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1. Overview 

Non-invasive functional neuroimaging techniques enable researchers to study the 

neurobiological substrates of psychological processes. The increasingly large body of 

neuroimaging research has two fundamental purposes. The first is to identify the brain 

regions that underlie a particular psychological process while the second seeks to identify 

differential responses of these regions to various stimuli or task challenges. The latter 

focus yields insights into both how the brain accommodates varying task demands and 

how differences between individuals or between clinical and healthy comparison groups 

might be explained by differences in neurobiological functioning. To achieve these goals, 

it is essential that one be able to isolate the psychological process of interest and how best 

to do so, with particular regard to experimental design, is the focus of this chapter. Part II 

will describe issues particular to psychological experimental design, that is, experimental 

control over the cognitive or emotional process of interest. Part III focuses on data 

analysis with emphasis on optimizing and isolating the neuroimaging signal in the 

activated brain regions. Part III also addresses a number of practical matters that confront 

all researchers when designing their experiments. 

The distinction between isolating the psychological process of interest and isolating the 

signal associated with that process is made for pedagogical purposes. In practice, the two 

considerations are closely intertwined in that the experiment must be designed with a 

view to how the data are to be analysed. In brief, a typical analysis decomposes the time-

series data into their contributing sources of variance. These sources of variance, which 

are generally assumed to be linearly additive, can include signals of interest such as task-

induced brain activity as well as nuisance signals such as those created by head-
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movement, scanner signal drift or the intrusion of extraneous psychological processes. 

The most common method for analysing these data is a linear decomposition of the 

various signal sources using for example, a multiple regression in which separate 

regressors and planned contrasts between regressors capture both the unwanted variance 

and the variance of interest. Clearly, the design of the experiment needs to take into 

consideration what regressors and what contrasts of interest will be included in the 

analyses in order to ensure that the final brain activation map can be attributed to the 

psychological process of interest. 

 

2. Task Design 

As fMRI data are inherently noisy, it is important to induce as strong a signal as possible. 

This serves to maximize the contrast between the active task state and a comparison state 

(e.g., between a cognitive task and a visuomotor control task). In addition to maximizing 

contrast within an individual, it is also important to maximize contrast between 

individuals (e.g., between a clinical group and healthy controls) or between two times of 

testing (e.g., a pre-post comparison of treatment effects). To maximize the contrast 

between groups, it is advisable to isolate the psychological process that best discriminates 

the two groups. In this regard, neuroimaging researchers would be well-served by 

grounding their experimental methods in the relevant psychological literature that 

identifies the key functions that distinguish the clinical and control groups and that 

provides a wealth of research methods detailing how to isolate those functions 

experimentally.  
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Experimental designs in fMRI can be categorized into block, event-related and a third, 

broader category, labelled participant-response dependent, in which a continuous 

measure obtained from the participant provides a regressor for probing brain activity. The 

block design averages brain activation over a sustained period of time (20 to 30 seconds 

would be typical durations) and contrasts this with similar periods of either a resting state 

or a comparison task which is typically chosen to contain all task demands bar the 

psychological process of interest. Brain regions that differ between these conditions may 

then be attributed to the psychological process. In an effort to exclude signals associated 

with confounding physiological processes (described in detail below), aperiodic block 

durations, in which the alternating ON and OFF periods vary in durations, may be 

advisable. 

This standard block design can be supplemented by including gradations of task 

challenge. This type of parametric manipulation can be quite advantageous: whereas the 

standard two-condition comparison (e.g., task A vs. task B or task A vs. rest) is open to 

the criticism of pure insertion (i.e., whether it is possible to selectively include and 

exclude a psychological function without affecting other task-related processes), the 

parametric manipulation assumes that the process is always present but to varying 

degrees in accordance with the demands placed on that process. Examples would include 

presenting various intensity levels of a sensory stimulus (1) or manipulating the number 

of memoranda in a working memory task (2). Block designs can also be enhanced by a 

sort of psychological triangulation in which the conjunction of distinct block design 

contrasts allows one to isolate a psychological process that can be separated from 

irrelevant surface features of the tasks (3). For example, if one wishes to isolate the 
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neuroanatomy of the mental rehearsal component of verbal working memory, one might 

design an experiment using quite distinct classes of stimuli with each class accompanied 

by its own control comparison. One task might require participants to store a list of 

common nouns over a rehearsal period and recall the words after that rehearsal period. A 

reasonable control condition for this task might be one in which the word list remains on-

screen for the duration of the rehearsal period and participants read, rather than recall, the 

words after the rehearsal period. The second task might present a list of nonsense 

syllables through earphones. At the end of the rehearsal period a single nonsense syllable 

is presented and participants report, using a button box, if the single item was one of the 

rehearsed items. A control condition for this second task might simply prompt the 

participant to make a predetermined button press response at the end of a delay period 

that was of similar duration to the rehearsal period. The conjunction between the two 

activation maps, in which activation for each task is first subtracted from its control 

condition, may be argued to represent core regions responsible for verbal working 

memory for which the influence of extraneous task features (e.g., linguistic stimulus 

properties, response modalities, recall vs. recognition) are minimized. This strength of the 

conjunction approach, however, may often need to be balanced against the time costs 

involved in testing all the required conditions. 

In circumstances in which a psychological process can be isolated temporally then event-

related designs are particularly useful. Here, brain activation time-locked to the events of 

interest can be selectively averaged enabling the researcher to embed trials of interest 

amidst other control trials and to categorize the trials after the participant has completed 

the experiment. Error trials can be excluded (or averaged separately) and events can be 
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coded by whether a participant detected a target or not, responded relatively fast or not, 

produced a subsequent behaviour or not and so on (4). This affords the researcher 

increased flexibility in probing the dataset and has obvious advantages over the block 

design in circumstances in which the psychological process cannot be presented in blocks 

as in, for example, an oddball paradigm in which the nature of the phenomenon mandates 

that events are infrequent and unpredictable. The block and event-related designs can also 

be combined such that events of interest during an active task period can be isolated 

while the task period itself can be simultaneously contrasted against a control period (5). 

This type of mixed design provides additional information in that one can determine the 

inter-relationships between tonic activity levels (e.g., sustained attention or an induced 

emotional state) and the processing of a discrete trial (e.g., detection of a fearful face). 

A final category of experimental design is what we have labelled participant-response 

dependent. Here, the participant provides a continuous measure that can, for example, be 

used to generate a regressor to correlate against brain activity measures. Despite a loss of 

experimental control over the participant’s behaviour, this category of design affords 

much flexibility when the phenomenon of interest is either not strictly task-dependent or 

is difficult to experimentally induce. Examples include resting state acquisitions (in 

which correlated patterns of brain activity can be detected while the participant simply 

rests) (6), biofeedback (in which, for example, a participant learns to control their level of 

brain activity) (7), passive viewing of a movie clip (in which there may be multiple 

sources of stimulation with each varying with a different time-course) (8) or in which 

performance varies in an unpredictable manner (9). Performance modulations for which 

one could assess brain activation changes can be quite wide-ranging including response 



 7 

times or response time variability on a continuous performance task (10), frequently 

sampled self-report measures of mood (11) and physiological measures such as heart rate 

or pupil-diameter (12). In these examples the discrete measurements can be interpolated 

to provide a continuous time-series that can be correlated with the brain activation time-

series data.  

An important consideration permeating all experimental designs is the choice of baseline 

against which activation is contrasted. These baselines can be explicit as in the block 

design in which specific blocks are chosen for comparison or implicit as in the event-

related and participant-response dependent designs in which the baseline is all task-

related activity that is not accommodated by regressors in the data analysis. The choice of 

baseline determines the interpretation of what processes are captured in an activation map 

and requires very careful consideration by the experimenter. 

 

2.1 Choosing an Experimental Design 

The choice of which design to employ will be dictated by the particulars of the 

psychological process to be investigated and how easy it is to isolate. Block designs can 

be employed if the psychological function is easy to isolate or if it is of particular interest 

to compare two tasks. A simple example would be a contrast between unilateral and 

bilateral finger movements. Here, blocks of finger movement in just one hand could be 

alternated with blocks of finger movements in two hands. Rest periods might also be 

included in order to provide a low-level baseline against which any task-related activity 

could be assessed. The inclusion of a resting state baseline is generally advantageous as 

contrasts between two task-active periods can often be ambiguous in that greater 
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activation in condition A relative to condition B could result from either more positive 

activation in A or a greater deactivation in B. A resting state baseline allows one to 

resolve this ambiguity by showing if activation increases or decreases in any one 

condition relative to the resting baseline. 

If the psychological function is not easily isolated then a conjunction analysis may be 

useful. As can be seen in the verbal working memory example given above, the 

conjunction design enables the researcher to identify the core functional neuroanatomy 

that is common across different operationalizations of a psychological process. In 

addition, it can also reveal task-specific activations enabling, for example, one to 

determine how verbal working memory rehearsal for linguistic information differs to that 

of non-linguistic information. An alternative approach may parametrically manipulate 

verbal working memory demands by asking participants to rehearse items of varying set 

sizes. The presumption here is that more items will engage verbal working memory 

rehearsal to a greater extent resulting in changes in activation corresponding to the 

increased memory loads. 

Although block designs suffer from an inability to isolate cognitive events that are 

temporally proximal by virtue of averaging over a prolonged duration, and may provide 

activation measures contaminated by extraneous tonic processes or isolated events (e.g., 

errors) they nonetheless have some advantages. For example, if the psychological process 

of interest by its very nature exists over a prolonged duration (e.g., sustained attention) or 

does not exist as a temporally discrete event (e.g., an emotional reaction) then it may be 

assayed best by a block design. 
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Conversely, the event-related design is particularly useful if one’s goal is to isolate 

distinct cognitive events. In between-group comparisons (or time 1 vs. time 2 

comparisons) the event-related design has the added advantage of being able to equate 

performance levels by comparing the groups on correct trials only. That is, one can 

compare correct performance trials of one group against the correct performance trials of 

the second group even if the absolute numbers of correct trials differ between the groups. 

In this regard, contamination from activity specific to error-related processes will not 

confound the between-group comparison (13). In a similar manner, selective averaging of 

trials may make it possible to eliminate other group differences (e.g., response speed) 

assuming that there are sufficient numbers of trials for this type of a matched-trial 

analysis. This is a particularly welcome feature as activation differences between groups 

that one may wish to attribute to a psychological difference can be confounded by 

secondary behavioural or performance differences (14). Indeed, the relationship between 

performance and activation levels is not straightforward. Often, researchers wish to 

ensure that the task produces performance differences between groups (or within a group 

following some experimental manipulation) in order to justify that choice of task or the 

focus on the psychological process engaged by the task; why study the neurobiology of 

attention between healthy controls and children with attention deficit hyperactivity 

disorder (ADHD) if the latter are not shown to be worse on the attention task? However, 

this can be a double-edged sword in that performance differences and knock-on effects 

such as differences in frustration or anxiety levels can confound interpretation of 

activation levels. One proposed solution is to administer a task that is within the level of 

competence of all participants and which, therefore, may not produce group differences 
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in performance. Such a task can be considered a probe of the neurocognitive functioning 

of the groups and substantial empirical evidence shows that brain activation differences 

are often observed in the absence of performance differences. The typical interpretation 

of activation differences when there are no performance differences is that reduced 

activation reflects better neural efficiency and less “effort.” This interpretation is 

supported by studies showing greater levels of activity as task difficulty increases or 

those that show reduced activation following practice of a psychological process (15). 

Finally, the participant dependent response design may be a sensible choice when one can 

obtain a continuous measurement from the participant but cannot exercise full 

experimental control over behaviour. For example, although emotional states are difficult 

to induce (and extinguish) experimentally, a physiological, self-report or task-induced 

measure can provide a time-course of that emotional state which can be used to detect 

correlated brain regions.  

 

3. Optimizing Experimental Task Designs 

The key issue when optimizing experimental task design in fMRI is statistical power. 

There are many important basic variables to be chosen which, if selected wisely, will lead 

to high power and thus robust and reliable results. Too often these variables are chosen 

arbitrarily leading to poor experimental designs that fail to yield the expected outcomes. 

When designing a task one needs to consider practical issues such as the number of 

participants or events required to give reliable results along with more analytic issues 

such as the estimation efficiency of the task design. These pragmatics are often dictated 

by feasibility constraints such as the availability of participants (e.g., how much access to 



 11 

the clinical population under study does one have?), the cost of scan time or the amount 

of available time in which the participant will remain comfortable and compliant. When it 

comes to the practical issues, the real question researchers have is not “How many 

participants/events does my study require?”, but “How few can I get away with?” Despite 

the ubiquity of these concerns, surprisingly few studies have addressed them and, instead, 

more emphasis has been placed on the analytic issues of presentation rate, duty cycles, 

sampling procedures, detectability of activation and efficiency of response estimation. 

These analytic issues relate the task that will be performed to the analysis methods that 

will be employed and provide guidance on the design details of an experiment. It is 

important, however, that analytic considerations are not allowed to dictate the design of a 

task such that it is no longer appropriate for measuring/engaging the psychological 

process under study.  

 

3.1 Practical Issues 

Only a handful of studies have addressed how many participants are required to yield 

stable activation maps. The first paper addressing this issue showed that conjunction 

analysis with a fixed-effect model is sufficient to make inferences about population 

characteristics thus reducing the number of participants required to infer differences 

between populations (16). Although quite useful, this conclusion does not give a clear 

indication of the number of participants required. By estimating the mean differences and 

variability between two block conditions, Desmond and Glover were able to perform 

simulation experiments generating power curves from which they could calculate the 

required number of participants (17). They found that for a liberal threshold of p=0.05, 12 
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participants were required to yield 80% power in a single voxel for typical block design 

activation levels. However, in fMRI the multiple comparisons problem and the associated 

potential for high levels of false positives requires us to go to stricter thresholds where 

they demonstrated that twice the number of participants would be needed to maintain the 

same level of statistical power. This recommended number of participants is higher than 

the vast majority of fMRI studies but is similar to independent assessments based on 

empirical data from a visual/audio/motor task (18) and from an event-related cognitive 

task (19). The Murphy and Garavan study (19) found that statistical power is surprisingly 

low at typical sample sizes (n<20) but that voxels that were significantly active from 

these smaller sample sizes tended to be true positives. Although voxelwise overlap may 

be poor in tests of reproducibility, the locations of activated areas provide some optimism 

for studies with typical sample sizes. It was found that the similarity between centres-of-

mass for activated regions does not increase after more than 20 participants are included 

in the statistics. The conclusion can be drawn from this paper that a study with fewer 

numbers of participants than Desmond and Glover propose is not necessarily inaccurate 

but it is incomplete: activated areas are likely to be true positives but there will be a 

sizable number of false negatives. Needless to say, the required number of participants is 

influenced by the effect size which, in turn, is affected by the sensitivity of the 

experiment (e.g., the strength of the experimental manipulation, the quality of the data 

acquisition and the accuracy of the data analyses). These considerations may be even 

more important if one’s intention is to detect what is likely to be an even smaller effect 

size of a between-group comparison. 
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Little research has addressed the optimal number of scans/events needed for a successful 

fMRI study. A simple reason for this is that there is no standard metric for determining 

the required number of scans/events and no gold standard for determining when the 

optimal number of events has been reached. One metric that has been utilized is the 

spatial extent of activation under the assumption that as more scans/events are included in 

the analysis, the spatial extent of activation will increase until all activated cortex is 

deemed above significance. When this occurs the spatial extent should asymptote 

providing an estimate of the required number of scans/events. Using this approach in a 

block design experiment, Saad and colleagues demonstrated that the spatial extent of 

activation increased monotonically with the number of scans included in the analysis and 

failed to asymptote after twenty-two 200s long scans (20). Similarly, Huettel and 

McCarthy found that the spatial extent of activation failed to asymptote even after 150 

events in an event-related design (21). However, this failure to asymptote may be a 

consequence of the analysis method employed (22). The correlation method does not 

asymptote because the goodness-of-fit to the regressor continues to rise with increasing 

degrees-of-freedom (df), which implies that the correlation measure will never plateau by 

adding more time points. The Huettel and McCarthy result (21) was replicated by 

Murphy and Garavan (22) but they also demonstrated that when using a standard general 

linear modelling (GLM) analysis rather than a correlation, the spatial extent of activation 

asymptotes after roughly 25 events in a properly jittered event-related design. This is 

certainly a more attainable number of events in the available scan time of standard fMRI 

studies. It can be assumed that at least 25 of each type of event are needed if there is more 

than one psychological process under study. Also, these results have been derived from 
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primary sensorimotor processes in the brain so it is unclear whether they will still hold 

for more subtle cognitive activations. Again, differences in activation have not been 

addressed either: it is quite possible that many more events would be required to 

distinguish two processes with slightly varying activation levels since these differences 

could be dominated by noise.  

A related concern is the optimal duration of a scan. How long a scan should last is 

obviously dependent on how densely the required number of events can be distributed. 

For example, a GO/NOGO task must sparsely distribute NOGO events due to the need to 

build up a prepotency to respond while a simple motor response task can present the 

events more frequently. Other issues that limit how long a scan can last include 

participant comfort and ability to stay engaged in the task along with technical concerns 

such as throughput of data and image reconstruction times. For these reasons and more, it 

is common to split a scanning session into separate scans lasting 5 to 10 minutes each 

after which they can be concatenated into one single time-series and treated as a single 

scan in the analyses. However, breaks in scanning reduce the efficiency of any temporal 

filtering that is used and can also introduce unwanted session effects. If the goal is to 

detect activation then a block design is the most efficient approach (see below). In this 

case, the length of the scan is dependent on the amount of noise in the time series (which 

can be measured by calculating the temporal signal-to-noise ratio (TSNR) defined as the 

mean of the time series divided by its standard deviation), the size of the effect to be 

measured (eff) and the significance level (P) at which the activation is to be detected (23). 

These authors derive an equation that determines how long one needs to scan to detect 
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activation with a block design for volumes with high spatial resolution and suggest how 

this can be extended to an event-related design: 
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where NG is the number of time points required for activation detection. Estimates of the 

size of the effect can be obtained from previous studies and TSNR measurements can be 

made using a short resting scan. Since these variables differ widely across types of task, 

brain regions and scanners, it is impractical to suggest an optimal scan duration here. 

 

3.2 Analytic Issues 

The purpose of an experimental design is to alter neural activity, and hence the blood 

oxygen level dependent (BOLD) signal, as effectively as possible and in a predicted way 

thereby enabling the researcher to detect the resulting brain changes. Using this 

prediction, one looks for corresponding patterns in the fMRI time series to determine 

which voxels were engaged in the task. A simple reference time series can be produced 

by convolving the stimulus timing function (which is equal to 0 when no stimulus is 

applied and 1 when a stimulus is presented) with a haemodynamic response function 

(HRF) that accurately represents the shape of the BOLD response after a single event. 

The gamma variate function, y(t) = t r e-t/b , has been shown to effectively model the 

haemodynamic response to brief stimuli (24), with parameters r = 8.6 and c = 0.51, and is 

a popular choice for modelling the haemodynamic shape. The difference between two 
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gamma-variates is also used in order to model the post-stimulus undershoot. It is 

important that the chosen HRF model accurately reflects the true shape of the response. 

If, for some reason, the haemodynamic shape of a participant is atypical (e.g. following 

treatment with a substance that directly affects the vasculature or a patient group with 

vascular damage), then the results of the analysis could be confounded by this difference 

in shape. (It should be noted that there are more advanced approaches to reference time-

series formation, such as ones that use basis functions rather than a predetermined HRF 

shape and these are addressed in a later chapter). 

The simplest type of analysis is a linear least squares regression of the equation:  

 

y(t) = β · x(t) + α + ε(t)     (2) 

 

where y(t) is the voxel time-series data, x(t) is the reference function (i.e., the expected 

BOLD response to the stimulus) with β its scaling factor, α is a constant and ε(t) is a 

random Gaussian white-noise term. Both β and α are unknown parameters that are fit by 

the linear regression method. This equation can be extended to include extra regressors to 

remove unwanted trends in the data, such as baseline drift, whilst simultaneously 

computing the scaling factor. This scaling factor, β, can then be used as an activation 

measure for each voxel.  

Multiple reference waveforms can easily be included in this type of analysis, denoted by 

the term multiple linear regression. In an experiment with two active conditions (1 and 2) 

the equation:  
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y(t) = β1 · x1(t) + β2 · x2(t) + α + δ·t + ε(t)    (3) 

 

is fitted to the data. For this model, four parameters are estimated, the two scaling factors 

β1 and β2 and the baseline α and also a baseline drift rate δ which accommodates for 

linear changes in the baseline over time. It is possible to investigate whether β1 or β2 are 

nonzero and whether β1 is different from β2 with statistical significance calculated using 

F-tests. This method allows one to identify active areas in the brain and calculate if an 

area is more active in one condition than another, thereby satisfying the two primary 

purposes of fMRI. This equation can be further generalized to Y = X β + ε, where Y is a 

column vector of the voxel’s time-series data, X is the design matrix, β is a column 

vector of scaling factors and ε is a column vector of Gaussian white noise terms (25, 26). 

This equation is called the General Linear Model (GLM) and is the basis for most fMRI 

analytic techniques. The columns of the design matrix X model the effects of interest and 

also confounding variables and are, in essence, the reference waveforms mentioned 

above.  

When designing an experimental task, one is essentially specifying these reference 

waveforms/regressors. To maximize statistical power, these regressors must be chosen 

wisely. For example, F-tests are used to determine if there are significant differences 

between the regressors. To increase statistical power, one can increase the df by 

lengthening the task (for long TRs, each additional timepoint adds a new df). It might 

seem like a good idea to use extremely short TRs to increase the number of time points 

and hence the statistical power. However, to gain an extra df for each additional 

timepoint, each timepoint must be statistically independent from every other. 
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Unfortunately, due to autocorrelations introduced into the fMRI data by physiological 

noise and scanner drifts, this is not the case. This example demonstrates that knowledge 

of the underlying mechanisms of fMRI along with the analysis methods is required when 

choosing even the simplest variables (such as the number of time points and the TR) for 

experimental design. 

Efficiency of a task design is a measure of how accurately the GLM can estimate the β 

weights for each of the regressors, that is, how small the predicted variance of the β 

estimates will be. For example, assume a block design task that induces exactly a 2% 

signal change in hundreds of voxels, all with different noise properties but with the same 

noise variance. If a GLM analysis is performed, the β estimate for every voxel will be 

approximately 2% for all voxels with very little deviation. Since the variance of the 

estimates does not differ widely with noise distributions, this would be considered an 

efficient task. However, matters become more complicated when there is more than one 

regressor. Assume that there are two block conditions, A and B, where A and B are 

identical with the exception that B is delayed with respect to A by one TR. These two 

regressors are highly correlated so if a voxel responds only to condition A, it will be 

extremely difficult for the GLM to distinguish this from a voxel that responds only to B. 

For this reason, the β estimates for each of the conditions will vary substantially and this 

would be considered an inefficient design. If the conditions are designed so that they 

have zero correlation (this is achieved by delaying B by half a block length relative to A), 

it would be very easy to distinguish voxels that respond to each of the conditions 

individually or both of the conditions together. Therefore, the variance of the β estimates 

would be quite small and so the design is efficient. These simple examples show that 
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efficient task designs come from regressors that are not correlated with each other. This 

can be slightly complicated by the contrasts of interest. For example, say we have a 

jittered event-related design where conditions A and B are randomly presented. If we 

want to find voxels that respond only to A (i.e., a contrast matrix of C=[1 0]), only to B 

(i.e., C=[0 1]) or differ in their response from A to B (i.e., C=[1 -1]), this design is very 

efficient. However, if we want to determine voxels that respond equally to both A and B 

(i.e., C=[1 1]), then the design is very inefficient because such a voxel will always have 

an elevated activation level and therefore will be indistinguishable from a voxel that does 

not respond to either task. The simple idea that regressors must be minimally correlated 

becomes more complicated when multiple conditions, nuisance regressors and contrasts 

are placed into a GLM analysis. The efficiency of a task is related to the covariance of the 

design matrix X (i.e., all regressors expressed as columns of a matrix) and is given the 

formula: 

  

 e = trace( C' * (X'X)-1 * C) -1 (4) 

 

where C is the matrix of contrast weights and ' denotes the transpose of a matrix. 

Efficiency calculations should be carried out on all experimental designs before scanning 

to check that the regressors are sufficiently independent. A paper by Smith and 

colleagues argues against this efficiency calculation since it relates to computational 

precision rather than image noise (27). This paper formulates the standard efficiency 

equations in terms of the required BOLD effect which takes into account the strength and 

smoothness of the time-series noise.) 
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The question “how do we design a good fMRI task?” is really asking “what experimental 

timing will produce the most efficient design?”. There are two variables under our 

control, the stimulus duration (SD: defined as the length of time the stimulus is 

displayed) and the interstimulus interval (ISI: defined as the length of time between the 

offset of one event and the onset of another). Another common term is stimulus onset 

asynchrony (SOA) defined as SOA=SD+ISI. (Sometimes, ISI is used to mean SOA so 

care must be taken to understand the true meaning when reading the literature.) To 

maximize efficiency (i.e., minimize correlations between regressors by ensuring a clear 

temporal separation between the event types) one can use either a fixed ISI but vary the 

order of events from different conditions or one can fix the order of the conditions and 

vary the ISI. For example, if an event from either condition A or condition B is to be 

presented every TR, it is very inefficient to present the events in an alternating fashion 

A,B,A, … However, efficiency is increased if the order is randomized. On the other hand, 

if B must follow A (e.g., A is a picture of an object and the participant must respond to B, 

a word, deciding whether it matches the object or not), then randomizing the order is not 

possible. Therefore, we must vary the ISI between successive As and Bs to increase the 

efficiency of the design. 

The issue of experimental timing is very important in fMRI tasks due to the relatively 

poor temporal resolution of the technique. Bandettini and Cox have shown that with a 2s 

SD the optimal ISI is 12 to 14 secs when the ISI is kept constant (28). At this optimal ISI, 

the experimentally determined functional contrast (i.e., the ability to detect activation) of 

an event-related task is only 35% lower that that of a block-design (which, as explained 

below, is the most efficient design). Simulations assuming a linear system showed that 
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this should be 65% lower suggesting the HRF is a non-linear system. Most techniques in 

event-related fMRI analysis assume that the haemodynamic shape of the BOLD signal is 

linearly additive. It has also been shown that when the ISI is allowed to vary, the 

haemodynamic response shows a 17-25% reduction in amplitude when trial onsets are 

spaced (on average) 5 secs apart compared to those spaced 20 secs apart (29). However, 

power analysis indicated that the increased number of trials at fast rates outweighs this 

decrease in amplitude if statistically reliable response detection is the goal. So, despite 

the HRF being non-linear at fast presentation rates, the mismatch with the regressor is 

compensated by the increase in trial numbers. Dale also demonstrated that if the ISI 

varies, the statistical efficiency improves monotonically with decreasing mean ISI and 

that the efficiency can be up to 10 times greater than that of a fixed ISI design (30). These 

lessons on stimulus timing suggest that even though the HRF is non-linear at short ISIs, 

closely packed, randomly presented events produce highly efficient designs. 

There are two fundamentally different goals when analysing event-related fMRI tasks: 

detection of signal change (which has been the focus thus far) and estimation of the HRF. 

Detection of the signal change involves determining one variable: the amplitude of the 

haemodynamic response. More information can be gleaned by estimating the HRF (e.g., 

time to onset, rise time, fall time, area under the curve) which can be used to determine 

subtle differences between groups or conditions that may not show up in an amplitude 

measure. However, this information comes at a cost: the experimental task can be 

optimized for either detection or estimation but not both. Birn and colleagues showed that 

the estimation of the HRF is optimized when stimuli are frequently alternated between 

task and control states, whereas detection of activated areas is optimized by block designs 
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(31). Liu and colleagues have developed a method that can simultaneously achieve the 

estimation efficiency of randomized designs and the detection power of block designs at 

a cost of increasing the length of the experiment by less than a factor of two (32). There 

are many programs that allow one to randomly (or not so randomly) generate thousands 

of task designs in order to choose the most efficient for the task at hand, be it detection or 

estimation. Genetic algorithms (optimization algorithms that code different designs like 

chromosomes and allow them to “crossover” and “point mutate” as they “replicate”) that 

can produce designs that outperform random designs on estimation efficiency, detection 

efficiency and design counterbalancing have also been developed (33). Further work has 

also shown that using advanced mathematical techniques, block designs, rapid event-

related designs, m-sequence designs (reference time series with an autocorrelation of 

zero) and mixed designs can nearly achieve their theoretically predicted efficiency and 

can be used in practice to obtain advantageous trade-offs between efficiency and 

detection power (34). It is important when using programs to design experiments to 

realize that they may converge on a structure that may be problematic for the 

psychological process under investigation (e.g. the most efficient task for detecting 

activation is a block design, however, if we want to design an oddball study the oddball 

events of interest should not occur in a block).  

When designing a task, one must also consider the frequencies at which the events of 

interest are presented. Analysis packages often perform high pass filtering to remove 

low-frequency drifts from the data. If all frequencies below the limit of, say, 0.01 Hz are 

removed then the activation to a task with a block lasting greater than 100 secs will also 

be removed. Similarly, this would be true for event-related tasks if the events were 
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presented at the same low frequency. Other frequencies exist in the data that one must be 

aware of. It is possible to remove the influence of physiological noise from fMRI data 

using techniques such as RETROICOR (35). These physiological noise sources are 

known to produce fluctuations in the data at the cardiac frequency ~1.1Hz, at the 

respiration frequency ~0.3 Hz and also at the respiration volume variation frequency 

~0.03 Hz (36). If these techniques are to be used and the task predominantly displays 

power at one of these frequencies (e.g. blocks lasting 33 s have a frequency of 0.03 Hz), 

then the correction techniques may remove the activations of interest and not just the 

fluctuations due to unwanted physiological processes. Conversely, if these corrections are 

not used, then the GLM may denote these physiological fluctuations as activations (if the 

phase of the fluctuations matches the phase of the task). One must also bear in mind that 

when using a long TR, all frequencies will be aliased into a narrow frequency band (e.g. 

with a TR of 2 s all frequencies above 0.25 Hz will be aliased into the range of 0-0.25 

Hz). This means that although the frequencies may seem far apart, the task and the 

physiological noise may alias to the same frequency (e.g., for a TR of 2s, the respiratory 

frequency 0.3 Hz will be aliased to 0.2 Hz as will a task frequency of 0.7 Hz, that is, one 

event every 1.4 sec). To avoid this problem it is best not to have the events regularly 

spaced so they reside at one frequency but to have random ISIs thus spreading the power 

to different frequencies. The most efficient tasks are ones whose power is spread widely 

across the whole available frequency spectrum. 

 

4. Conclusions 
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Designing fMRI tasks can be difficult with logistical constraints (e.g., how many 

participants and how much time per participant can one afford) obliging the experimenter 

to optimize the study design. The emphasis here has been on the experimental and 

analytic means of isolating a psychological process and its associated fMRI signal. Both 

considerations are central: optimal efficiency is of little comfort if one measures the 

wrong thing but there is little to be gained from an inaccurate measurement of a robust 

psychological phenomenon. General recommendations include the importance of 

grounding one’s experiment in the appropriate theoretical framework and using 

appropriate experimental methods, generating designs that are tested for their efficiency 

prior to data collection, ensuring that a sufficiently large sample is tested and being clear 

on whether one’s goal is the detection of a response or the estimation of that response.  
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