
Slotted-Circus

A UTP-Family of Reactive Theories
∗

Andrew Butterfield1, Adnan Sherif2, and Jim Woodcock3

1 Trinity College Dublin, Andrew.Butterfield@cs.tcd.ie
2 Universidade Federal de Pernambuco, ams@cin.ufpe.br

3 University of York, Jim.Woodcock@cs.york.ac.uk

Abstract. We present a generic framework of UTP theories for describing systems whose
behaviour is characterised by regular time-slots, compatible with the general structure of the
Circus language [WC01a]. This “slotted-Circus” framework is parameterised by the particular
way in which event histories are observable within a time-slot, and specifies what laws a
desired parameterisation must obey in order for a satisfactory theory to emerge.
Two key results of this work are: the need to be very careful in formulating the healthiness
conditions, particularly R2; and the demonstration that synchronous theories like SCSP
[Bar93] do not fit well with the way reactive systems are currently formulated in UTP and
Circus.

1 Introduction

1.1 Circus and slotted-Circus

The formal notation Circus [WC01a] is a unification of Z and CSP, and has been given a UTP
semantics [WC02]. A Circus text describes behaviour as a collection of actions, which are a combi-
nation of processes with mutable state. However, apart from event sequencing, there is no notion
of time in Circus.

A timed version of Circus (Circus Time Action or CTA) has been explored [SH02, She06] that
introduces the notion of discrete time-slots in which sequences of events occur. In CTA, we have
a two-level notion of history: the top-level views history as a sequence of time-slots; whilst the
bottom-level records a history of events within a given slot. The key notion in this paper is that
we can instantiate the bottom-level history in a variety of ways: as simple traces, or multisets
of events, or as the more complex “micro-slot” structures used in the operational semantics of
Handel-C [BW05].

This paper describes a generalisation of CTA called “slotted-Circus”, which is a collection of
theories parameterised by different ways to instantiate the bottom-level event history within a
time-slot. The motivation behind this work is the desire to re-cast existing semantics for Handel-
C into the UTP framework so that Circus can be used as a specification language.

The Handel-C denotational [BW02] and operational semantics use this time-slot model, but
with varying degrees of complexity in the slot structure, depending on which language constructs
we wish to support. The slotted-Circus framework reported here is intended to be a foundation for
formulating the common parts of these models, making it easier to explore the key differences.

1.2 UTP: General Principles

Theories in UTP are expressed as predicates over a pre-defined collection of free observation vari-
ables, referred to as the alphabet of the theory. The predicates are generally used to describe a
∗

research reported in this paper was partially supported by Qinetic

P ; Q b= ∃ obs0 • P [obs0/obs
′] ∧ Q [obs0/obs]

P CcB Q b= c ∧ P ∨ ¬ c ∧ Q

P u Q b= P ∨ Q

u
i∈I

Pi b= ∃ i : I • Pi

S v P b= [P ⇒ S]

Fig. 1. Basic UTP Operators

relation between a before-state and an after-state, the latter typically characterised by dashed
versions of the observation variables. A predicate whose free variables are all undashed is called a
(pre-)condition. A given theory is characterised by its alphabet, and a series of healthiness condi-
tions that constrain the valid assertions that predicates may make. In almost all cases there are
some basic operators common to every theory (Figure 1). Sequential composition (P ; Q) corre-
sponds to relational composition, i.e., the existence of an intermediate state (obs0), such that P
relates obs to obs0, whilst Q relates obs0 to obs ′. The conditional PCcBQ is generally used when c
is a condition and asserts that P holds if c is true, otherwise it asserts Q . Nondeterminism between
two predicates P u Q is simply logical disjunction, which extends to an existential quantifier for
a nondeterministic choice over an indexed set (ui

Pi). We capture the notion of refinement v
as logical entailment between the implementation and specification predicates, quantified over all
free variables.

We note that UTP follows the key principle that “programs are predicates” [Hoa85b], and
so does not distinguish between the syntax of some language and its semantics as alphabetised
predicates. In other words, we view the language constructs as being “syntactic sugar” for their
predicate semantics, rather than defining some form of semantic function mapping some abstract
syntax type to some domain capturing its meaning.

1.3 Structure and Focus

The main technical emphasis of this paper is on the construction of the generic framework and
the required healthiness conditions, with the semantics of the language constructs and a case
study provided to give a feel for its utility. We first present the syntax §2, generic framework §3,
healthiness conditions §4, and semantics §5. We then discuss instantiation §6 and describe a case-
study §7, before mentioning related §8 and future §9 work, and concluding §10. Two appendices
give supporting material.

2 Syntax

The syntax of Slotted-Circus is similar to that of Circus, and a subset is shown in Figure 2. The
notation X + denotes a sequence of one of more X . We assume an appropriate syntax for describing
expressions and their types, subject only to the proviso that booleans and non-negative integers
are included.

The basic actions Skip, Stop, Chaos are similar to the corresponding CSP behaviours [Hoa85a,
Sch00], respectively denoting actions that do nothing and terminate, do nothing and wait forever,
or act unpredictably forever. We also introduce (multiple) assignment (:=) and event (communi-
cation) prefixes Comm → Action as basic actions. The communication prefixes range over commu-
nicating a value on a channel (Name.Expr), sending a value on a channel (Name!Expr), or receiving

Action ::= Skip | Stop | Chaos

| Name+ := Expr+ | Comm → Action | Action 2 Action

| Action |[VS | CS | VS]| Action | Action\CS

| µ Name • F (Name) | Wait t | . . .
Comm ::= Name.Expr | Name!Expr | Name?Name

Expr ::= expression

t ::= positive integer valued expression

Name ::= channel or variable names

CS ::= channel name sets

VS ::= variable sets

Fig. 2. Slotted-Circus Syntax

a value on a channel (Name?Name). The composite action operator 2 denotes external choice,
whilst parallel composition of actions (|[VS | CS | VS]|) is parameterised by three sets, the first and
third denoting the variables the corresponding action may modify, while the middle one specifies
the synchronisation channels. We require that parallel processes modify disjoint parts of the state.
We also have hiding (\ CS) and recursively defined actions (µName • F (Name)).

The key construct related to time-slots, and hence not part of Circus, is Wait t which denotes
an action that simply waits for t time-slots to elapse, and then terminates.

3 Generic Slot-Theory

Both the semantics of Handel-C [BW05] and the timed extension to Circus called “Circus Timed
Actions (CTA)” [SH02, She06] have in common the fact that the models involve a sequence of
“slots” that capture the behaviour of the system between successive clock ticks. These slots contain
information about the events that occurred during that time slot (“history”) as well as the events
being refused at that point. A key feature of all these semantic models is that the progress of
events during a time-slot is observable, rather than just the overall outcome for an entire slot.
While the initial goal was to develop a synchronous variant of Circus, it rapidly became clear that
it was worth investing time in a generic slot-based theory, which could then be specialised to cover
synchronicity, CTA, and the various slot-models that could be used to characterise Handel-C and
similar synchronous hardware languages at various levels of detail.

We begin our description of the generic slotted theory by noting that it is parametric in three
inter-related aspects:

– A given set of events, E .
– A type constructor H that builds a slot’s history-type from an event type.
– A collection of basic functions that work with H E , which must satisfy certain laws.

Given H, we then define the notion of a slot (S) as being a pair: a history and a set of events
denoting a refusal:

S E =̂ (H E)× (P E) (1)

In a sense a slot is similar to the notion of a failure in CSP [Ros97], except that it covers only
the events within a single time-slot (i.e., between two successive clock ticks). Given a notion of
time-slot, we then introduce the top-level notion of event history as being a non-empty sequence

AccH : H E → P E

EqvTrcH : E∗ ↔ H E

HNullH : H E

�H : H E ↔ H E

HaddH : H E ×H E → H E

HsubH : H E ×H E 7→ H E

HHideH : P E → H E → H E

HSyncH : P E → H E ×H E → P(H E)

Fig. 3. Generic Functions over H E

of slots. The presence of clock-ticks in the history is denoted by the adjacency of two slots, so a
slot-sequence of length n + 1 describes a situation in which the clock has ticked n times.

We can now describe the observational variables of our generic UTP theory:

ok : B —True if the process is stable, i.e., not diverging.
wait : B —True if the process is waiting, i.e., not terminated.
state : Var 7→ Value —An environment giving the current values of slotted-Circus variables
slots : (S E)+ : —A non-empty sequence of slots recording the behaviour of the system.

The variables ok , wait play the same role as the in the reactive systems theory in [HH98, Chp. 8],
while state follows the trend in [SH02] of grouping all the program variables under one observa-
tional variable, to simplify the presentation of the theory.

In order to give the generic semantics of the language, we need to provide six functions and
two relations over H E , listed in Figure 3. Function Acc returns the set of events mentioned
(Accepted) in its history argument. The relation EqvTrc relates a history to all event sequences
(traces) compatible with it. HNull is a constant denoting an empty history. Infix symbol� captures
the notion of one history being a prefix, of pre-history of another, and is required to be a pre-order.
The functions Hsub and Hadd capture the notions of history subtraction and addition (extension).
In particular we note that Hsub is partial and is only defined when the second argument is a pre-
history of the first. Function HHide acts to remove a set of events from a history. Finally the
HSync function generates all the possible histories that can result from the synchronisation of two
histories over a given event set.

In order to produce a coherent theory, the functions have to obey a number of laws, listed
in Appendix A. Most of the properties concerned capture reasonable behaviours that one would
expect of histories, e.g., that history addition is associative, or that the null history acts as a
unit. Most of these laws where determined by the needs of the general theory, in particular the
definitions and proofs needed to establish the required healthiness conditions.

As an example, a variation of the CTA theory of [She06] can be captured by defining an event
history (HCTA E) to be a sequence of events, and instantiating most of the functions and relations
as the corresponding ones for sequences.

HCTA E =̂ E∗ (2)

3.1 Derived Types and Operators

Given the definition of H, and the associated functions and relations, we need to use these to
define the corresponding aspects for slots, and the slot-sequences that comprise our observational

EqvTrace : E∗ ↔ (S E)∗

Refs : (S E)+ → (P E)+

EqvRef : (S E)+ → P E

4 : (S E)+ ↔ (S E)+

≈ : S E ↔ S E

∼= : (S E)+ ↔ (S E)+

SaddS : S E × S E → S E

SsubS : S E × S E 7→ S E

]] : ((S E)+ × (S E)+) → (S E)+

rr : ((S E)+ × (S E)+) 7→ (S E)+

Fig. 4. Derived Functions and Relations

variables (see Figure 4). EqvTrace, defined in terms of EqvTrc, relates traces to slot-sequences with
which they are compatible. The functions Refs and EqvRef extract refusals from slot-sequences,
with the former returning a refusal-set list, whilst the latter singles out the last refusal set. A
slot-sequence s is a slot-prefix of a slot-sequence t , written s 4 t if the front of s is a prefix of t
and the history component of the last slot of s is a history-prefix of the corresponding component
of the first slot of t − s. The relation 4 is a pre-order. Slot equivalence ≈ and Slot-sequence
equivalence (∼=) are the symmetric closure of � and 4 respectively, giving equivalence relations.
An important point to note here is that if s ∼= t , then s and t are identical, except for the refusal
values in the last slot in each.

The notions of adding (extending) and subtracting histories are lifted to the slot level, but here
an issue immediately arises as to how the refusal components are handled. If we consider history
addition, then Hadd(h1, h2) is intended to capture the history resulting from the events of history
h1, followed by those of h2. We now note that in most CSP-like theories, a failure consisting of a
trace/history of events (h) coupled with a refusal set (r), is to be interpreted as stating that the
process under consideration is refusing the events in r , after having performed the events in h.
Given this interpretation, we are then required to specify slot addition and subtraction as follows:

Sadd((h1,), (h2, r2)) =̂ (Hadd(h1, h2), r2)
Ssub((h1, r1), (h2,)) =̂ (Hsub(h1, h2), r1)

For history subtraction, the value Hsub(h1, h2) is defined only if h2 � h1, and denotes those events
in h1 that occurred after those in h2. The significance of this interpretation is important, as will
be made clear when we consider an attempt to model Synchronous CSP (SCSP) [Bar93] later in
this paper. A consequence of this interpretation is that one of the healthiness conditions discussed
in the next section (R2) becomes more complex.

Given slot addition and subtraction, these can then be lifted to act on slot-sequences, as]]
and rr respectively. The latter is only defined if its second argument is a 4-prefix of its first.
Slot-sequence addition concatenates its two arguments, merging the last slot of the first with the
first slot of the second:

slots1]] slots2 =̂ front(slots1) a 〈Sadd(last(slots1), head(slots2))〉a tail(slots2) (3)

Slot-sequence subtraction s rr t is defined when t 4 s, in which case both s and t can be written
as

s = pfx a 〈slots〉a sfx
t = pfx a 〈slott〉

In this case, the subtraction becomes:

s rr t =̂ 〈Ssub(slots , slott)〉a sfx (4)

4 Healthiness Conditions

Given that we are defining semantics as predicates over before- and after-observations, we need to
ensure that what we write is feasible, in that we do not describe behaviour that is computationally
or physically infeasible (e.g., undoing past events). In UTP, the approach to handling feasibility
is to define a number of so-called healthiness conditions that characterise the sort of predicates
which make sense in the intended interpretation of the theory.

While the notion of healthiness-conditions is well-understood in the UTP community, we are
still going to take time for the presentation that follows, as we highlight a prevalent use of over-
loading that can have unexpected effects in inexperienced hands.

Given a healthiness condition called H we introduce two functions, mkH and isH. In order to
denote a healthiness condition, we require that the former is an idempotent monotonic predicate
transformer, w.rt. to the standard ordering used in UTP, namely that S v P iff [P ⇒ S]. The
role of mkH is to convert an un-healthy predicate into a healthy one, in some fashion, but also
to leave already healthy predicates unchanged (hence the need for idempotency, so that a healthy
predicate is a fixed-point of mkH).

mkH : Predicate → Predicate
mkH = mkH ◦mkH

Function isH asserts a healthiness condition, i.e., is a higher order predicate that tests a given
predicate to see if it is healthy:

isH : Predicate → B
isH(P) =̂ P ≡ mkH(P)

We can summarise by saying that a healthy predicate is a fixed-point of the corresponding health-
iness predicate transformer. In most material on UTP, it is conventional to overload the notation
H to refer to both mkH and isH, with the use usually being clear from context. In either case it
is also conventional to refer in general to H as a healthiness condition, even in a context were it
would actually be a predicate transformer. We shall adopt this convention in the sequel.

However a hazard can arise when alternative formulations of H are available; note that different
functions may have the same set of fixed-points. We illustrate this later when discussing R2.

The healthiness conditions we introduce here for slotted-Circus parallel some of those in [HH98,
Chp. 8] for general reactive systems, namely R1, R2, R3 and CSP1.

4.1 Reactive Healthiness

We shall discuss R1 and R3 first, as these are fairly straightforward, while R2 deserves some
discussion, as its adaption for slotted-Circus was decidedly non-trivial.

R1 simply states that a slotted-Circus process cannot undo the past, or in other words, that
the slots ′ observation must be an extension of slots, whilst R3 deals with the situation when a
process has not actually started to run, because a prior process has yet to terminate, characterised
by wait = True. In this case the action of a yet-to-be started process should simply be to do
nothing, an action we call “reactive-skip” (II). Reactive skip has two behavioural modes: if started
in an unstable state (i.e the prior computation is diverging), then all it guarantees is that the slots
may get extended somehow; otherwise it stays stable, and leaves all other observations unchanged.

R1(P) =̂ P ∧ slots 4 slots ′

R3(P) =̂ II CwaitB P
II =̂ ¬ ok ∧ slots 4 slots ′ ∨ ok ′ ∧ wait ′ = wait ∧ state ′ = state ∧ slots ′ = slots

The purpose of the slots observation variable in slotted-Circus, and its trace analogue (tr) in
UTP reactive-process theory, is to facilitate the definition of operators such as sequential compo-
sition. What is not permitted however, is for a process to be able to base its actions on the history
of past events as recorded by this variable—any such “memory” of the past must be captured by
the state observation. Healthiness condition R2 is concerned with ensuring that a process can only
specify how the history is extended, without reference to what has already happened. In [HH98,
Chp. 8] this is captured by stating that P is R2-healthy if it is invariant under an arbitrary shift
in the prehistory, or in other words, a non-deterministic choice over all possible values that tr
might take:

R2–UTP(P) =̂ us
P [s, s a (tr ′ − tr)/tr , tr ′]

≡ ∃ s • P [s, s a (tr ′ − tr)/tr , tr ′]

It would seem reasonable to expect the slotted-Circus version to simply replace tr by slots and use
the slot-sequence analogues of sequence concatenation and subtraction. This would result in the
following definition (here the a indicates “almost”):

R2a(P) =̂ ∃ ss • P [ss, ss]] (slots ′ rr slots)/slots, slots ′] (5)

Whilst this looks plausible, there is in fact a problem with it, which only becomes apparent when
we attempt to apply the definition later on in the semantics and then prove certain key desirable
properties. Consider the predicate slots ′ = slots which asserts that no events occur. This predicate
should be R2-healthy, as it describes a process that chooses to do nothing, regardless of the value
of slots. However calculation shows that

R2a(slots ′ = slots) ≡ slots ′ ∼= slots .

The equality gets weakened to the slot-sequence equivalence introduced earlier. An immediate
consequence of this is that II is not healthy by this definition, as calculation shows that the
slot-equality is weakened to slot-equivalence (underlined below).

R2a(II) ≡ ¬ ok ∧ slots 4 slots ′ ∨ ok ′ ∧ wait ′ = wait ∧ state ′ = state ∧ slots ′ ∼= slots

Original work explored keeping R2a as is, and redefining II to be that version shown above.
However this then weakened a number of key properties of II, most notably to do with its role as
an identity for sequential composition under appropriate circumstances.

The underlying problem with R2a has to do with the fact that in slotted-Circus, unlike UTP,
we have refusals interleaved with events in slots, and slot-sequence operators that treat refusals,
particularly the last, in a non-uniform way. The problem is that R2a weakens the predicate a

little too much, so we need to find a way to strengthen its result appropriately. The appropriate
way to handle this issue has turned out to be to modify the definition of R2 to require that we
only quantify over ss values that happen to agree with slots on the very last refusal. This has no
impact on predicates like 4 and ∼= which are not concerned with the last refusals, but provides
just enough extra information to allow slot-sequence equality be considered as R2-healthy. The
slightly strengthened version now reads:

R2(P) =̂ ∃ ss • P [ss, ss]] (slots ′ rr slots)/slots, slots ′] ∧ Ref (last(slots)) = Ref (last(ss))

The proof that R2 is idempotent is somewhat more involved than those for R1 and R3. Calcula-
tions show that predicates slots 4 slots ′, slots ′ ∼= slots, slots ′ = slots (se Appendix B) and II, are
all R2-healthy. It also distributes through disjunction, which is very important.

It is worth pointing out that two versions of R2 are presented in [HH98]. The second, which
we shall call R2’ is shown in an appendix:

R2’(P) =̂ P [〈〉, tr ′ − tr/tr , tr ′]

Both R2 and R2’ have the same set of fixed points, so can be used interchangeably as a test for
healthiness. However, if used to make a predicate healthy, then R2 is more forgiving than R2’:

R2(tr = 〈a〉 ∧ tr ′ = 〈a, b〉) ≡ (tr ′ − tr) = 〈b〉
R2’(tr = 〈a〉 ∧ tr ′ = 〈a, b〉) ≡ false

This is an example of where overloading the notation H to stand for both mkH and isH can be
misleading. We note that the version of R2 used in [She06] is the CTA equivalent of R2’.

Reactive Healthiness A reactive slotted-Circus process is one that satisfies all three of the above
healthiness conditions, so we define an overall condition R as their composition:

R =̂ R3 ◦R2 ◦R1 (6)

In fact all three conditions commute with each other, so we re-order the above composition to
suit.

4.2 CSP Healthiness

In addition to the reactive-healthiness just introduced, shared by a range of concurrent theories
including ACP and CSP, there are a number of aspects of healthiness specific to CSP-like theories.
In [HH98, Chp. 8] there are five of these presented, but for our purposes it suffices to consider
only the first one.

A process is CSP1 healthy if all it asserts, when started in an unstable state (due to some
serious earlier failure), is that the event history may be extended:

CSP1(P) =̂ P ∨ ¬ ok ∧ slots 4 slots ′ (7)

5 Slotted Semantics

We are now in a position to give the semantics of the slotted-Circus language which is presented
for completeness in Figures 5 & 6.

We shall not give a detailed commentary to all the definitions shown but instead will focus on
some key points.

Chaos b= R(true)

Stop b= CSP1(R3(ok ′ ∧ wait ′ ∧ EqvTrace(〈〉, slots ′ rr slots)))

b&A b= A CbB Stop

Skip b= R(∃ ref • ref = EqvRef (slots) ∧ II)

Wait t b= CSP1(R(ok ′ ∧ delay(t) ∧ EqvTrace(〈〉, slots ′ rr slots)))

delay(t) = (#slots ′ −#slots < t) Cwait ′B (#slots ′ −#slots = t ∧ state ′ = state)

x := e b= CSP1

R

ok = ok ′ ∧ wait = wait ′ ∧ slots = slots ′

∧ state ′ = state ⊕ {x 7→ val(e, state)}

!!
val : Expr× (Name → Value) 7→ Value

c.e → Skip b= CSP1
�
ok ′ ∧ R (wait com(c) ∨ complete com(c.e))

�
wait com(c) = wait ′ ∧ possible(c)(slots, slots ′) ∧ EqvTrace(〈〉, slots ′ rr slots)

possible(c)(slots, slots ′) = c /∈
[

Refs(slots ′ − front(slots))

term com(c.e) = ¬ wait ′ ∧ #slots = #slots ′ ∧ EqvTrace(〈c〉, slots ′ rr slots)

complete com(c.e) = term com(c.e) ∨ wait com(c); term com(c.e)

c!e → Skip b= c.e → Skip

c?x → Skip b= ∃ e •
�
c.e → Skip[state0/state] ∧ state ′ = state0 ⊕ {x 7→ e}

�
comm → A b= (comm → Skip); A

A 2 B b= CSP2(ExtChoice1(A,B) ∨ ExtChoice2(A,B))

ExtChoice1(A,B) b= A ∧ B ∧ Stop

ExtChoice2(A,B) b= (A ∨ B) ∧ DifDetected(A,B)

DifDetected(A,B) b= ¬ ok ′ ∨

0BBBBBB@

0BB@
(ok ∧ ¬ wait) ∧0@�A ∧ B ∧ ok ′ ∧

wait ′ ∧ slots = slots ′

�
∨

Skip

1A
1CCA ;

�
(ok ′ ∧ ¬ wait ′ ∧ slots ′ = slots) ∨
(ok ′ ∧ ImmEvts(slots, slots ′))

�

1CCCCCCA
ImmEvts(slots, slots ′) b= ¬ EqvTrc(〈〉, head(slots ′ rr slots))

Fig. 5. Slotted-Circus Semantics (part I)

A |[sA | {| cs |} | sB]| Bb= ∃ obsA, obsB •
A[obsA/obs ′] ∧ B [obsB/obs ′] ∧0BBBBBBBBBB@

if

0@ sA −C stateA 6= sA −C state ∨
sB −C stateB 6= sB −C state ∨
sA ∩ sB 6= ∅

1A
then ¬ ok ′ ∧ slots 4 slots ′

else

0BB@
ok ′ = okA ∧ okB ∧
wait ′ = (waitA ∨ 1.waitB) ∧
state ′ = (sB −C stateA)⊕ (sA −C stateB) ∧
ValidMerge(cs)(slots, slots ′, slotsA, slotsB)

1CCA

1CCCCCCCCCCA
ValidMerge : P E → ((S E)+)4 → B
ValidMerge(cs)(, s, s ′, s0, s1) = dif (s ′, s) ∈ TSync(cs)(dif (s0, s), dif (s1, s))

TSync : P E → (S E)∗ × (S E)∗ → P((S E)+)

TSync(cs)(s1, s2) = TSync(cs)(s2, s1)

TSync(cs)(〈〉, 〈〉) = {}
TSync(cs)(〈s〉, 〈〉) =

�
〈s ′〉 | s ′ ∈ SSync(cs)(s,SNull(Ref (s)))

	
TSync(cs)

�
s1 o

o S1,
s2 o

o S2

�
=

8<:
s ′ o

o S ′

| s ′ ∈ SSync(cs)(s1, s2) ∧
S ′ ∈ TSync(cs)(S1,S2)

9=;
A \ hidn b= R

�
∃ s • A[s/slots ′] ∧
slots ′ rr slots = map(SHide(hidn))(dif (s, slot))

�
; Skip

µX • F (X) b= u{X | F (X) v X }

Fig. 6. Slotted-Circus Semantics (II)

The STOP action refuses all events, but does allow the clock to keep ticking. Assignment
and channel-communication take less than a clock-cycle, so we can sequence arbitrarily many in
a time-slot. This does raise the possibility of Zeno processes (infinite events within a time-slot),
so some care will be required here (disallowing infinite histories). This is more power than that
required for synchronous hardware, where we expect these actions to synchronise with the clock,
but we can model that by postfixing a Wait 1 statement, as used in the case study shown later.
An important point to note is the definition of channel input (c?x → P), not only involves an
event c.e for some e, but also updates the state. This is exploited later to allow shared variables.

The definition of external choice is quite complex —see [She06, p69] for a discussion.
We define slotted-parallel in a direct fashion, similar to that used for Circus, avoiding the

complexities of the UTP/CTA approaches, and also handling error cases in passing. An error
occurs in P |[sA | C | sB]|Q if P (Q) modifies any variable in sB (sA).

5.1 Laws

The language constructs displayed here obey a wide range of laws, many of which have been
described elsewhere [HH98, WC01b, SH02, She06] for those constructs that slotted-Circus shares
with other languages (e.g. non-deterministic choice, sequential composition, conditional, guards,
STOP , SKIP). Here we simply indicate some of the laws regarding Wait that peculiar to slotted-
Circus (Figure 7).

Wait n; Wait m = Wait (m + n)

Wait n 2 Wait n + m = Wait n

(Wait n; P) 2 (Wait n; Q) = Wait n; (P 2 Q)

(Skip 2 (Wait n; P)) = Skip, n > 0

(a → P) 2 (Wait n; (a → P)) = (a → P)

Fig. 7. Laws of slotted-CircusWait .

5.2 Links

In [HH98, §1.6,pp40–1], a general Galois connection between an abstract theory with observational
variable a and a concrete theory over observation c is:

[(∃ c • D(c) ∧ `(c, a)) ⇒ S (a)] iff [D(c) ⇒ (∀ a • `(c, a) ⇒ S (a))]

Here D and S are corresponding design (concrete) and specification (abstract) predicates respec-
tively, while `(c, a) is the linking predicate connecting observations at the two worlds. Of interest
to us in the main are links between Circus (playing the role of the abstract theory with observa-
tions a) and various instantiations of slotted-Circus (concrete, with obsevations c). The difference
between Circus and slotted-Circus is that the former has observations tr and ref , whilst the latter
subsumes both into slots. However we can immediately exploit the method just presented by using
the following relationship to define `, which here relates the Circus observational variables to those
of slotted-Circus:

EqvTrace(tr , slots) ∧ ref = EqvRef (slots) (8)

So we get a Galois-link between Circus and any instantiation of slotted-Circus for free. Similarly, a
given relationship between different H types allows us to generate Galois-links between different
slotted-Circus instantiations.

6 Instantiating Slotted-Circus

We now look at the issue of giving one or more concrete instantiations to the slotted-Circus
framework just described. Originally, this work was aimed at producing a synchronous version of
Circus, in which all events in a time-slot were to be considered as simultaneous. One motivation
for this was to support the Handel-C language, which maps programs to synchronous hardware
in which all variable updates are synchronised with a global clock edge marking the end of a
computation cycle [Cel02]. However, there were two main difficulties with this approach.

The first was that the formal semantics developed for Handel-C outside of the UTP frame-
work [BW02, BW05] actually modelled activity within a time-slot as a series of decision-making
events spread out in time, all culminating in a set of simultaneous variable updates at the end of
the slot. This approach, adopted in both the operational and denotational semantics, gives a very
natural and intuitive description of what is taking place during Handel-C execution.

The second difficulty is more fundamental in nature, and exposed a key assumption underlying
the UTP reactive theories, and those for CSP in general. Early work looked at the Ph.D thesis of
Janet Barnes [Bar93] which introduced a synchronous version of CSP (SCSP). The key observation
was a sequence of slots, each comprising two event sets, one denoting the events occurring in
that slot (Acceptances) and the other describing the events refused (Refusals). A healthiness
condition required that the acceptances and refusals in any slot be disjoint. However, implicit
in this disjointedness condition is the notion that both the acceptances and refusals are truly
simultaneous. However, in the failures of CSP, and the corresponding tr and ref observations of
UTP, the key interpretation involved is that the refusals describe what is being refused given that
the event history has just taken place. As a specific example, consider the process a → b → P . A
possible (failure) observation of this process is (〈a〉, {a}), i.e., we have observed the occurrence of
the a event and the fact that the process is now refusing to perform an a.

Consider trying to instantiate a slot where the history is simply an event-set, as per SCSP:

A ∈ SCSP E =̂ P E
HNullSCSP =̂ ∅

HaddSCSP(A1,A2) =̂ A1 ∪A2

HsubSCSP(A1,A2) =̂ A1 \A2

. . .

We find that we cannot guarantee law [Sadd:unit] (Appendix A), even if the SCSP invariant is
not required. This property is required to demonstrate that slots ∼= slots ′ is R2-healthy. The
underlying problem is that the definition of R2 relies on being able to deduce that slots is empty
if subtracting slots from slots ′ leaves slots ′ unchanged. However at the history-as-set level, we
cannot deduce H = ∅, given that H ′ \H = H ′.

6.1 Multiset History Instantiation

We can define an instantiation where the event history is a multiset or bag of events (HMSA), so
event ordering is unimportant, but multiple event occurrences in a slot do matter (Figure 8). The
bag notation used here is that of Z [Spi87]. The events accepted are simply the bag domain. A

HMSA E b= E 7→ N1

Acc(bag) b= dom(bag)

EqvTrc(tr , bag) b= items(tr) = bag

HNull b= [[]]

bag1 � bag2 b= bag1 v bag2

Hadd(bag1, bag2) b= bag1 ⊕ bag2

Hsub(bag1, bag2) b= bag1 	 bag2

HSync(cs)(bag1, bag2) b= {(cs −C (bag1 ⊕ bag2))⊕ (cs C (bag1 ∩ bag2))}
where ∩ is bag interesection

HHide(hdn)bag b= hdn −C bag

Fig. 8. Multiset Action Instantiation (MSA)

trace corresponds to a bag if it contains the same number of events as that bag. A null history is
simply an empty bag. A bag is a prefix if smaller than another bag. History addition and subtract
are the bag equivalents. History synchronisation merges the parts of the two bags disjoint from
the synchronisation set, with the intersection of all three. Hiding is modelled by bag restriction.

The proofs that the above instantiation satisfy the properties in Appendix A are all straight-
forward. The proof of law [ET:pfx] for MSA is shown in Appendix B.

7 Example Circus process

We illustrate slotted Circus using an example originally due to Hoare [Hoa85a]. The problem is to
compute the weighted sums of consecutive pairs of inputs. Suppose that the input stream contains
the following values: x0, x1, x2, x3, x4, . . .; then the output stream will be

(a ∗ x0 + b ∗ x1), (a ∗ x1 + b ∗ x2), (a ∗ x2 + b ∗ x3), (a ∗ x3 + b ∗ x4), · · ·

for weights a and b. We specify this problem with a synchronous process with two channels: left ,
used for input, and right used for output. Since each output requires two consecutive values from
the input stream, the first output cannot occur before the third clock cycle.

clock 0 1 2 3 4 5
left x0 x1 x2 x3 x4 x5 · · ·

right a ∗ x0 + b ∗ x1 a ∗ x1 + b ∗ x2 a ∗ x2 + b ∗ x3 a ∗ x3 + b ∗ x4 · · ·

Hoare’s solution performs the two multiplications in parallel and then adds the results. Suppose
the implementation technology is a single field-programmable gate array; the circuitry for the
computation of the output would then be inherently parallel anyway. Let’s assume instead that
we want to implement the two multiplications on separate FPGAs. It’s clear that the a-product is
always ready one clock cycle before we need to perform the addition. Let’s keep this intermediate
result in the variable m:

clock 0 1 2 3 4 5
left x0 x1 x2 x3 x4 x5 · · ·
m a ∗ x0 a ∗ x1 a ∗ x2 a ∗ x3 a ∗ x4 · · ·

right m + b ∗ x1 m + b ∗ x2 m + b ∗ x3 m + b ∗ x4 · · ·

First however, note we are going to target a Handel-C-like scenario where channel communication
and assignment take one-clock cycle, and we have shared variables. We need to reason about
interleavings of assignments, but rather than re-work the whole theory to have state-sequences,
we simply convert assignments into channel communications. So for the following case study, we
have the following shorthands:

shorthand expansion
c?1x c?x → Wait 1.
c!1x c!x → Wait 1.

x :=1 e (a!1e |[∅ | a | x]| a?1x) where a is fresh.
δP variables modified by P i.e used in x := . . . or c?x

P ||| Q P |[δP | ∅ | δQ]|Q

In effect the clock-cycle wait is built into the communication and assignment notations, ef-
fectively avoid any Zeno hazards. Now we’re ready to specify the problem as a slotted Circus
process.

WS =̂ var x ,m : N • (left?1x ; (left?1x ||| m :=1 a ∗ x);
(µX • (left?1x ||| m :=1 a ∗ x ||| right !1(m + b ∗ x)) ; X))

The process WS is clearly deadlock and livelock free: it is a non-stopping process with no in-
ternal synchronisations; and it is hiding and chaos-free, with guarded recursion. Now we need to
decompose WS into two parallel processes with encapsulated state. We can replace the use of m
by a channel communication that passes the intermediate value. One process (WSL) will receive
the input stream and compute the a-product; the other (WSR) will compute the b-product and
the sum, and generate the output stream. But now we see a problem with WS . The value x1 is
received by WSL in the first clock cycle, and so it can be communicated to WSR in the second
cycle. So it can’t be used by WSR until the third clock cycle. So we need to delay the output on
the right by another clock cycle. Our timing diagram shows this more clearly.

clock 0 1 2 3 4 5
left x0 x1 x2 x3 x4 x5 · · ·
w x0 x1 x2 x3 x4 · · ·
m a ∗ x0 a ∗ x1 a ∗ x2 a ∗ x3 · · ·

right m + b ∗ x1 m + b ∗ x2 m + b ∗ x3 · · ·

Here’s another version of WS that does this.

WS ′ =̂ var w , x ,m : N •
left?1x ; (left?1x ||| w :=1 x);
(left?1x ||| w :=1 x ||| m :=1 a ∗ w);
(µX • (left?1x ||| w :=1 x ||| m :=1 a ∗ x ||| right !1(m + b ∗ w)) ; X)

Our refinement strategy is to split into two processes. The variable x belongs in WSL, since it is
used to store the current input. The variable m can be placed in WSR, since it is used directly
in producing outputs, but its value must be computed in WSL, and so the value will have to be
communicated from left to right. The variable w records the previous input, and this is used in
both left and right processes; so we duplicate its value using a ghost variable v . The ghost variable
can then be used in the right-hand process in the calculation of the output on the right. Our
refinement starts with organising the variables. (To reduce clutter, we abbreviate left?1x by ?1x

and right !1e by !1e. We also separate the beginning and end of variable scopes.)

var w , x ,m ;
?1x ; (?1x ||| w :=1 x) ; (?1x ||| w ,m :=1 x , a ∗ w) ;
(µX • (?1x ||| w ,m :=1 x , a ∗ w ||| !1(m + b ∗ w)) ; X) ;

end w , x ,m

= { v ghosts w }
var w , x ,m ;

?1x ; (?1x ||| w :=1 x) ;
var v ;

(?1x ||| v ,w ,m :=1 x , x , a ∗ w) ;
(µX • (?1x ||| v ,w ,m :=1 x , x , a ∗ w ||| !1(m + b ∗ v)) ; X) ;

end v ;
end w , x ,m

= {widen scope }
var v ,w , x ,m ;

?1x ; (?1x ||| w :=1 x) ; (?1x ||| v ,w ,m :=1 x , x , a ∗ w) ;
(µX • (?1x ||| v ,w ,m :=1 x , x , a ∗ w ||| !1(m + b ∗ v)) ; X) ;

end v ,w , x ,m

Our next step is to insert some hidden events to prepare for the communication of values between
the two processes. We add two hidden channels: c communicates x ’s value; and mid communicates
m’s value. These events are not needed in the first two steps.

= { hiding }
(var v ,w , x ,m ;

?1x ; (?1x ||| w :=1 x) ; (?1x ||| c.x ||| mid .a ∗ w ||| v ,w ,m :=1 x , x , a ∗ w) ;
(µX • (?1x ||| c.x ||| mid .a ∗ w ||| v ,w ,m :=1 x , x , a ∗ w ||| !1(m + b ∗ v)) ; X) ;

end v ,w , x ,m) \ {|c,mid |}

Now we can prepare for the parallel split by organising each step into parallel parts, examining
each atomic action and assigning it to the left or right component. The right-hand process doesn’t
need to do anything during the first two steps, so we make it wait. In the third step, the the input
belongs on the left. The pair of actions (c.x ||| v :=1 x) can be replaced by a communication: the left
performs the output c!1x and the right performs the input c?1v . Similarly, (mid .a∗w ||| m :=1 a∗w)
can be replaced by mid !1a ∗w and mid?1m. Finally, the assignment to w belongs on the left. The
body of the recursion is split in exactly the same way, with the addition of the output being
assigned to the right-hand process.

= { parallel }
(var v ,w , x ,m ;

(?1x ‖ Wait 1) ;
((?1x ||| w :=1 x) ‖ Wait 1) ;
((?1x ||| c!1x ||| mid !1a ∗ w ||| w :=1 x) ‖ (c?1v ||| mid?1m)) ;
(µX • ((?1x ||| c!1x ||| mid !1a ∗ w ||| w :=1 x)

‖ (c?1v ||| mid?1m ||| !1(m + b ∗ v)) ; X)) ;
end v ,w , x ,m) \ {|c,mid |}

We also need to split the recursion into two parallel parts. Since the body comprises two atomic
steps in parallel, the fixed-point operator distributes cleanly through the parallel operator.

= { parallel }
(var v ,w , x ,m ;

(?1x ‖ Wait 1) ;
((?1x ||| w :=1 x) ‖ Wait 1) ;
((?1x ||| c!1x ||| mid !1a ∗ w ||| w :=1 x) ‖ (c?1v ||| mid?1m)) ;
((µX • (?1x ||| c!1x ||| mid !1a ∗ w ||| w :=1 x) ; X) ;
‖ (µX • (c?1v ||| mid?1m ||| !1(m + b ∗ v)) ; X)) ;

end v ,w , x ,m) \ {|c,mid |}

Now we can perform the parallel split, using an interchange law for sequence and parallel that is
similar to the spreadsheet rules in UTP. We create the left-hand process by encapsulating w and
x , retaining the left-hand parts, and discarding the right-hand parts. We create the right-hand
process similarly.

= { parallel split }
((var w , x ;

?1x ;
(?1x ||| w :=1 x) ;
(?1x ||| c!1x ||| mid !1a ∗ w ||| w :=1 x) ;
(µX • (?1x ||| c!1x ||| mid !1a ∗ w ||| w :=1 x) ; X) ;

end w , x)
‖
(var v ,m ;

Wait 1 ; Wait 1 ;
(c?1v ||| mid?1m) ;
(µX • (c?1v ||| mid?1m ||| !1(m + b ∗ v)) ; X) ;

end v ,m)
) \ {|c,mid |}

Now we can tidy up the processes for our final result.

(var w , x : N •
left?1x ; (left?1x ||| w :=1 x) ; (left?1x ||| c!1x ||| mid !1a ∗ w ||| w :=1 x) ;
(µX • (left?1x ||| c!1x ||| mid !1a ∗ w ||| w :=1 x) ; X) ;

‖
var v ,m : N • (Wait 2 ; (c?1v ||| mid?1m) ;

(µX • (c?1v ||| mid?1m ||| right !1(m + b ∗ v)) ; X) ;)

) \ {|c,mid |}

Of course, since this is equal to WS , it is deadlock and livelock-free and computes the right results.
A key point of the above case-study is that it works in any of the instantiations mentioned so

far for slotted-Circus, namely CTA or MSA.

8 Related Work

During the development of Handel-C at Oxford, a lot of the principles and theory was devel-
oped and published [PL91, HIJ93]. Here the emphasis was very much on the verified compilation
into hardware of an occam-like language. However with the commercialisation of this as the lan-
guage Handel-C the formal aspects and hardware compilation parted company, and the Handel-C
language acquired new constructs like “prialt” that were not treated in the literature.

Modern Handel-C [Cel02] also has the idea of connecting hardware with different clocks to-
gether using tightly controlled asynchronous interfaces. Modelling this kind of behaviour requires
a theory that mixes time and asynchronicity, such as timed-CSP [Sch00].

There has been work done on hardware semantics, ranging from the “reFLect” language used
by Intel for hardware verification [GJ06], to the language Esterel used mainly for the develop-
ment of flight avionics [BG92]. The Intel approach is a suite of hardware description languages,
model-checkers and theorem provers all written and/or integrated together using the reFLect lan-
guage, aimed mainly at the verification of computer datapath hardware. The Esterel language is
a hardware description language with a formal semantics, and so is quite low-level in character,
and so in the context of this research could be considered a potential replacement of Handel-C
as an implementation technology. However, it is unclear how well it would link to the kind of
specification and refinement style of work that we are proposing to support.

9 Future Work

We have described a generic framework for instantiating a wide range of slotted-theories, capturing
their common features. An important aspect that has yet to be covered is what distinguishes the
the various instantiations from one another, i.e. how do the laws of CTA differ from those of
MSA, for instance. We know for example that the following is a law of MSA, but not of CTA, or
slotted-Circus in general:

a → b → P = b → a → P

Also worthy of exploration are the details of the behaviour of the Galois links inbetween different
instances of slotted-Circus, and between those and standard Circus. These details will provide a
framework for a comprehensive refinement calculus linking all these reactive theories together.

In order to deal with the asynchronously interfaced multiple-clock hardware now supported by
Handel-C we will need to exploit the link from the slotted theories to the generally asynchronous
Circus theory itself.

Also of interest will be to consider to what extent the work on “generic composition” [Che02,
Che06] can contribute to a clear and or tractable presentation of this theory.

10 Conclusions

A framework for giving UTP semantics to a class of reactive systems whose execution is demarcated
by regular clock ticks has been presented. The general nature of the observational variables and
the key operations on same have been discussed, showing how they are used build to both the
healthiness conditions and the language semantics. A key result of this work has been the care
needed to get a satisfactory definition of R2, and exposing the fact that certain synchronous
theories like SCSP do not fit this particular UTP pattern for describing reactive systems.

10.1 Acknowledgement

We would like to thank the Dean of Research at TCD and Qinetic for their support of this work,
and the comments of the anonymous reviewers, which helped improve key material in this paper.

References

[Bar93] Janet E. Barnes. A Mathematical Theory of Synchronous Communication. Technical Mono-
graph PRG-112, Oxford University Computing Laboratory Programming Research Group, Hi-
lary Term 1993.

[BG92] G. Berry and G. Gonthier. The ESTEREL synchronous programming language: design, se-
mantics, implementation. Science of Computer Programming, 19:87–152, 1992.

[BW02] Andrew Butterfield and Jim Woodcock. Semantic domains for handel-C. Electr. Notes Theor.
Comput. Sci, 74, 2002.

[BW05] Andrew Butterfield and Jim Woodcock. prialt in Handel-C: an operational semantics. In-
ternational Journal on Software Tools for Technology Transfer (STTT), 7(3):248–267, June
2005.

[Cel02] Celoxica Ltd. Handel-C Language Reference Manual, v3.0, 2002. URL: www.celoxica.com.
[Che02] Yifeng Chen. Generic composition. Formal Asp. Comput, 14(2):108–122, 2002.
[Che06] Yifeng Chen. Hierarchical organisation of predicate-semantic models. In Steve Dunne and Bill

Stoddart, editors, UTP, volume 4010 of Lecture Notes in Computer Science, pages 155–172.
Springer, 2006.

[GJ06] Melham T. Grundy, J. and O’Leary J. A reflective functional language for hardware design
and theorem proving. Journal of Functional Programming, 16(2):157–196, 2006.

[HH98] C. A. R. Hoare and Jifeng He. Unifying Theories of Programming. Series in Computer Science.
Prentice Hall, 1998.

[HIJ93] H. Jifeng, I. Page, and J. Bowen. Towards a provably correct hardware implementation of
Occam. In G.J. Milne and L. Pierre, editors, Correct Hardware Design and Verification Methods,
volume 683 of Lecture Notes in Computer Science, pages 214–225, Arles, France, May 1993.
IFIP WG10.2, Springer-Verlag.

[Hoa85a] C. A. R. Hoare. Communicating Sequential Processes. Intl. Series in Computer Science. Prentice
Hall, 1985.

[Hoa85b] C. A. R. Hoare. Programs are predicates. In Proc. of a discussion meeting of the Royal Society
of London on Mathematical logic and programming languages, pages 141–155, Upper Saddle
River, NJ, USA, 1985. Prentice-Hall, Inc.

[PL91] I. Page and W. Luk. Compiling Occam into field-programmable gate arrays. In W. Moore and
W. Luk, editors, FPGAs, Oxford Workshop on Field Programmable Logic and Applications,
pages 271–283, 15 Harcourt Way, Abingdon OX14 1NV, UK, 1991. Abingdon EE&CS Books.

[Ros97] A. W. Roscoe. The Theory and Practice of Concurrency. international series in computer
science. Prentice Hall, 1997.

[Sch00] Steve Schneider. Concurrent and Real-time Systems — The CSP Approach. Wiley, 2000.
[SH02] Adnan Sherif and Jifeng He. Towards a time model for circus. In Chris George and Huaikou

Miao, editors, ICFEM, volume 2495 of Lecture Notes in Computer Science, pages 613–624.
Springer, 2002.

[She06] Adnan Sherif. A Framework for Specification and Validation of Real Time Systems using Circus
Action. Ph.d. thesis, Universidade Federale de Pernambuco, Recife, Brazil, Jan 2006.

[Spi87] Spivey. The Z Notation: A Reference Manual. Prentice Hall, 1987.
[WC01a] J. C. P. Woodcock and A. L. C. Cavalcanti. A Concurrent Language for Refinement. In

A. Butterfield and C. Pahl, editors, IWFM’01: 5th Irish Workshop in Formal Methods, BCS
Electronic Workshops in Computing, Dublin, Ireland, July 2001.

[WC01b] Jim Woodcock and Ana Cavalcanti. Circus: a concurrent refinement language. Technical report,
University of Kent at Canterbury, October 2001.

[WC02] Jim Woodcock and Ana Cavalcanti. The semantics of circus. In ZB, pages 184–203, 2002.

A Generic Laws

The functions and relations over H E required to define a slotted-Circus theory, need to satisfy
the following laws:

[ET:elems] EqvTrc(tr , hist) ⇒ elems(tr) = Acc(hist)
[HIST:eq] (h1 = h2) ≡ ∀ tr • EqvTrc(tr , h1) ≡ EqvTrc(tr , h2)
[HN:null] Acc(HNull) = {}
[pfx:refl] hist � hist = True

[pfx:trans] hist1 � hist2 ∧ hist2 � hist3 ⇒ hist1 � hist3
[pfx:anti-sym] hist1 � hist2 ∧ hist2 � hist1 ⇒ hist1 = hist2

[SN:pfx] HNull � hist
[ET:pfx] hist1 � hist2 ⇒ ∃ tr1, tr2 • EqvTrc(tr1, hist1) ∧ EqvTrc(tr2, hist2) ∧ tr1 ≤ tr2

[Sadd:events] Acc(Sadd(h1, h2)) = Acc(h1) ∪Acc(h2)
[Sadd:unit] Sadd(h1, h2) = h1 ≡ h2 = HNull

[Sadd:assoc] Sadd(h1,Sadd(h2, h3)) = Sadd(Sadd(h1, h2), h3)
[Sadd:prefix] h � Sadd(h, h ′)

[Ssub:pre] pre Ssub(h1, h2) = h2 � h1

[Ssub:events] h2 � h1 ∧ h ′ = Ssub(h1, h2) ⇒
Acc(h1) \ Acc(h2) ⊆ Acc(h ′) ⊆ Acc(h1)

[SSub:self] Ssub(h, h) = HNull
[SSub:nil] Ssub(h,HNull) = h

[SSub:same] hist � hist ′a ∧ hist � hist ′b ⇒
Ssub(hist ′a , hist) = Ssub(hist ′b , hist) ≡ hist ′a = hist ′b

[SSub:subsub] histc � hista ∧ histc � histb ∧ histb � hista
⇒ Ssub(Ssub(hista , histc),Ssub(histb , histc)) = Ssub(hista , histb)

[Sadd:Ssub] hist � hist ′ ⇒ Sadd(hist ,Ssub(hist ′, hist)) = hist ′

[Ssub:Sadd] Ssub(Sadd(h1, h2), h1) = h2

[SHid:evts] Acc(SHide(hid)(h)) = Acc(h) \ hid
[SNC:sym] SSync(cs)(h1, h2) = SSync(cs)(h2, h1)
[SNC:one] ∀ h ′ ∈ SSync(cs)(h1,HNull) • Acc(h ′) ⊆ Acc(h1) \ cs
[SNC:only] h ′ ∈ Acc(SSync(cs)(h1, h2)) ⇒ Acc(h ′) ⊆ Acc(h1) ∪Acc(h2)
[SNC:sync] h ′ ∈ Acc(SSync(cs)(h1, h2)) ⇒ cs ∩Acc(h ′) ⊆ cs ∩ (Acc(h1) ∩Acc(h2))

[SNC:assoc] SyncSet(cs)(h1)(SSync(cs)(h2, h3)) = SyncSet(cs)(h3)(SSync(cs)(h1, h2))

B Proofs for R2-ness of = and MSA prefix

R2(slots ′ = slots)
≡ “ defn. R2, apply substitution, shorthand RL(s) = Ref (last(s)) ”
∃ ss • ss]] (slots ′ rr slots) = ss ∧ RL(slots) = RL(ss)

≡ “ Property 1 (below) ”
∃ ss • slots ′ rr slots = 〈SNull(RL(ss))〉 ∧ RL(slots) = RL(ss)

≡ “ Property 2 (below) ”
∃ ss • front(slots ′) = front(slots) ∧ tail(slots ′).1 = tail(slots).1

∧ RL(slots ′) = RL(ss) ∧ RL(slots) = RL(ss)
≡ “ Liebniz, restrict quantification scope ”

front(slots ′) = front(slots) ∧ tail(slots ′).1 = tail(slots).1
∧ RL(slots ′) = RL(slots) ∧ ∃ ss • RL(slots) = RL(ss)

≡ “ defn. of equality, witness ss = slots ”
slots = slots ′

Property 1: (ss]] tt = ss) ≡ tt = 〈SNull(RL(ss))〉
Property 2: (tt ′ rr tt) = 〈SNull(r)〉 ≡ front(tt) = front(tt ′) ∧ last(tt).1 = last(tt ′).1 ∧ RL(tt ′) = r

bag1 � bag2

≡ “ defn. of prefix ”
bag1 v bag2

≡ “ bag property ”
∃ bag∆ • bag2 = bag1 ⊕ bag∆

≡ “ bag property: ∀ bag • ∃ tr • items(tr) = bag ”
∃ bag∆, tr∆, tr1, • bag2 = bag1 ⊕ bag∆ ∧ items(tr∆) = bag∆ ∧ items(tr1) = bag1

≡ “ One-point rule backwards tr2 = tr1 a tr∆ ”
∃ bag∆, tr∆, tr1, tr2 • bag2 = bag1 ⊕ bag∆ ∧ items(tr∆) = bag∆ ∧ items(tr1) = bag1 ∧ tr2 = tr1 a tr∆

≡ “ One-point rule bag∆, Liebniz bag1 ”
∃ tr∆, tr1, tr2 • bag2 = items(tr1)⊕ items(tr∆) ∧ items(tr1) = bag1 ∧ tr2 = tr1 a tr∆

≡ “ items is a sequence homomorphism ”
∃ tr∆, tr1, tr2 • bag2 = items(tr2) ∧ bag1 = items(tr1) ∧ tr2 = tr1 a tr∆

≡ “ sequence property ”
∃ tr∆, tr1, tr2 • bag2 = items(tr2) ∧ bag1 = items(tr1) ∧ tr∆ = tr2 − tr1

≡ “ One point rule: tr∆, requires definedness of tr2 − tr1 ”
∃ tr1, tr2 • bag2 = items(tr2) ∧ bag1 = items(tr1) ∧ tr1 ≤ tr2

≡ “ def. of EqvTrc, backwards ”
∃ tr1, tr2 • EqvTrc(tr2, bag2) ∧ EqvTrc(tr1, bag1) ∧ tr1 ≤ tr2

