, 2002), Springer-Verlag.

27. Schaefer, T. Supporting Meta-types in a Compiled, Reflective
Programming Language. PhD Thesis, Department of Computer
Science, University of Dublin, Dublin, 2001.

28. Schmied, F. AOP.NET, http://students.fhs-
hagenberg.ac.at/se/se99047/english/aop_net.html, 2003.

29. Schult, W. LOOM.NET, http://www.dcl.hpi.uni-
potsdam.de/cms/research/loom/, 2003.

30. Schult, W. and Polze, A., Aspect-Oriented Programming with
C# and .NET. In 5th IEEE International Symposium on Object-
oriented Real-time Distributed Computing, (Washington, DC,
2002), IEEE Computer Society Press, pp.241-248.

31. Schult, W. and Polze, A., Speed vs. Memory Usage - An
Approach to Deal with Contrary Aspects. In 2nd AOSD
Workshop on Aspects, Components, and Patterns for
Infrastructure Software (ACP4IS) in AOSD 2003, (Boston,
Massachusetts, 2003).

32. Schüpany, M., Schwanninger, C. and Wuchner, E., Aspect-
Oriented Programming for .NET. In First AOSD Workshop on
Aspects, Components, and Patterns for Infrastructure Software,
(Enschede, The Netherlands, 2002), pp.59-64.

33. Tarr, P., Ossher, H., Harrison, W. and Stanley M. Sutton, J., N
Degrees of Separation: Multi-Dimensional Separation of
Concerns. In Proceedings of the 21st International Conference
on Software Engineering, (Los Angeles, USA, 1999), IEEE
Computer Society Press, pp.107-119.

34. The AspectJ Team. The AspectJ Programming Guide (V1.0.6),
http://download.eclipse.org/technology/ajdt/aspectj-docs-
1.0.6.tgz, 2002.

