
Location-Aware Event-Based Middleware:

A Paradigm for Collaborative Mobile Applications?

René Meier and Vinny Cahill
Department of Computer Science, Trinity College Dublin, Ireland

rene.meier@cs.tcd.ie

Abstract—Existing research on event-based middleware for
mobile computing has mainly focused on supporting nomadic
applications using wireless data communication based on the
infrastructure network model. Relatively little work has been
done to accommodate collaborative applications that often use ad
hoc networks.
This paper describes a novel kind of event-based middleware,
called STEAM, that has been designed for use in ad hoc
networks. STEAM differs from other event-based middleware in
that its architecture does not rely on the presence of any separate
infrastructure and event notification filters may be used to define
geographical areas within which event notifications are valid,
thereby bounding the propagation of these notifications. Such
proximity-based filtering represents a natural way to filter events
of interest in collaborative mobile applications.

I. INTRODUCTION
Middleware supporting event-based communication is

widely recognized as being well suited to mobile applications
since it naturally accommodates a dynamically changing
population of interacting entities and the dynamic
reconfiguration of the connections between them [1-3].

Existing research on event-based middleware for wireless
networks has mainly focused on what may be termed nomadic
applications. These applications are characterized by fact that
mobile nodes make use of the wireless network primarily to
connect to a fixed network infrastructure, such as the Internet,
but may suffer periods of disconnection while moving
between points of connectivity. Such applications typically
employ infrastructure networks [4]. As a result, most of this
work has concentrated on handling disconnection while
entities move from one access point to another. In contrast, we
focus on collaborative applications characterized by the fact
that mobile nodes use the wireless network to interact with
other mobile nodes that have come together at some common
location. Although these applications may use infrastructure
networks, they will often use ad hoc networks [4] to support
communication without the need for a separate infrastructure.
Consequently, this collaborative style of application allows
loosely coupled components to communicate and collaborate
in a spontaneous manner.

In this paper, we present the architecture of STEAM
(Scalable Timed Events And Mobility), an event-based
middleware for mobile computing, and outline how its
features address the functional and non-functional

requirements of such collaborative applications with a special
emphasis on support for the use of ad hoc networks.

STEAM has been designed for IEEE 802.11b-based,
wireless local area networks and is intended for applications
that include a large number of highly mobile application
components typically distributed over a large geographical
area. Unanticipated interaction between nearby components is
supported, enabling a component to dynamically establish
connections to other components within its current vicinity.
This allows components representing real world objects
currently located within the same geographical area to deliver
events at the location where they are relevant.

We envisage STEAM being utilized by collaborative
applications in various domains including indoor and outdoor
smart environments, augmented reality, and traffic
management. In a traffic management application scenario,
application components may represent mobile objects
including cars, buses, fire engines, and ambulances as well as
objects with a fixed location, such as traffic signals and lights.
When within close proximity, such components may interact
using STEAM in order to exchange information on the current
traffic situation. As a simple example, an ambulance might
disseminate its location to the vehicles traveling in front of it
in order to have them yield the right of way. In general, inter-
vehicle communication may contribute to better driver
awareness of nearby hazards and is likely to lead to safer
driving.

The STEAM event-based middleware has a number of
important differences from other event services that support
mobility [1, 2, 5-7]:

• STEAM assumes an ad hoc network model supporting
very dynamic coupling between application components.

• The architecture of STEAM is inherently distributed. The
middleware is exclusively collocated with the application
components and does not rely on the presence of any
infrastructure.

• Application components are location aware. Geographical
location information is provided by a location service and
used to deliver events at the specific location where they
are relevant.

• Distributed event notification filtering. Event notifications
may be filtered at both the producer and the consumer
side or may be filtered implicitly. Filters may be applied
to functional and non-functional attributes associated with

an event notification including subject, content, and
geographical location.

The STEAM middleware is fully distributed over the same
physical machines as the components that comprise a
collaborative application. This implies that the middleware
located on every machine has identical capabilities allowing
its components either to initiate or respond to communication.
STEAM’s architecture contains neither centralized
components, such as lookup and naming services, nor the kind
of intermediate components that are used by other event
services to propagate event notifications from event producers
to event consumers [1, 6-9]. Generally, dedicated machines
that are part of the event service infrastructure are used to host
such components in order to ensure that they are accessible to
all application components in a system at any time. However,
this approach is impractical in ad hoc environments due to
lack of infrastructure and especially the possibility of network
partition.

STEAM supports distributed event notification filters that
may be applied to the functional and non-functional attributes
of an event notification. Functional attributes include the
subject and content of an event notification, whereas non-
functional attributes may include context, such as the
geographical location of a component, time, and the Quality of
Service (QoS) available from the network. Combining
distributed event notification filters, which may be applied on
both the producer and the consumer side, enables a subscriber
to describe the exact subset of event notifications in which it is
interested, exploiting multiple criteria, such as meaning,
geographic location, and time. For example, filters that are
applied to location information allow application components
to interact based on their current location; an event producer
may define a geographical area within which certain event
notifications are valid thereby bounding the area within which
these event notifications are propagated. STEAM provides
location filters, called proximity filters, that differ from
traditional filters in that they are not inherently located on
either the producer or the consumer side. Producers and
consumers may both apply location filters to determine
whether their current location is within the geographical scope
of certain event notifications. STEAM exploits group
communication, which has been recognized as a natural means
to support event-based communication [10], as the underlying
mechanism for components to interact. However, STEAM’s
approach differs from the traditional approach in that it
utilizes a group communication mechanism based on
proximity [11] enabling the mapping of location filters
describing geographical scope to proximity groups.

The reminder of this paper presents the STEAM
programming model and architecture including the main
middleware components and the employed communications
model.

II. STEAM ARCHITECTURE
The design of the STEAM architecture is motivated by the

hypothesis that there are applications in which mobile
components are more likely to interact once they are in close
proximity. This means that the closer event consumers are

located to a producer the more likely they are to be interested
in the events that it produces. Significantly, this implies that
events are relevant within a certain geographical area
surrounding a producer. For example, in augmented reality
games players are interested in the status of game objects or
indeed other players, only when they are within close
proximity. An example from the traffic management domain
might be a crashed car disseminating an accident notification.
Approaching vehicles are interested in receiving these events
only when located within a certain range of the car.

A. Using Event Types and Proximities
STEAM implements an implicit event model [12] that

allows event producers to publish events of a specific event
type and consumers to subscribe to events of particular event
types. Producers may publish events of several event types
and consumers may subscribe to one or more event types.

To facilitate the kind of location-aware application
described above, STEAM supports a programming model that
allows producers to bound the range within which their events
are relevant. Producers announce the type of event they intend
to raise together with the geographical area, called the
proximity, within which events of this type are to be
disseminated. Such an announcement associates a specific
event type with a certain proximity and implicitly bounds
event propagation. Consumers receive events only if they
reside inside a proximity in which events of this type are
raised.

Producers may define proximities independently of their
physical transmission range with the underling group
communication system routing event messages from producer
to consumer using a multi-hop protocol. Proximities may be of
arbitrary shape and may be defined as nested and overlapping
areas. Nesting allows a large proximity to contain a smaller
proximity subdividing the large area. Fig. 1 depicts two
overlapping proximities of different shape and illustrates that
multiple consuming and producing entities may reside inside a
proximity. These proximities have been associated with events
of type A and type B respectively. Consequently, consumers
handling these event types receive events if they reside inside
the appropriate proximity. Note that entities located inside
these areas handling other event types will not affect the
propagation of these events. An example of overlapping
proximities might include a car disseminating an accident
notification within the vicinity of a traffic light propagating its
status to approaching vehicles.

CX

PX Producer generating events of type X

Consumer interested in events of type X

CA,B

CX

CA CB CA,B

PA

PX CA,B

PB

CA,B

CX

Proximity 1 (event type A)
Proximity 2

(event type B)
PX

CB

Fig. 1. Disseminating events using event types and proximities.

B. Supporting Location Awareness and Mobility
STEAM has been designed to support applications in

which application components can be either stationary or
mobile and interact based on their geographical location.
Mobile application components may move within the scope of
a specific proximity and may move between proximities. This
implies that the STEAM middleware as well as the entities
hosted by a particular machine are aware of their geographical
location at any given time.

SSTTEEAAMM

Event Service Nucleus

Proximity-Based
Group Communication Service

IEEE 802.11b Network (Ad Hoc Network Model)

Location
Service

Data Fusion

Dead Reckoning

Sensor Sensor

Filter Engine

Event Propagator

Event Dispatcher

API

Proximity
Discovery

Service

Proximity Mgr.

Prox. Discovery

Membership Mgr. Message Delivery

Fig. 2. STEAM architecture overview.

As shown in Fig. 2, STEAM includes a Location Service
(LS) that uses sensor data to compute the current geographical
location of its host machine and subsequently provides this
location information to the middleware and to event producers
and consumers running on that machine. To suit outdoor
applications, for example in the traffic management domain,
STEAM exploits a version of the LS that uses a GPS satellite
receiver to provide latitude and longitude coordinates.

In addition to supporting stationary and mobile entities
STEAM allows proximities to be either stationary or mobile.
A stationary proximity is attached to a fixed point in space
whereas a mobile proximity is mapped to a moving position
represented by the location of a specific mobile producer.
Hence, a mobile proximity moves with the location of the
producer to which it has been attached. This implies that
mobile consumers and producers may be moving with a
mobile proximity. For example, a group of vehicles heading in
the same direction may cooperate to form a platoon in order to
reduce their consumption of fuel. These vehicles might
interact using a proximity that has been defined by the leading
vehicle. Such a proximity might be attached to the position of
the leader moving with its location.

C. Subscribing to Event Types
Consumers must subscribe to event types in order to have

the middleware deliver subsequent events to them if they are
located inside any proximity where events of this type are
raised until they unsubscribe. A consumer may move from one
proximity to another without re-issuing a subscription when
entering the new proximity. Thus, subscriptions are persistent
and will be applied transparently by the middleware every
time a subscriber enters a new proximity. This implies that a
subscription to a specific event type applies to all proximities
handling these events even though the subscriber may only
receive a subset of these events at any time. A single
subscription may result in events of a particular event type
raised by different producers in multiple proximities being

delivered. Hence, the set of events received by a subscriber at
a certain time depends on its movements as well as on the
movements of producers and proximities.

In summary, STEAM’s approach to proximity-based event
dissemination allows consumers to specify the event types in
which they are interested and producers to define the scope
within which events of a specific type are relevant. In
principal, either a consuming or a producing entity may define
a proximity. However, we believe that in many application
scenarios it is the producer that would bound the scope within
which its events are relevant. For example, a traffic light
propagating its status to approaching vehicles defines its
proximity based on the location of the next traffic light and on
the local speed limit.

D. Defining Event Types
Applications define event types to specify the functional

and non-functional attributes of the events they intend to
disseminate. Fig. 3 illustrates that a STEAM event type
consists of subject and content representing its functional
attributes, as well as of a self-describing attribute list
representing its non-functional attributes. The subject defines
the name of a specific event type and the content defines the
names and types of a set of associated parameters.
Furthermore, Fig. 3 outlines that a STEAM event instance is
defined in a similar manner by specifying a subject, content
parameter values, and attribute list. Producers and consumers
must use a common vocabulary defined by the application to
agree on the name of an event type. An event type and an
event instance that have the same subject must have an
identical content structure, i.e., the set of parameter names and
types must be consistent. This approach allows an application
to associate non-functional attributes to events of the same
type and to individual event instances. An event type may
include attributes such as proximity, ordering semantics, and
QoS requirements, whereas event instance attributes may
include event priority, temporal validity, and delivery
deadline. As described in more detail below, distributed event
filters may be applied to the subject, content, and attribute list
defined by either an event type or an event instance.

STEAM event type = {subject, content_name_type, attribute_list}
STEAM event instance = {subject, content_value, attribute_list}

Fig. 3. STEAM event type and instance definition.

E. Appying Event Notification Filters
STEAM supports three different event filters, namely

subject filters, content filters, and proximity filters. These
filters may be combined and a particular event is only
delivered to a consumer if all filters match. Subject filters
match the subject of events allowing a consumer to specify the
event type in which it is interested. Content filters contain a
filter expression that can be matched against the values of the
parameters of an event. Content filters are specified using
filter expressions describing the constraints of a specific
consumer. These filter expressions may contain equality,
magnitude and range operators as well as ordering relations.
They may include variable, consumer local information such
as the consumer’s location. Proximity filters are location

filters that define the geographic scope within which events
are relevant and correspond to the proximity attribute
associated with an event type.

III. COMMUNICATIONS ARCHITECTURE
The design of the STEAM communications architecture is

motivated by our approach of bounding the scope within
which certain information is valid and by the characteristics of
the underlying wireless network. We employ a transport
mechanism based on group communication and use a
multicast protocol to route messages between the participants.

A. Using Proximity Groups
Group communication [13] has been recognized as a

natural means to support event-based communication models
[10]. Groups provide a one to many communication pattern
that can be used by producers to propagate events to a group
of subscribed consumers. As shown in Fig. 2, STEAM
exploits a Proximity-based Group Communication Service
(PGCS) [11] as the underlying means for entities to interact.
Proximity groups have been designed to support mobile
applications using wireless local area networks [11]. To apply
for group membership, an application component must firstly
be located in the geographical area corresponding to the group
and secondly be interested in the group in order to join, i.e., a
group is identified by both geographical and functional
aspects. In contrast, classical group communication defines
groups solely by their functional aspect. STEAM defines both
the functional and the geographical aspect that specifies a
proximity group. The functional aspect represents the common
interest of producers and consumers based on the type of
information that is propagated among them, whereas the
geographical aspect outlines the bounded scope within which
the information is valid. Hence, STEAM maps subject and
proximity to the functional and geographical aspect of
proximity groups respectively. Furthermore, proximity groups
can be either absolute or relative. An absolute proximity group
is geographically fixed; it is attached to a fixed point in space.
In contrast, a relative proximity group is attached to a moving
point represented by a specific mobile node. This notion of
absolute and relative proximity groups serves as the basis for
the stationary and mobile scopes supported by STEAM’s
programming model.

B. Locating Proximity Groups
Instead of requiring a naming service to locate entities that

wish to interact, STEAM provides a Proximity Discovery
Service (PDS) that uses beacons to discover proximities. Once
a proximity has been discovered, the associated events will be
delivered to subscribers that are located inside the proximity.
As shows in Fig. 2, each node runs a PDS.

The PDS is also responsible for mapping discovered
proximities to subscriptions and to the underlying proximity-
based communication groups. Hence, the PDS causes the
middleware to join a proximity group of interest, i.e., for
which it has either a subscription or an announcement, once
the host machine is within the associated geographical scope
and to leave the proximity group upon departure from the
scope.

C. Mapping to Proximity Groups
Mapping announcements and subscriptions to groups

requires a means to uniquely identify a group as well as for
consuming and producing entities to retrieve the identifier of
the specific group that disseminates certain events. Unique
group identifiers are traditionally generated either statically or
using global knowledge by means of a centralized lookup
service. STEAM implements an addressing scheme in which
identifiers representing groups can be computed from subject
and proximity pairs. Each combination of subject and
proximity (shape, dimension, and location) is unique
throughout a system. The description of such a pair is used as
stimulus for a hashing algorithm to dynamically generate
identifiers using node local rather than global knowledge.
Upon discovery of a proximity and the associated subject,
producing and consuming entities compute the corresponding
group identifier if the subject is of interest. This scheme
allows entities to subsequently use these identifiers to join
groups in which relevant events are disseminated. Moreover, it
prevents entities that are not interested in certain events from
joining irrelevant groups and as a result, from receiving
unwanted events even though they might reside within the
proximity of the group.

D. Mapping to Ad Hoc Networks
STEAM allows entities to define geographical scopes

independently of the physical transmission range of these
wireless transmitters. Consequently, STEAM supports multi-
hop event dissemination in which nodes residing within the
boundaries of a proximity forward event messages. Members
of the corresponding multicast group recognize the identifiers
of these event messages and subsequently deliver them. Nodes
residing outside a proximity will discard event messages that
they cannot associate with any proximity known to them.

Proximity

S Sender Receiver, non group member

S

R

RM

R

RM

RM
R

Receiver, proximity group member RM

Message
delivery

Transmission
 range

S

RM

RM

R

R

RM

(A) Single-hop event dissemination (B) Multi-hop event dissemination

R

Fig. 4. Event dissemination scenarios.

Fig. 4 (A) outlines a single-hop event propagation scenario
where the transmission range of the sender covers the entire
scope of the proximity. Event messages are propagated within
the transmission range and member nodes will deliver them.
Fig. 4 (B) shows a multi-hop event propagation scenario in
which the proximity exceeds the transmission range of the
sender. The maximum number of hops a message may travel
to reach any member of the group is bounded by the
proximity.

IV. CONCLUSIONS
We have described the architecture of STEAM, an event-

based middleware for collaborative, location aware
applications using wireless local area networks. STEAM
differs from other event-based middleware in that its
architecture does not rely on the presence of any
infrastructure, event notification filtering may be distributed
and may be applied to functional and non-functional attributes
of an event notification. Functional attributes include the
subject and content of an event notification, whereas non-
functional attributes may include context, such as
geographical location of a component. STEAM’s approach of
exploiting location information allows components currently
located within the same geographical area to deliver event
notifications at the location where they are relevant.

ACKNOWLEDGEMENTS.

The work described in this paper was partly supported by
the Irish Higher Education Authority's Programme for
Research in Third Level Institutions cycle 0 (1998-2001) and
by the FET programme of the Commission of the EU under
research contract IST-2000-26031 (CORTEX).

REFERENCES
[1] G. Cugola, E. D. Nitto, and A. Fuggetta, "The JEDI Event-Based

Infrastructure and its Application to the Development of the OPSS
WFMS," IEEE Transactions on Software Engineering (TSE), vol. 27, pp.
827-850, 2001.

[2] Y. Huang and H. Garcia-Molina, "Publish/Subscribe in a Mobile
Environment," in Proceedings of the Second ACM International
Workshop on Data Engineering for Wireless and Mobile Access
(MobiDe'01). Santa Barbara, CA, USA, 2001, pp. 27-34.

[3] R. Meier, "Communication Paradigms for Mobile Computing," ACM
SIGMOBILE Mobile Computing and Communications Review (MC2R),
vol. 6, pp. 56-58, 2002.

[4] B. P. Crow, I. Widjaja, J. G. Kim, and P. T. Sakai, "IEEE 802.11
Wireless Local Area Networks," IEEE Communications Magazine, pp.
116-126, 1997.

[5] I. Podnar, M. Hauswirth, and M. Jazayeri, "Mobile Push:Delivering
Content to Mobile Users," in Proceedings of the International Workshop
on Distributed Event-Based Systems (ICDCS/DEBS'02). Vienna, Austria,
2002, pp. 563-570.

[6] P. Sutton, R. Arkins, and B. Segall, "Supporting Disconnectedness –
Transparent Information Delivery for Mobile and Invisible Computing,"
in Proceedings of the IEEE International Symposium on Cluster
Computing and the Grid (CCGrid 2001). Brisbane, Australia: IEEE CS
Press, 2001, pp. 277-285.

[7] J. Bacon, K. Moody, J. Bates, R. Hayton, C. Ma, A. McNeil, O. Seidel,
and M. Spiteri, "Generic Support for Distributed Applications," IEEE
Computer, vol. 33, pp. 68-76, 2000.

[8] Object Management Group, CORBAservices: Common Object Services
Specification - Notification Service Specification, Version 1.0: Object
Management Group, 2000.

[9] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, "Design and Evaluation
of a Wide-Area Event Notification Service," ACM Transactions on
Computer Systems, vol. 19, pp. 283 - 331, 2001.

[10] G. Banavar, T. Chandra, R. Strom, and D. Sturman, "A Case for Message
Oriented Middleware," presented at Proceedings of the 13th International
Symposium on DIStributed Computing (DISC'99), Bratislava, Slovak
Republic, 1999.

[11] M. O. Killijian, R. Cunningham, R. Meier, L. Mazare, and V. Cahill,
"Towards Group Communication for Mobile Participants," in
Proceedings of Principles of Mobile Computing (POMC'2001). Newport,
Rhode Island, USA, 2001, pp. 75-82.

[12] R. Meier and V. Cahill, "Taxonomy of Distributed Event-Based
Programming Systems," in Proceedings of the International Workshop on
Distributed Event-Based Systems (ICDCS/DEBS'02). Vienna, Austria,
2002, pp. 585-588.

[13] F. Cristian, "Synchronous and Asynchronous Group Communication,"
Communications of the ACM, vol. 39, pp. 88-97, 1996.

