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Momentum Transfer from Quantum Vacuum to Magnetoelectric Matter
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A recent publication [Phys. Rev. Lett. 92, 020404 (2004)] raises the possibility of momentum transfer
from zero-point quantum fluctuations to matter, controlled by applied electric and magnetic fields. We
present a Lorentz-invariant description using field-theoretical regularization techniques. We find no
momentum transfer for homogeneous media, but predict a very small transfer for a Casimir-type
geometry.
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The Feigel hypothesis [1] (FH hereafter) suggests a
nonzero total momentum density of zero-point fluctuations
[2] in magneto-electric (ME) matter. ME effects can occur
in media associated with a few specific symmetry classes
[3], but can be induced in any medium, including the real
quantum vacuum [4], by an external electric field E0 and
magnetic field B0. The FH, based on the manifestation of
ME in optical birefringence, is controversial [5–7], yet
important since it raises the possibility to transfer momen-
tum from zero-point fluctuations to matter, controlled in
direction and magnitude by the externally applied fields.

In ME media, photons with wave vectors k and �k
behave differently, though independent of their polariza-
tion. Optical ME effects have been observed in birefrin-
gence [8–10] and in absorption [11–13]. The final result of
Ref. [1] is an expression for the momentum density �v
(mass density �, velocity v) of a homogeneous medium in
crossed, uniform, stationary fields E0 and B0:

�v �
@

32�3c4
0

���1 � "�!4
c�E0 �B0: (1)

Here � and " are the usual optical constants, � is the ME
coupling parameter, and !c is a cutoff frequency. The first
problem is the Lorentz variance of Eq. (1). All quantities in
the second factor of Eq. (1) transform under a Lorentz
transformation, and do not leave Eq. (1) invariant. The
second problem is that the theory diverges for the quantum
vacuum, due to Lorentz invariance which imposes a spec-
tral energy density for the vacuum fluctuations propor-
tional to !3 [2], the reason Ref. [1] introduced the cutoff
frequency !c in Eq. (1). Third, stationary, homogeneous
fields only impose d��v�=dt � 0 [5] whereas the momen-
tum itself is determined by the ME history. Fourth, to come
to concrete predictions in realizable experiments one
wishes to understand inhomogeneous media. The method
employed in Ref. [1], based on pseudomomentum conser-
vation, cannot be generalized for time-dependent fields,
nor for inhomogeneous media.
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In this Letter we address all four problems. To cope with
the diverging vacuum without breaking Lorentz invariance
we shall apply field regularization techniques [14]. To
describe external fields that can be slowly switched on
we shall consider total momentum balance, which is also
free from the Abraham-Minkowski controversy [15]. The
simplest inhomogeneous situation that can be regularized
while respecting Lorentz invariance is the Casimir geome-
try [16], for which we shall make a precise prediction that
is quite different from the FH. An important restriction of
our work is the use of the macroscopic Maxwell equations,
assuming that vacuum fluctuations are governed by the
‘‘macroscopic’’ properties of matter. Effects of dispersion
and absorption caused by microscopic resonances cannot
be described.

The optics of ME media is described by the constitutive
relations of a bi-anisotropic form [3]

D � " � E� � �B H � ��T � E���1 �B: (2)

The tensors " and � are assumed real valued and symmet-
ric, the ME tensor � only real valued, all frequency inde-
pendent. All can be spatially varying and time dependent,
but no dispersion or optical absorption is considered. In bi-
anisotropic media, momentum conservation is expressed
by,
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4�
E�B� �v

�
� r � ���vv�T 0�: (3)

It features the symmetric stress tensor T 0, with tensor
elements 4�T 0;ij � �EiEj � BiBj� �

1
2 �E � E� B �

B��ij. Contrary to pseudomomentum, the ‘‘momentum’’R
dr�E�B=4�� �v� is conserved in the presence of

sources, spatial inhomogeneities, or for a time dependence
of the material parameters.

We shall discuss Lorentz invariance, and apply it only up
to orders v (c0 � 1), which actually refers to Galilean
invariance, but with the potential to be generalizable to
Lorentz invariance. To describe ME effects we consider the
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FIG. 1 (color online). The geometry considered to observe the
Feigel process. The slab in the middle is subject to an electric
field E0 and a magnetic field B0. As the Casimir plates approach
each other, the slab starts moving with velocity v.
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2 �B2�2 � �
2 �E �B�2. If

" � 1 it is Lorentz invariant since the last two terms are
Lorentz scalars. The third term describes the Fizeau effect,
known for more than a century, and corrects for the
Galilean variance of the second term when " � 1. The
fields D;H follow from the Euler-Lagrange formalism
[4]. If we separate the dynamic wave fields E;B from
the static fields E0;B0, and linearize in the latter, we obtain
the constitutive equations

"ij � "�ij � 2��E2
0 � B2

0��ij � 4�E0;iE0;j � �B0;iB0;j

��1
ij � �ij � 2��E2

0 � B2
0��ij � 4�B0;iB0;j � �E0;iE0;j

�ij � �"� 1��ijkvk � 4�E0;iB0;j � ��E0 � B0��ij

� �B0;iE0;j (4)

where �ijk is the Lévi-Civita tensor. The Galilean trans-
formation imposes that E0 � E� v�B and B0 � B�
v�E both for the static and the dynamic fields. Using
Eq. (4) we can check that the macroscopic fields D and H
defined by Eq. (2) transform to D0 � D� v�H and H0 �
H� v�D, as they should in view of their interpretation
as macroscopic electromagnetic fields. We conclude that
Eqs. (2) and (4) provide a Galilean-invariant description of
ME effects, with the potential to be generalizable to full
Lorentz invariance.

The Galilean invariance of the FH now follows. For
simplicity we adopt the geometry E0 ? B0 and v k E0 �
B0. We choose E0 k ẑ and B0 k x̂. With this choice, the �
tensor for a medium moving with velocity v takes the form

� � �"� 1�v�ẑ x̂�x̂ ẑ�

� 4���4�ẑ x̂��x̂ ẑ��S0 � 2vE0�; (5)

where the static fields are measured in the reference frame
with respect to which the medium moves with speed v, E0

is the electromagnetic energy density associated with the
static fields, and S0 � �4��

�1E0 � B0. The zero-point
expectation value for the radiation momentum can be
shown to be h0jE� Bj0i / @K���� 4���S0 � 2vE0� �
�"� 1�v	 with K � �2���3

R
d3k!k. Let us turn on adia-

batically the external fields at t � 0 with the medium at an
initial velocity v0 with respect to the reference frame. Time
integration of Eq. (3) gives

�v� �v0 � @K��� 4���S0 � 2vE0�

� @K�"� 1��v� v0� � 0: (6)

This equation is Galilean invariant, provided that K is a
genuine scalar. Indeed, being proportional to the total
energy density of the quantum vacuum K is rigourously
Lorentz invariant [2], but diverging. Any physically ac-
ceptable regularization of K must be Lorentz invariant, but
this is not respected by cutting the integral off. This prob-
lem has been well studied for the Casimir effect, the
attractive force between two parallel metallic plates,
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caused by the modified quantum vacuum. It is known to
be insensitive to the vacuum energy density divergence,
which has encouraged theoreticians to find a rigorous
regularization of the vacuum energy density. The so-called
dimensional regularization has been proposed [14], and
gives acceptable results in all known cases. It consists of
continuing the relation

Z ddk
�2��d

�x2 � k2��p=2 
 Ix�d; p� �
xd�p

�4��d
��p�d2 �

��p2�
(7)

beyond its strict domain of validity p > d. This regularizes
K / I0�3;�1� � 0. So from dimensional regularization
Eq. (6) predicts that v � v0, and the conclusion is that no
momentum is transferred from vacuum to an infinite ho-
mogeneous medium.

The final question we shall address is whether the FH
occurs in an inhomogeneous medium. To this end we
investigate the FH in the Casimir geometry (Fig. 1) and
calculate K as a function of the plate distance. We recall
that Eq. (3) is valid when the constitutive tensors vary in
space or time. We can thus think of changing the distance
between the metallic plates, or switching on the fields E0,
B0 slowly, with a ME slab with thickness d initially at rest
between the plates. Does the slab start moving as we turn
on the fields or move the plates? The weakness of ME
effects justifies the application of perturbation theory to
include ME effects. If �P is a small perturbation of the
Hermitian operator P—here the one associated with the
Helmholtz equation—with real-valued eigenvalues !2

n
and a complete set of orthonormal eigenfunctions jEni,
the first-order change in eigenvalue is �!2

n � hEnj�PjEni
[17]. The electromagnetic eigenmodes of the unperturbed
Casimir geometry can be separated into TE and TM
modes. The metallic boundary conditions impose that the
tangential electric field vanishes on the plates (z � 0; L) as
well as the normal magnetic field. Except for a factor
exp�ik � x� the TE and TM modes are, respectively,

E nk;TE�z;x� �

����
2

L

s
k̂� ẑ sinknz

Bnk;TE�z;x� �

����
2

L

s �
k
!

ẑ sinknz� i
kn
!

k̂ cosknz
� (8)
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Bnk;TM�z;x� � �
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(9)

with ! � !nk 

����������������
k2 � k2

n

p
and kn � n�=L, n � 1; 2; . . .

for TE and n � 0; 1; . . . for TM. We will assume that the
ME slab exhibits only ME effects, and put " � � � 1. The
perturbation operator is then obtained from the Helmholtz
equation, giving

�P � !�� � p� � �T�z� �!��z� � �� � p� (10)

with ��z� � �4�E0B0 � ��E0 � B0�I � �B0E0 (I is the
unit tensor) inside the ME slab and 0 outside. This ig-
nores the contribution of vE0 to � in Eq. (5) which is
necessary to obey Galilean invariance, but which is in
reality very small for the speed that we finally obtain.
This leads to

�!2
nk�TE� � �4!k�4�E0 � �k̂� ẑ��B0 � ẑ�

� �B0 � �k̂� ẑ��E0 � ẑ�	 � Isn (11)

�!2
nk�TM� � �4!k�4�B0 � �k̂� ẑ��E0 � ẑ�

� �E0 � �k̂� ẑ��B0 � ẑ�	 � Icn (12)
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with the notation Isn � L�1
RL=2�d=2
L=2�d=2 dzsin2�knz� and Icn �

L�1
RL=2�d=2
L=2�d=2 dzcos2�knz�.

We need to calculate the vacuum expectation value
for E� � B. The integral over z of �E� � B�=4� gives
the momentum density of radiation per unit area,
which we shall denote by the vector g. Use of Maxwell’s
equations leads to �E� �B��!�i � ��ijkE�j �!� �
!�1�� � p�klEl�!�. Since �ijk�� � p�kl � �ilpj � �jlpi we
get as an intermediate step h0j�E� �B��!�ij0i �
!�1P

jh0jE
�
j �!�piEj�!� � E

�
j �!�pjEi�!�j0i. The quan-

tum vacuum expectation for the product of two elec-
tric fields is supplied by the fluctuation-dissipation theo-
rem, that we shall apply here for zero temperature, valid
when T < @c0=kL � 500 K=L ��m	 [18]. Let G be the
Green’s tensor associated with the Helmholtz equation
for E
G�!;p�� �!2�!�� �p� ��T�!� � �� �p���� �p�2	�1:

(13)
Application of h0jEi�!; r�E�j �!; r
0�j0i � �2@!2hrj �

ImGij�!;p�jr0i [19] gives us
1

4�
h0j�E� �B�i�r�j0i � �

1

2�
@

Z 1
0

d!
2�

! �
X
j

fpi ImGjj�!; r� � pj ImGij�!; r�g; (14)

where we recall that p � �ir � k� iẑ@z. We insert the spectral decomposition of the Green’s tensor,

� ImGij�x; z;x0; z0; !� �
X
n

Z d2k
�2��2

E�nk�
i �z�E��nk�

j �z����!2 �!2
nk�e

ik��x�x0�: (15)
Since the eigenfunctions are normalized, the z integral of
the first term of Eq. (14) equals k��!2 �!2

nk� and can
thus be conveniently expressed in terms of the eigenvalues
only. This is not the case for the second term, but we can
apply the Maxwell relation r �D � 0 to find that p �E �
�p � � �B. Since this is already proportional to �, we can
use the unperturbed eigenfunctions and eigenvalues. We
can rearrange the result for the radiative momentum den-
sity per unit area to

h0jgj0i �
1

2
@

Z 1
0

d!
2�

!
X
n

Z d2k
�2��2

k��!2 �!2
nk�

�
@

8�i

X
n

Z d2k
�2��2

�
Z L

0
dzE�nk�

i �z�@j�jlB
�;�nk�
l �z�: (16)

We shall see that both the summation over the modes
and the integral over horizontal wave number diverge.
Apart from the dimensional regularization of Eq. (7) we
shall apply here the so-called zeta function regularization
of the discrete sum,
P
1
n�0 n

�s � 	�s� which is continued
analytically to s � 1 [20]. In particular,

P
1
n�0 n

3 !
	��3� � 1=120. The regularization of oscillatory terms
is performed by introducing � > 0,

X1
n�0

e�n� sinn
 �
1

2

sin

cosh�� cos


: (17)

For 
 � 0; � this sum equals zero if we take the limit � # 0
afterwards. If 
 � 0; � the sum gives cos�
=2�=2 sin�
=2�.
For future need we give the following regularization that
follows from Eq. (17),

X1
n�0

k3
nsin2knz!

�3

240L3

�
1�

15L
�

@
@z

cos�z=L

sin3�z=L

�
:

The first term of Eq. (16) can be evaluated using
Eqs. (11) and (12): !2

nk�TE� 
 k2
n � �k� 8�!�IsnS0�

2

and !2
nk�TM� 
 k2

n � �k� 32�!�IcnS0�
2. Upon an ap-

propriate change of base in the k integral we obtain
2-3
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g 1�TE� � �@�S0

X
n

Z d2k
�2��2

!nkI
s
n (18)

g 1�TM� � �4@�S0

X
n

Z d2k
�2��2

!nkIcn: (19)

With the proposed schemes we can regularize Eqs. (18)
and (19) resulting in

g 1�
�2

1440

@d

L4

�
�4����� �4����

30L
�d

sin�d=2L

cos3�d=2L

�
S0:

(20)

The second term of Eq. (16) can be handled similarly,
eliminating the discontinuity of � and � at the ME slab
boundaries using one integration by parts. Dimensional
regularization gives �2���2

R
d2k!nk ! �k

3
n=6� and

�2���2
R
d2kk2

n=!nk ! �k3
n=2�. The result is

g 2�
�2

1440

@d

L4

�
���12������12��

30L
�d

sin�d=2L

cos3�d=2L

�
S0:

(21)

The final regularized result for the total radiation momen-
tum of the zero-point fluctuations per unit area is the sum
of (20) and (21),

g �
�2

@d

720L4

�
��� 4�� � ��� 4��

30L
�d

sin��d=2L�

cos3��d=2L�

�
S0:

(22)

For 0 � d < L it is found that the result is dominated by
the antisymmetric part of the ME tensor �, proportional to
�� 4�. Hence we can identify K�L; d� 
 ���=24dL3��
sin��d=2L�=cos3��d=2L�, and apply Eq. (6) to describe
the FH. Upon comparing to the original FH in Eq. (1) one
identifies a frequency cutoff of the order �c0=L which is
much smaller than the typical frequency beyond which ME
response is believed to disappear and validates our neglect
of resonances and absorption.

To observe the FH we can imagine the plates to be
largely separated (L � 1), and the ME slab at rest with
respect to these plates [v�0� � 0], with the fields E0 and B0

switched on. We can now let the plates approach with
opposite momentum until a finite distance L. Actually,
the zero-point fluctuations will do this for us by means of
the Casimir effect [21]. This converts vacuum energy into
kinetic energy, but no momentum is put into the system,
since the plates always have opposite momentum. Yet, the
radiation momentum density g per unit area of the
squeezed quantum vacuum changes with L, and must be
compensated by the matter momentum density per unit
area �dv. We conclude that the medium acquires a mo-
mentum density� g per unit area from the vacuum fluc-
tuations, with g given by (22). Assuming that the
experimental values for magneto-electric birefringence in
molecular liquids (� 
 2000 kg=m3) [10] are frequency
independent, and taking d � L=2 and L � 1 �m, Eq. (22)
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predicts �v � 4� 10�23 g cm�2 s�1 (v � 10�17 nm=s)
for such media. The FH is thus valid for the standard
Casimir geometry, but it is immeasurably small. The pre-
diction of Eq. (1), however, v � 50 nm=s would be within
experimental reach. Since, contrary to the Casimir effect,
the FH is explicitly sensitive to regularization, its experi-
mental falsification would support dimensional regulariza-
tion of vacuum energy.

In conclusion, we have formulated a regularized,
Galilean-invariant field theory for the transfer of momen-
tum from vacuum to magneto-electric matter. We conclude
that no transfer occurs in infinite media. A small momen-
tum transfer happens in a squeezed vacuum. This opens up
the possibility for future work to study momentum transfer
from vacuum to other objects such as a small Mie sphere,
where the effect might be enhanced near geometric eigen-
frequencies, and whose motion might be manipulated by
vacuum fluctuations (a ‘‘zero-point tweezer’’).
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