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ABSTRACT

This paper presents a framework for “Filling In” missing gaps in
images and particularly patches with texture. The underlying idea
is to construct a parametric model of the p.d.f. of the texture to
be re-synthesised and then draw samples from that p.d.f. to create
the resulting reconstruction. A Bayesian approach is used to re-
pose 2D Autoregressive Models as generative models for texture
(using the Gibbs sampler) given surrounding boundary conditions.
A fast implementation is presented that iterates between pixelwise
updates and blockwise parametric model estimation. The novel
ideas in this paper are joint parameter estimation and fast, efficient
texture reconstruction using linear models.

Keywords: Texture synthesis, Image reconstruction, Image
restoration, Filling in, Gibbs sampling, Bayesian inference, 2D
Autoregressive models.

1. INTRODUCTION

The problem of filling missing gaps in pictures is a well known
one in the archive film and video restoration field (See for instance
Kokaram [I]}. The problem of missing data also occurs in still
photographs but here reconstruction of the missing image material
can only rely on spatial inference. In such a case, one could con-
sider the problem to be that of texture synthesis in that it is required
to “fill in’ the missing region with some plausible texture. The film
line scratch problem is amenable to such “filling in’ algorithms {1].

‘Filling in’ has been discussed in early literature under differ-
ent names e.g. Strohmer in 1997 [2] presented a frequency domain
method for “Reconstruction of irregularly sampled images”, Hi-
rani [3] in 1996 presented similar work on “Fast interactive noise
removal”. Recently, this problem has been receiving greater atten-
tion in the literature e.g. Efros et al{4], Bertalmio et al [5]. The
process is also called ‘Inpainting’. This problem of ‘filling in’ is
related to the problem of texture synthesis or resynthesis [4, 6]. Tn
the general case of texture synthesis, a typical problem is to take a
small sample of texture and use that to cover a much larger region
in another image. To relate and define the two genres of work more
clearly it is possible to define ‘Inpainting’ or “Filling In’ as a tex-
ture generation process with boundary conditions' and the process
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of Texture synthesis or resynthesis is a texture generation process
without boundary conditions.

The texture generation algorithms that have been proposed
thus far could be considered to fall into two classes ‘parametric’
and ‘non-parametric’. The parametric class tends to contain deter-
ministic algorithms e.g. Strohmer [2], Hirani et al [3], while the
non-parametric class contains stochastic algorithms [7].

This paper introduces the use of 2D Autoregressive models
for “filling in’ and texture generation. As such it is a paramet-
ric process, but by posing the problem as that of estimating the
p.d.f. for the underlying texture, it is able to generate the texture
stochastically. This avoids problems of “flat’ or ‘over blurred’
textural reconstruction. Typically, filling in algorithms tend to be
computationally demarding, but because of the structure of this
framework, a fast algorithm can be developed. The use of MCMC
(the Gibbs sampler) is explored to enable a computationally trivial
iterative process for interpolation.

The following sections first introduce the generative image
model, then illustrate how it could be used for texture generation
and ‘filling in’ by incorporation into a Bayesian framework.

2, THE GENERATIVE MODEL

It is assumed that the underlying image generation process is 2D
autoregressive (AR). Thus a pixel in the original, clean image,
I(x}, where x is a spatial position vector, can be modelled as fol-
lows

P
I(x) = 3 ar()T{x + qe) +e(x) (0

k=1

A particular pixel at site x is therefore predicted by a linear com.
bination of pixels in the current frame plus an added excitation
or residual error e(x} ~ N{0,02{x)). The P cosfficients of the
model are denoted ax, for k = 1... P. The pixels used in the pre-
diction are called the support or neighbourhood of the model and
are mapped by the F spatial offset vectors gx. Note that the model
parameters are non-stationary (they are a function of position x)
in order to capture the statistical non-stationarity in interesting im-
ages. The model parameters are o2, and a (arranged in a vector of
P elements).
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3. JOINT SOLUTION AND RELATIONSHIPS WITH
PREVIOUS WORK

The probiem is posed as that of *Filling in’ missing texture in gaps
in the image. This means estimating both the model parameters
and the missing data itself. Consider a block of pixels containing
the missing data as shown in Figure 1. Let ix contain the known
pixels, and i, the pixels to be estimated (the inner 2 x 2 block
in Figure 1), or synthesised. Let @ represent a vector of modei
parameters [a, o7].

Ultimately. we would wish to manipulate p(iy, 8]ix) to select
an interpolant (estimate of i), i. AND the model parameters 8, at
the same time. Assuming that iy, 8 are independent variables, the
required probability expression can be written as

pliv, Blix) o plirid, 1)plis)p(6) (2)

Connections with previous work can be established at this point.

Efros el al employs the empirical measurement of the distribution
pliu|ix) using surrounding image data. Here we use instead a
parametric form for the distribution via the 2D AR model, hence
we do not require as much image material to ‘learn’ the necessary
distribution. Strohmer and Hirani use an estimate of spectral con-
tent to generate missing texture. The 2D AR model can be consid-
ered to summarise all spectral information without modelling each
spectral coefficient. Additionally, we do not need  patch template
(Hirani), because model estimation is built in to the problem.

To proceed, specific expressions are required for the likelihood
and priors in the equation 2 above. A uniform prior is adopted for
p(a) and p(i. )}, hence p(8) o p(a?), and p(i.) is a constant, For
the residual variance, a Jefferies prior is used: p(e?) o 1/a?. The
Likeihood is examined next.

3.1. The Likelihood

Consider a block of B x B pixels {containing both known and
unknown sites). Within this block e(x) ~ N (0,57} for a subset
of pixel sites chosen such that the prediction support for each site
does not extend outside the block. See figure 1 for B = 4, and
a 3 tap causal AR model. By raster scanning prediction errors or
residuals into e it is always possible to express this residuat error
in different forms. e = Ai = Ajiir + Aui.. Therefore, the
likelihood can be written in a few alternate forms since p(iy|-)
ple). The form needed for “filling in” is as follows

_[Asis + Auiu] [AR + Auiy]
2g2

th&L&)me(
3

4. INTERPOLATION/FILLING IN/TEXTURE
SYNTHESIS

To solve for i., @ in the expression 2, we use the Gibbs sam-
pler. Starting from an initial parameter estimate (which may be 0),
the sampler proceeds iteratively drawing random samples for each
variable in turn. Here the sampler is altered to sample for both
a, o2 at the same time.

(a,07) ~ p(8li); iv ~ piu18,1k) @

0

1 e |8 |6
2 e |®|@
3 ¢ @& |®

Fig. 1. A 4 x4 block of pixels showing a missing 2 x 2 inner
block, Prediction errors are observed at sites marked with
s, and these errors are raster scanned to create the vector e.

These conditional expressions may be derived by integrating
the posterior distribution [8] in equation 2. In addition, the first
joint sample can be achieved using composition sampling which
requires first drawing a sample for a2 then using that sample,
drawing a sample for a as follows.

plolli) = IG((N — P)/2, E(4,i)/2) ()
plali,0l) = Np(a,e2(1"1) ") (6)

where E(-) is the sum squared prediction error in a block using the
Least Squares estimate of the coefficients .

The conditional for i,, can be derived by completing the square
[8, 1] in the argument of the exponent of that equation 3 and yields

Pliulix, a,07) = N(i.,02[AT ALY M
where {. = [ATA] TAT AL, (8)

Hence the MAP estimate for the missing data is i.. In this
case it is identical to the Least Squares interpolant. MAP recon-
structions tend to look ‘faded” when used in the presence of heavy
texture, Instead, we are interested here in using the samples from
the Gibbs sampler. This sample is used as the interpolant to fill
in the missing region. The recipe for drawing a sample from a
multidimensional Gaussian distribution is found in [8, 1].

Direct solution for i,, is computationally demanding because
of the need to invert [AT A.]. For instance, a missing gap of size
8 x 8 pixels and a simple 3 tap causal 2D AR model, requires of the
order of 647 + 102 x 20 operations in total. To improve efficiency,
a fast algorithm is discussed next.

4.1. A pixel update algorithm

The problem is that of drawing samples for the pixel data that con-
stitutes i,. By using the Gibbs sampler this draw can be decom-
posed into draws for each pixel iteratively as follows.

igt =~ Pliut|i-u1,8); fez ~ plivali_vo,);

where 1.1 is the first missing pixe! in a scan of the data, i,- the
second and so on. i_y) represents the current state of all the image
data around the pixel to be treated regardless of whether it contains
missing pixels or not. This sequence of operations converges (o
samples from p{i. |8, ix).
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Since at each iteration, only one pixel is missing, i, becomes
a single pixel sample i,,. Each conditional is now a univariate
Gaussian, and so A, -» a, ctc. Therefore AIAU becomes a
scalar Zf:o af (ap = 1.0), making inversion trivial,

5. THE FINAL ALGORITHM

To adapt to spatially varying image statistics the image is divided
into blocks of fixed size and the same value for 8 is used through-
out each block. Therefore, the model parameter estimation process
is conducted on a block basis and the filling process conducted on
a pixel basis. The starting estimate for the missing data is just the
mean of the pixcls surrounding the “hole’.

1. Selectablock size N x N, for & estimation. Select a model
order and causality. There are P pixels in the support used
by the model.

2. BLOCK BASED MODEL ESTIMATION
{a) For each block DO:

(b) Calculate the least squared estimarte for & using the
Normal equations. Calculate the prediction error in
the block using the estimated &.

(c) Using these values, draw a sample for the model co-
efficients a, and prediction variance a2 using equa-
tions 5 (Inverted Gamma), and 6 (Gaussian) in that
order.

3. PIXEL BASED FILLING IN

(a) Ateach missing pixel site DO:

(b) Lookup the model coefficients for the corresponding
block

{¢) Calcuiate %, according to equation 8 using the previ-
ously generated samples for 8 for the given block.

(d) Generate a sample of the missing data at that site us-

ing i +7 x o/ F_,a? where » ~ N(0, 1),

4. Repeat steps 2,3 for L iterations.

In practice a checkerboard image scan for filling in gives better
convergence than a consecutive raster scan pattern.

6. PICTURES AND PERFORMANCE

Figure 2 shows a textured image (of size 220 rows and 310 columns)
upon which three patches of blue have been drawn to simulate
missing areas. The top left shows the degraded image, the top mid-
die shows the resulting reconstruction when the algorithm above is
applied and the 50th sample is used as the filled in texture. The top
left is the criginal texture. The synthesised texture is shown to be
extremely well matched to the rest of the image. A block size of
32 x 32 was used with a semi-causal modef of 10 taps. ‘The colour
reconstruction was achieved by processing Y, U,V colour planes
separately. There are about 4600 missing pixels in this image, and
the (inefficicntly coded) algorithm took just less than I sec per it-
eration {including both model estimation and pixel filling over the
whole image) to execute on a PIIT 300 MHz PC. The reconstruc-
tion is virtually indistinguishable from the original image.

The last two rows show examples with varied picture content,
The middle row shows an example of picture editing in which the
chain supporting the bicycle is removed by highlighting that area
as missing. In all cases the results are convincing,

See www.mee . ted.ie/~ack/icip2002 for more com-
plete results including a visual illustration of convergence of the
algorithm. Typically 10 iterations show good results for highly
textured images with gap sizes as in the first example shown in
Figure 2.

7. FINAL COMMENTS

This paper has presented a quantitative parametric framework for
texture resynthesis or filling-in. It has been shown that the 2D AR
model can be articulated within this framework to yield useful tex-
tural reconstruction. A fast algorithm has been examined which
removes much of the computational distress caused by using ma-
trix algebra in deriving the process.

It would be useful to allow this algorithm to adapt to the im-
age details more flexibly than on a block basis. This would imply
the solution of a simultaneous segmentation/estimation problem,
Current work revolves around examining multiscale implementa-
tions in an attempt to increase speed and decrease the sensitivity
to block sizes.

The scheme presented in this paper holds much future scope
for generalisation or combination of the ideas presented by Strohmer,
Hirani et al, Efros et al and Bertalmio et al; while still retaining the
notion of *stochastic texture sampling’.
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Fig. 2. Top row: Performance of the algorithm in removing the blue swathes in the top left image Middle: reconstruction,
Right: Original. There is very little visible difference between the reconstruction and the original image. The other two
rows show reconstruction on more typicat imagery. Note that the reproduced resolution is not as good as in the actual
processed data because of the filesize limit required by ICIP. See www.mee.tecd.ie/~ack/icip2002 for more
complete results.
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