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Abstract 
This paper describes a fast  search algorithm f o r  warp- 

ing motion compensation schemes which is bused on 
a first order approximation of a Taylor series. In 
comparison to  a full search algorithm the technique 
significantly reduces the required computational load 
(by a factor of approximately f i f ty)  whilst maintaining 
the performance in terms of prediction error. Further 
gains in prediction error performance are expected as 
the new algorithm is investigated further. 

1. Introduction 
Standard motion compensation schemes employ a 

simple translational motion model when attempting 
to compensate for general motion within a scene. Re- 
cent research, [5], [ a ] ,  141 has been directed at using a 
more complex model to estimate the motion more ac- 
curately, which has lead to the development of new 
techniques known variously as control grid interpo- 
lation, warping or affine motion compensation meth- 
ods. In all these approaches the image domain is de- 
fined as a set of non-overlapping polygons (generally 
triangles or quadrilaterals). Motion compensation is 
then achieved by deforming this ‘rubber sheet’ which 
thereby avoids the ‘blocking artefacts’ associated with 
block matching algorithms. The simplest approach 
to estimating the correct displacement for each ver- 
tex is to perform a full-search, whereby each vertex 
is displaced to every possible pixel position (i.e. ev- 
ery position that maintains a set of non-overlapping 
polygons) and an error measure evaluated. To ob- 
tain subpixel accuracy, a half pixel or quarter pixel 
search, local to the minimum found at full pixel pre- 
cision, can be undertaken (note that these non-integer 
shifts are accommodated by using a bilinear interpo- 
lation method). Results from this approach generally 
outperform the more traditional blockbased methods 
but are much more computationally demanding. Al- 
though researchers in this area have proposed various 
fast search algorithms none have implemented a coher- 
ent optimisation strategy equivalent to the full search 

method outlined above. This paper describes such a 
method, outlines the reduction in complexity that is 
achieved and gives initial results obtained using the 
algorithm. 

2. Triangulation 
An adaptive procedure based on a Delaunay trian- 

gulation approach is used to create the triangulation, 
[3], [l]. This technique allows smaller triangles to be 
placed in areas of the image where large compensation 
frame differences can occur. A background matrix is 
used to indicate where the smaller triangles should be 
placed. Note that no coding overhead is incurred with 
this method as the background matrix is based on a 
smoothed frame difference that can be locally gener- 
ated at the decoder using the last two decoded frames. 
Figure 1 illustrates a background matrix and the cor- 
responding triangulation that is generated. 

3. Gradient-based Algorithm 
Having generated a triangulation, and given ad- 

jacent images I, and -In-l, we define a cavity as be- 
ing all the triangles associated with a given vertex. 
The motion model employed in the algorithm is of the 
form In(x) = I,-l(Ax) where In(x) is the grey level 
of the pixel at  position vector x in image n and A 
represents an affine transform. To warp a cavity, the 
central vertex of that cavity is displaced via the affine 
transform A. Whilst this central vertex is moved the 
outer boundaries of the cavity are fixed, which reduces 
the estimation of A to a two parameter problem (as 
explained below). An iterative mechanism can be de- 
rived by linearising the motion model about a current 
estimate for A, Ai via a Taylor series expansion. An 
update Ui to Ai can then be generated which attempts 
to force the estimation process to converge to the cor- 
rect displacement for the vertex. The Taylor series 
expansion is as follows: 

where tn-l(Aix) represents the higher order terms of 
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Figure 1: (a) Background matrix 
(b) Generated triangulation 

the expansion and the V operator is the multidimen- 
sional gradient operator. Assuming that Ui is small 
the higher order terms in the expansion can be ig- 
nored. Defining the frame difference for iteration, i at 
position vector x as FDi(x) = In(x) - In-l(Aix) we 
obtain: 

FDi(x) M (Ui)TVIn,_ l (Ai~)  (1) 
The error measure used to test whether convergence 
is complete after iteration i is the squared difference 
between the unwarped data from frame n and warped 
data from the adjacent frame n - 1. The following de- 
scribes how the iterative update mechanism is derived. 

Figure 2 illustrates two triangles from a given cav- 
ity associated with the vertex, V which moves from 

image n. Note that triangle 1 has vertices (xi:,yti) 
and (x i \ , y i \ )  that remain constant for the update 
of this cavity and that all other triangles associated 
with vertex, V have vertices (zty, y:?) and (xhy, y i y )  
which also remain constant for the update of this cav- 
ity. The motion model adopted allows warped points 
in image n- 1 at iteration i to be matched to unwarped 
points in image n in the following manner: 

(X(V,n - l ) ,  Y(V,n-l))  in image - 1 to (qv,n+ Y(V,n)) in 

where ai"", b;N, and dlN are the affine model pa- 
rameters associated with triangle N at iteration i. As 
noted above, this problem can be reduced to optimis- 
ing just two parameters given t,he fact that vertex 2 of 
each triangle remains constant during the update of a 
given cavity. Thus aiN can be related to  and d fN  
to bfN as follows: 

(3) 

(4) 

It is now possible to determine a relationship between 
the affine model parameters cf" and bitN for an arbi- 

a b 

Figure 2: (a) Example cavity 
(b) Two triangles from cavity 

trary triangle N ,  in the cavity, and parameters c:' and 
bt l  of triangle 1 in the cavity: 

b: E-F 
G - H  

b:N = 

(5) 

Equation 2 can be rearranged to obtain: 

I'k,y and A;,y are terms relating each point in any tri- 
angle in a cavity to the values cl' and b f l  associated 
with triangle 1. The &gi term is the update term, 
U; from equation 1 which can now be rewritten for a 
given position vector x as : 

This is now extended to all points in the cavity by 
setting up a vector equation as follows. It is assumed 
that there are M points and N triangles in the cavity, 
that the jth point in triangle t has position vector x$ 
and that the values of r and A at this position vector 
are rj and A$ respectively. It is also assumed that 
triangle t has Pt points within it.  The vector equation, 
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To solve for gi a pseudo inverse approach is used: 

The gradient operator at  each point is determined 
through a simple difference technique. Note that un- 
like many of the other fast algorithm techniques this 
approach only requires the inversion of a 2 x 2 ma- 
trix. Having determined new values for gi, we can 
update all points in the cavity and determine the re- 
sulting prediction error. This iterative process can be 
performed until either the prediction error falls below 
a maximum error threshold, or we exceed a maximum 
number of iterations. Note that we can perform ei- 
ther backwards matching whereby the previous frame’s 
data is warped and matched to the current frame (i.e. 
In(x) = In-l(Ax)) or forwards matching whereby the 
current frame’s data is warped and matched to the 
previous frame (i.e. In-l(x) = In(Ax)). The results 
in this paper are all examples of backwards matching. 

4. Complexity Derivations 
To approximate the complexity of each algorithm 

it is assumed that the ratio of the number of trian- 
gles TT to the number of vertices (or cavities) VT 
in the adaptive triangulation can be approximated as 
TT = 2VT (ignoring edge effects and assuming that 
there are on average 6 triangles around each vertex). 
Assuming that a single operation consists of an ad- 
dition or a multiplication the warp of a point by a 
2 x 2 matrix is assigned as taking six operations and 
the bilinear interpolation of a non-integer pixel value 
from its surrounding integer values is assigned as tak- 
ing eleven operations. 

For a cavity containing M points the approximate 
number of operations required to find the best match 
using the full search strategy was found to be 21M2 
compared to the gradient search strategy which re- 
quired 150M operations. To determine the operations 
per frame given a frame size S x S and an average 
of 6 triangles per cavity the substitution M = E is 

made and the result then multiplied by the number 
of cavities (i.e. VT) .  This substitution represents the 
number of points in a cavity as the average number of 
triangles in a cavity multiplied by the average num- 
ber of points in a triangle. Assuming S = 256 and 
VT = 128 it is found that the full search strategy re- 
quires approximately 6.34 x l o 9  operations per frame 
whereas the gradient strategy requires approximately 
2.95 x lo7  operations per frame resulting in a drop in 
complexity by a factor of 215. 

5. Results 
The average execution time per frame for the first 

fifty frames of the ‘Claire’ test sequence (sampled at 
12.5 frames/sec and using 128 motion vectors) was 
2162 seconds for the full search strategy and 13 sec- 
onds for the gradient search strategy implying a drop 
in complexity by a factor of 170. This agrees well with 
the approximated values. 

The method outlined above is one-pass in nature 
in that each cavity is only optimised once. In practice 
it is found that much better results can be obtained by 
passing through the cavities more than once although 
this correspondingly increases the complexity of the 
algorithm. The following table illustrates the increase 
in both performance and complexity as the number of 
passes increase for the ‘Claire’ test sequence, note that 
the Peak Signal-to-Noise Ratio is used as a measure of 
reconstructed image quality (in which the prediction 
error is regarded as noise). 

34.2 37.8 
4 44.9 38.0 
5 55.1 38.1 

To assess the maximum performance of the algorithm 
the following results were all obtained using a five pass 
strategy for the cavities. Figures 3 and 4 illustrate the 
Peak Signal-to-Noise Ratio for the algorithm described 
above for the first eighty frames of the test sequence 
‘Suzie’ (at QCIF resolution using 128 motion vectors). 
The algorithm is compared to full search triangular 
schemes and block-based gradient and subpixel block 
matching schemes. To allow a fair comparison between 
schemes in terms of coding requirements the motion 
vectors of the gradient schemes were rounded to half 
pixel accuracy prior to reconstruction. As can be seen 
the triangular gradient based algorithm performs on 
average as well as the triangular full search methods 
and better than both the block-based methods. Note 
that frames 45 through to  55 contain motion primarily 
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Figure 3: Displaced frame difference errors for the ‘Suzie’ test sequence 
___ : Triangular Gradient based method 
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Figure 4: Displaced frame difference errors for the ‘Suzie’ test sequence 
____ 
- - - _  

: Triangular Gradient based method 
: Sub pixel block-matching method 
: Block gradient-based method 

consisting of large translations which is why the full 
search block matching method performs better than 

volume 4, pages 2645-2648, Munich, Germany, April 
1997. IEEE Computer Society Press. 

the triangular gradient method over this region of the 
sequence (see [l]). The mean PSNR for each of the 
methods is shown below. 

Triangular full search, 1 pix. 
Block-based gradient search scheme 35.0 
Block-based full search, pix. 36.4 

We are currently engaged in improving the optimisa- 
tion strategy outlined in the section above. 
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