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Abstract

This paper presents a new non-photorealistic/stroke-based

rendering (NPR/SBR) framework for the stylization of videos

featuring head shots of people, such as home videos, movies,

and camera mobile phone clips. Spatiotemporal skin and

edge detection are used to locate and emphasize the semantic

content in the stylization process. The SBR portion of the

algorithm features novel techniques for motion expression with

elliptical brush strokes, brush stroke anchor point distribution,

spatio-temporal color-sampling, and brush stroke animation

with regard to state-of-the-art issues such as object occlusion

and uncovering in the source video. A wide user-accessible

parameter space and finishing touches such as cartoon-like

edge decoration and other quirky effects empowers a variety of

artistic outputs. The resulting stylized sequences are fun and

interesting with regard to compression, summarization, motion

visualization, story-boarding and art. Both the semantic

content, and underlying video motion is highlighted and

summarized on every frame of the stylized output sequence.

Keywords: Video Signal Processing, Probability, Motion

Analysis, Rendering, Animation

1 Introduction

Non-photorealistic rendering (NPR), or the stylization of

digital visual media is a wide research topic. A popular

aspect is cartoonization, or cartoon-like rendering of images

or video. Semi-automatic cartoonization tools have been used

in the production of animated Hollywood films such as What

Dreams May Come (1998, Polygram Filmed Entertainment)

and A Scanner Darkly (2006, Warner Independent). Numerous

image-based cartoonization plug-ins exist (e.g. ToonIt! plug-in

for Adobe Photoshop, Digital Anarchy), and cartoonization

applications are now present in some mobile camera phones.

Another interesting NPR concept is that of stroke-based

rendering (SBR) [10], in which a source image or

video is transformed to look as if it has been painted

by an artist applying brush strokes to a canvas. This

technique has been used to recreate painting styles such as

impressionism [7, 18, 11, 8, 20], and drawing styles like

sketching [4, 19] and stippling [22, 12]. Painterly rendering

tools can be found in desktop publishing and professional,

creative software such as Adobe Creative Suite 4.

Current NPR research seems to involve the idea of content-

based applications. Hertzmann [9] presents an SBR algorithm

in which user-defined semantic regions of the source image

(e.g. people, faces) are painted in more detail. Santella and

DeCarlo [21] and DeCarlo and Santella [5] present SBR and

cartoonization algorithms respectively that utilize participant’s

eye-tracking data to ensure that the visually salient features of

the source image are stylized clearly. Another content-based

aspect of NPR is the visualization and summarization of the

motion in image sequences using cartoon-like motion trails [3],

or storyboard-like action key-frames [16].

Given the subtle relationships between these various

techniques it is interesting to explore the possibility of

merging these ideas into a single framework. This paper

presents such a framework that combines several ideas

in NPR: cartoonization, SBR, non-uniform stylization

based on content, and motion depiction. The aim is not

to emulate a particular real-life artistic style, but rather to

experiment with merging these ideas. Automatic spatio-

temporal skin and edge detection is incorporated to direct

a skin-aware stylization, making this an ideal application

for video portraits or head shots of people (e.g. home

movies, cinema, mobile phone clips). In addition, this paper

presents novel techniques for brush stroke distribution, dealing

with occlusion and uncovering of objects in video SBR,

and spatio-temporal color sampling. The resulting stylized

sequences and source videos can be downloaded from http:

//www.deirdreoregan.com/VS_CVMP09.html.

2 The Specifics of SBR

A popular framework for SBR originated from the work of

Haeberli [7], and has persisted to the current state-of-the-art.

Hertzmann [10] provides a good overview of SBR and its

issues. Typically, the process of painterly rendering an isolated

video frame is commonly simulated in the following steps:

1. The canvas is initialized as blank, or with an

underpainting [6] (i.e. a blurred version of the source

image).

2. The source frame is pre-processed to obtain some

reference data such as the gradient profile or a color

segmentation.

3. A list of brush strokes needed to render the output painting

is formulated with regard to the reference data.

4. The brush strokes are composited on the canvas in the

order defined by the list.



5. Final touches such as simulated lighting, texture mapping,

or hue adjustment finish the painting.

Brush strokes are modeled as entities with attributes including

those relating to style (e.g. rectangular or spline-like),

dimensions, orientation, color, opacity (i.e. for compositing),

and anchor point coordinates. The latter relates to the

position of the brush stroke’s centroid in terms of the canvas

dimensions, X = [x, y] where x and y are the horizontal

and vertical coordinates respectively. A simple elliptical style

brush stroke is utilized for the SBR portion of our stylization

framework. The main attributes of an elliptical brush stroke

can be visualized in Fig. 1 including; anchor point coordinates,

q = [xc, yc], the length of the major and minor axes, ae and

be, and the angle between the major and the horizontal axes, θ.

The brush stroke also has a color, c = [r, g, b], and opacity, α,

both uniformly applied to it’s masked area, s(X).

Figure 1: Elliptical brush stroke attributes and parameters.

3 Important Issues with SBR

The method of distributing brush stroke anchor points on the

canvas is an interesting problem in SBR, that is reminiscent

of the rendering technique of stippling [22, 12]. Haeberli [7]

distributes the points in pseudo-random canvas locations until

there are no gaps left in the painting, while Litwinowicz [18]

anchors them on the nodes of a regular grid partitioning the

canvas. The former has the problem of redundancy, where

too many brush strokes may be placed close to or on top of

one another, which is computationally inefficient. The latter

produces a painting that can look too regular, and so noise must

be added to the anchor point coordinates to emulate a hand-

painted look.

Hertzmann [9] and Mignotte [19] present algorithms that

distribute brush strokes on the canvas by varying their anchor

coordinates and other attributes to minimize an energy

comparing the output painting to the source frame. Often

referred to as Relaxation [7, 9, 10], this technique is usually

employed to drive finer painting detail (i.e. smaller, and/or

more brush strokes) towards regions of texture and edges

in the source image. Other algorithms such as that of Hays

and Issa [8] achieve a similar effect by painting in multiple

passes or layers, whereby an increasingly fine network of

brush strokes are distributed in the region of edges detected at

decreasing scales in the source image.

The method of animating brush strokes in video-based SBR

is also important. Litwinowicz [18], Hays and Issa [8],

Hertzmann [11], and Park and Yoon [20] utilize various

applications of optical flow [13] or motion estimation [17] for

video-based SBR. The technique presented in the first two of

these examples involves continually motion compensating the

brush strokes according to the forward flow or motion field

obtained from the source video. Hence, a particular brush

stroke’s anchor point trajectory is continually determined by

qn+1 = qn + fn(qn) (1)

where fn(X) is the forward motion field estimated between

frames n and n + 1 of the video. The stylized effect is visually

stunning in that the brush strokes appear to move as if they are

stuck to the objects in the scene. This concept can be visualized

in Fig. 2. A rectangular brush stroke - similar to the kind used

in the work of Litwinowicz [18] and Hays and Issa [8] - is

shown here.

The motion models behind some motion estimators do not

address the phenomena of occlusion and uncovering of objects

in the video, and this causes specific problems in video-based

SBR. Motion-compensated brush strokes tend to pile up in

regions of occlusion, and redundancy results. Gaps in the

painting are formed as the brush strokes migrate from regions

of uncovering. The problem can be visualized in Fig. 3.

Elliptical brush strokes are used to stylize frame n = 75 of the

Hollywood sequence, and continually motion-compensated to

stylize following frames.

Litwinowicz [18] deals with redundancy and gaps by a process

involving Delaunay triangulation of the anchor point nodes in

the grid. Hays and Issa [8] monitor the canvas for gaps and

redundancy and vary the opacity of brush strokes temporally

to transition them into and out of the painting as required.

In contrast, this paper addresses this issue by detecting the

underlying cause of these problems; occlusion and uncovering.

Temporal coherency is an issue in any video stylization

algorithm. With SBR, the attributes of brush strokes should

vary smoothly between frames. Of particular interest is the

method of coloring the brush strokes, or color-sampling. It

is well known that point-sampling the color from beneath the

brush stroke’s anchor point coordinates in each frame of the

source video creates flicker in the stylized sequence [8, 1].

Hays and Issa [8] average the motion-compensated color

values over a spatio-temporal window centered on the current

frame and with spatial dimensions equivalent to those of the

brush stroke. Similarly, the video watercolorization algorithm

of Bousseau et al [1] smooths the motion-compensated color

by taking an average over a cone-like spatio-temporal window

tapering outwards from the current frame at the center. This

paper uses a different spatio-temporal filtering strategy and

avoids the heavy averaging process.



(a) Forward motion field

(b) Animating a brush stroke

Figure 2: Brush stroke animation; (a) the forward motion

field for frame n = 127 of the Swimming sequence, and (b)

motion compensating a brush stroke’s anchor point (left) and

its trajectory over a few frames (right).

4 Motion Expression

In previous SBR algorithms, the orientation of brush strokes is

influenced by the direction of local gradients or edges detected

in the source image [7, 18, 11, 9, 8, 20]. Although this is a good

technique for preserving the high frequency detail in the video,

the work presented in this paper experiments with the idea of

varying the orientation and stretch of the elliptical strokes with

the behavior of the underlying video motion.

With reference to Fig. 1, the area of an elliptical brush stroke

is defined by φe = πaebe, while the relative lengths of ae

and be determine its eccentricity. To set ae = be means that

the ellipse becomes a circle of radius, req. By defining the

stretch ratio ke = ae

be

, the ellipse can be stretched by varying

ke while holding the area, φe constant. The stretch ke of a

particular elliptical stroke with anchor point q in frame n of the

stylized output is then varied with motion using the following

expressions

ke
n =

un

û
k̂e (2)

where un =

Nu
∑

j=1

√

(uj
y)2 + (uj

x)2 (3)

and un =
1

Nu

(Nu−1)/2
∑

j=0

[

fn+j(qn+j) − bn−j(qn+j)
]

(4)

where fn(X) and bn(X) are the forward and backward motion

vector fields over a number of frames, Nu, and centered on

Figure 3: Redundancy and gaps; brush strokes pile up in

regions of occlusion and drift apart in regions of uncovering.

Here, a camera zoom triggers these problems.

the current frame, n. The terms uj
y and uj

x are the vertical

and horizontal components of uj respectively. The motion

estimation algorithm of Kokaram [17] is used to obtain the

motion fields. A temporal window with Nu = 7 is the default

setting, and û is the assumed maximum value of un. The

stretch of the ellipse is limited by the user-defined maximum,

k̂e.

The orientation of the brush stroke in frame n of the stylized

output, θn (radians), is defined as

θn = arctan

Nu
∑

j=0

un
x

Nu
∑

j=0

un
x

(5)

Using these formulae, elliptical brush strokes stretch and orient

smoothly to portray the temporally varying magnitude and

direction of the underlying video motion. This effect can be

seen in Fig. 5.

5 Probabilistic Anchor Point Distribution

A novel probabilistic anchor point distribution process has

been developed within the video stylization framework.

This process is related to the idea of Poisson-disk sampling

(PDS) [15], in which point samples are distributed on a plane

(i.e. the canvas) in a series of trials. In each PDS trial, a

candidate sample is generated pseudo-randomly, but rejected



if it falls within radial distance rdisk of previously generated

sample. This is interesting in that rdisk could be chosen to

compliment the dimensions of brush strokes. As previously

explained, however, the shape of our motion-expressive

elliptical brush strokes vary over the canvas. Our novel

approach attempts to soften the process of PDS by posing it in

a probabilistic light.

Anchor points are generated on the canvas in a series of trials, i.

The point generated by each successful trial is qi = [xci
, yci

].
During the trials, each location on the canvas, X is associated

with sampling probability. At the beginning of the process,

therefore, we have an initial uniform distribution, p0(X) = k0,

as can be seen in Fig. 4.

Figure 4: Initially a uniform distribution over canvas

coordinates, X.

Here, k0 is a constant. To generate the first anchor point, q0, a

sample is drawn from this distribution numerically

(x̃0, ỹ0) ∼ p0(x,y) 7→ q0 = [xc0
, yc0

] (6)

The aforementioned PDS algorithm would maintain a uniform

distribution throughout the sampling process, explicitly

rejecting those points whose coordinates fall within rdisk of an

existing anchor point. Here however, the sampling probability

is modified after the placement of a brush stroke so as to

suppress the likelihood of anchoring another nearby. Therefore

we have the continuous process

(x̃i, ỹi) ∼ pi(X) 7→ qi = [xci
, yci

] (7)

pi(X) = pi−1(X)pbi−1
(X) (8)

where pi−1(X) is the probability distribution from the previous

trial, and pbi−1
(X) is the modification that resulted from it.

The modification models a suppression field with peak at the

previously generated brush stroke’s anchor point, qi−1, and

smoothly decreasing outwards from the center. Generally, the

Gauss-like suppression function generated in trial i is defined

as

pbi
(X) =

1

Z

[

C − e−(vsX
T
SX)

]

(9)

where Z and C are a normalizing and scaling factor

respectively, S is a 2D covariance matrix whose diagonal

(a) Frame sequence for motion analysis

(b) Source frame (c) Brush strokes

(d) Anchor points (e) Probability distribution

(f) Cumulative count (g) Gap mask

Figure 5: The SBR process; (a) frame sequence, Nu = 7,

used to influence the elliptical stretch and orientation, (b)

the source frame, n, (c) brush strokes composited on an

underpainting, (d) anchor point distribution, (e) probability

distribution, pi(X), (f) cumulative count image, hi(X), and

(g), gap mask, gi(X). Other parameters include req = 40,

û = 35, k̂e = 6, vs = 3, C = 0 and α = 0.75

entries correspond to aei
and bei

of the elliptical stroke

anchored at qi, and vs ∈ ℜ is a weight. C = 0 is the special

case preventing two anchor points from being placed in the

same location on the canvas.

Fig. 2 (a-e) demonstrates the effect of a number of trials in the

stylization process of frame n = 33 of the Female1 sequence,

including an overhead view of the resulting probability

distribution, pi(X). Dark areas represent low probability and

bright areas represent high probability.

Canvas coverage is monitored by maintaining a cumulative

count image, hi(X), with bin dimensions corresponding to

those of the canvas. This can be visualized in Fig. 2 (f). After

each trial, hi(X) is incremented over the masked area of the

anchored stroke, si(X), as follows



Figure 6: Gauss-like suppression function for coordinates x

when the brush stroke’s major axis, aei
, is in line with the

horizontal axis. Here C > 0 and vs = 1.

hi(X) = hi−1(X) + si(X) (10)

The scheme used to terminate the process is a similar to that of

Hays and Issa [8]. Essentially, the painting is completed in two

passes. In the first pass, trials occur until h̄i > ta, where ta
is a threshold on h̄i, the mean of hi(X). The second pass is a

hole-filling process. Before the second pass a gap mask, gi(X),
is defined and used to alter pi(X) as follows

gi(X) =

{

1 where hi(X) < 1

0 otherwise
(11)

pi(X) ∝ pi−1(X)gi(X) (12)

A gap mask can be visualized in Fig. 2 (g), where gaps are

represented by white areas. Gaps that form larger connected

regions are perceived as holes in the painting, and Aj is defined

as the area of a particular connected hole. Sampling trials

continue in the second pass until Âj <= AH , where Âj is

the largest hole, and AH is the maximum tolerated area of a

hole.

6 Semantic Layers

To achieve a skin-aware painting, three semantic layers

are defined for each video frame, n; background, Ln
b (X),

foreground, Ln
f (X), and detail, Ln

d (X). Since the source

videos consist of head shots, spatio-temporal skin detection

is used to define the foreground layer, and edge detection is

used to obtain the detail mask. Stylization parameters can then

be varied between layers to emphasize the salient content (i.e.

skin and edges within skin regions).

Skin detection is carried out using a statistical approach similar

to that of Jones and Regh [14], and the resulting skin mask is

spatially smoothed to give Ln
f (X) using the max-flow/min-cut

algorithm of Boykov and Kolmogorov [2]. To obtain Ln
d (X),

Canny edge detection is performed on the source frame, and

the resulting edge mask is morphologically dilated by a small

radius of rd1
=∈ {1..5}, echoing the approach of Hays and

Issa [8]. Edges falling outside of Ln
f (X) are discarded. The

resulting layer masks are spatially but not temporally smooth,

so they are filtered by means of motion-compensated median

filtering over a small spatio-temporal window of width WL =∈
{5..11} and temporal extent NL =∈ {5..11}. Fig. 7 illustrates

the smoothing process with Ln
d (X) associated with frame n =

33 of the Female1 sequence.

(a) Mask sequence for smoothing

(b) Canny edge detection (c) Spatiotemporal smoothing

Figure 7: Spatiotemporal smoothing; (a) mask sequence,

NL = 7, used in smoothing, (b) Canny edge mask for n, and

(c) the spatio-temporally smoothed Ln
d (X). Here WL = 7.

The user can choose to vary the size of brush strokes between

these layers, as can be seen in Fig. 8. Here, brush strokes

with three different sizes req = {40, 15, 5} are used to

paint in the regions of background, skin and edge detail

respectively. An interesting problem is observed in Fig. 8

(d,e) in that few small brush strokes are distributed with the

aforementioned probabilistic anchor point distribution process,

especially within the detail sites, Ln
d (X). This is due to the

wide suppression fields generated by the larger brush strokes

deposited in the background region, coupled with the fact that

the spatial sampling area of Ln
d (X) is smaller.

A solution to this problem is to weight the initial probability

distribution, pn=0
i=0 (X) as follows

pn=0
i=0 (X) = vbL

n
b (X) + vfLn

f (X) + vdL
n
d (X) (13)

where vb, vf , vd ∈ ℜ are weights of increasing value. The

effect can be seen in Fig. 8 (e,f), in the painting of a frame

from the Swimming sequence. Here, the weights are set to a

multiple of the relative area masked by each layer. Another

solution is to paint each layer separately, each with a unique

pn
i (X) and associated parameters defined only in the region of

the layer mask. The resulting effect can be seen in Fig. 8 (g,h).

7 Animating the Brush Strokes

Brush strokes are animated by continually motion

compensating their anchor points according to the underlying

motion of the source video (refer to Section. 3 and Eqn. 1).

The motion estimation algorithm of Kokaram [17] is used



(a) Frame sequence for motion analysis

(b) Source frame (d) Output painting (f) Weighted painting (h) Layer-based painting

(c) Semantic layers (e) Anchor points (g) Weighted anchors (i) Layer-based anchors

Figure 8: Semantic layers; (a) frame sequence, Nu = 7, used to determine elliptical properties and layer masks, (b) the source

frame n, (c) Ln
f (X) (gray) and Ln

d (X) (white), (d) output painting, (e) brush stroke anchor points, (f) weighted probability

painting, (g) weighted probability anchor points, (h) layer-based output painting, and (i) layer-based anchor points.

to obtain the motion information. As previously explained,

regions of object occlusion and uncovering in the source video

trigger the usual problems in our motion-compensated brush

stroke animation.

A novel solution to the problem of brush stroke pile-up is to

detect the frame-wise regions of occlusion, and prevent brush

strokes from being translated into these regions. A measure

of both occlusion and uncovering is obtained by forming the

image, on(X) in the following steps

Xn′

= Xn−1 + fn−1(X) (14)

Xn′′

= Xn′

+ bn(X) (15)

on(X) = |Xn′

− Xn′′

| (16)

where Xn′

is the translation of the pixel coordinates in frame

n − 1 to n according to the motion estimator and fn−1(X) the

forward motion field estimated for frame n − 1. Xn′′

is the

translation of the estimated Xn′

back to the locations in frame

n−1 according to bn(X), the backward motion field estimated

for frame n.

In areas of no occlusion and uncovering it would be expected

that Xn′

= Xn′′

, and hence on(X) would be low. Since the

motion estimator fails in regions of occlusion and uncovering,

it follows that on(X) is higher in these regions. Significant

regions can be detected by forming a mask of on(X) > to,

and to is a threshold. Anchor points that are translated into

these regions via motion compensation are simply deleted, as

are those translated beyond the spatial boundaries of the video,

or from one semantic layer to another. Furthermore, strokes

whose motion-compensated translation excites the condition

ĥ > tm are deleted to curb redundancy. Strokes early in the

list defining compositing order are deleted first, because they

are less likely to be seen popping in and out since they exist at

the rear of the painting.

To fill the regions of uncovering, gaps are detected using

a gap mask, gn(X), as previously defined in Eqn. 12, and

sampling activity is reduced to the canvas region defined by it.

The previously discussed two-pass brush stroke distribution is

then carried out on this reduced sampling space until painting

termination. This stage also fills gaps that have been created

by the deletion of brush strokes translated into regions of

occlusion. All newly generated brush strokes are added to the

head of the list defining compositing order, such that they are

painted early in the composition.

8 Spatiotemporal Color Sampling

The SBR portion of our video stylization framework utilizes

a novel spatio-temporal color-sampling algorithm for the

coloring of brush strokes. Two filters are used in cascade; a

spatial Hamming window is used to simultaneously sample

and smooth spatial color, and a Butterworth filter removes

variations of this sampled color temporally. By doing this we

avoid a heavy spatio-temporal averaging process while still

obtaining temporally smooth brush stroke coloring.



The spatial process can be visualized in Fig. 9, and it yields a

color sample

cn
i =

∑

j

[vjC
n
i (X + dj)] (17)

where cn
i is the color sampled for the brush stroke generated

in trial i in the stylization of frame n, Cn
i (X) are the pixel-

wise color values of the source frame, dj indexes the samples

in the spatial window, and vj are weights corresponding to the

Hamming window, both centered on qn
i . Hamming weights

ensure that color values closer to the stroke’s anchor point are

given more importance in the spatial smoothing stage. The

width of the spatial window, Wc, can be adjusted according

to Wc = 2kcreq, where kc ∈ {0...1} is a user-defined constant.

The smaller the value of kc, the more distinct the color of

individual strokes will appear.

Temporal smoothing is achieved with an Infinite Impulse

Response (IIR) Butterworth filter of order Nb, and normalized

cutoff frequency, ωb. The taps of a third order (i.e. Nb = 3)

Butterworth filter with varying ωb can be seen in the Table 10.

Note that cn
i refers to the spatially smoothed color sample for

frame n, whereas cn−1
bi

refers to the temporally smoothed color

output of the Butterworth filter for frame n − 1 and so on.

Figure 9: The process of spatial color-sampling to paint a

circular brush stroke.

ωb c
n−3

bi
c

n−2

bi
c

n−1

bi
c

n

i c
n−1

i
c

n−2

i
c

n−3

i

0.1 -0.5321 1.9294 -2.3741 0.0029 0.0087 0.0087 0.0029

0.3 -0.1378 0.6959 -1.1619 0.0495 0.1486 0.1486 0.0495

0.5 0 0.3333 0 0.1667 0.5 0.5 0.1667

Figure 10: Taps of an order Nb = 3 Butterworth filter with

varying cutoff frequency, ωb.

The results of our color-sampling process can be compared

with that of simple frame-wise point-sampling at anchor

point coordinates, and spatio-temporal motion-compensated

averaging in the Hollywood b1, Hollywood point, and

Hollywood mean sequences respectively at http:

//www.deirdreoregan.com/VS_CVMP09.html.

In the former Nb = 3, and a spatial color-sampling window

defined by kc = 0.5 is used with brush strokes of dimensions

req = {30, 15, 5} to give Wc = {30, 15, 5} on the three

semantic layers. In the latter, a uniform symmetrical spatio-

temporal volume of equivalent Wc and a temporal extent of 7

frames centered on the current frame is tested for comparison.

These videos demonstrate that the former performs well

compared with the latter, and that frame-wise point-sampling

with no temporal smoothing simply causes flicker.

9 Finishing Touches

Noise can be added to the color and orientation parameters of

the elliptical brush strokes, and these can be varied between

semantic layers, as can the different stylization effects. A

cartoon-like look can be achieved by alpha-compositing color

onto the painted canvas using Ln
d (X) as follows

zn(X) = Ecz
n(X)αd(1 − Ln′

d (X)) (18)

where zn(X) is the output painting post-SBR, αd is the opacity

of the edge decoration, and Ec is a constant defining its color.

The mask Ln′

d (X) is simply Ln
d (X) dilated by a small radius,

rd3
=∈ {1..3}, and smoothed with a normalized spatial

Hamming window of width Wd =∈ {3, 5}. Examples of edge

decoration can be seen in Figs. 13 and 14.

The technique of stretching and orientating brush strokes

according to motion presents a problem that can been seen in

Fig. 11 (b), which shows the painting of (a) with brush strokes

of various req, and elliptical parameters k̂e = 9 and û = 32.

It is clearly expressive of the motion of surrounding frames,

but much of the high frequency detail is lost in the stretch of

the elliptical strokes. This problem is addressed by limiting the

stretch of the elliptical strokes in the detail region defined by

Ln
d (X). Fig. 11 demonstrates this idea. Fig. 11 (b) shows the

painting of (a) with brush strokes of various req, and elliptical

parameters k̂e = 9 and û = 32. The idea is to to limit

the elliptical stretch increasingly close to edges, reducing the

ellipses to circles on edge sites. Fig. 11 (c) is a special detail

(i.e. edge) distance filter, dn(X), designed for this purpose and

defined by

kn
e (X) = kn′

e (X)dn(X) (19)

where kn′

e (X) is the original stretch profile of the brush strokes

as calculated in Section 4. The detail distance filter, dn(X), is

a pixel-wise measurement of the Euclidean distance from each

site in X to the nearest non-zero value marked by a dilated

version of Ln
d (X). These values are normalized, scaled by a

constant Ed, and clipped such that dn(X) > 1 = 1. The value

of Ed ≥ 1 determines the stretch-limiting influence of dn(X)
across X, and kn

e (X) at sites where Ln
d (X) = 1 is always

unity. Fig. 11 (c) shows dn(X) with Ed = 2 on a frame in

the Hollywood sequence, (d) is the stylized result of involving



Eqn. 9. The output painting is still motion-expressive, but more

high frequency detail is preserved.

(a) Source frame (b) Output painting

(c) Detail distance filter

(d) Stretch control

Figure 11: Preserving detail; (a) the source frame n, (b)

output painting with k̂e = 9, and û = 32, (d) detail distance

filter dn(X) with Ed = 2, and (e) output painting with dn(X)
influencing kn

e (X).

Another quirky style can be created by sampling the source

frame beneath the color-sampling window defined by kc in

Fig. 9, and resizing the image to the dimensions of the brush

stroke’s masked area, sn
i (X), using bicubic interpolation. The

result is a lens-like effect, and the brush strokes still move

with the underlying motion of the sequence. Fig. 14 presents

example frames incorporating this effect (see the bottom two

frames).

10 Results

A number of source videos have been stylized, and they can
be obtained from http://www.deirdreoregan.com/VS_

CVMP09.html, along with a full list of parameters. Some edge-

decorated results can be seen in Figs. 13 and 14. More stylized

video frames can also be seen in Fig. 14, and the lens-effect can be

visualized in in the last two example frames. Adobe AfterEffects

was used to track the eyes to form the detail region in the Female1 3

sequence (bottom left), and the lens-like effect is confined to the

background region in Swimming 2 (bottom right). The seventh and

eighth example frames of Fig. 14 are notable in that they capture the

behavior of the motion-expressive brush strokes and spatio-temporal

color-sampling process on frames near to shot cuts in the source video.

This behavior can be observed in any of the stylized results of the

Hollywood sequence. Note that the filters for smoothing semantic

layer masks are temporally clipped at the shot cut boundaries.

The resulting stylized videos demonstrate a variety of artistic options

possible within the framework. Future work is dependent on the

stylistic goals of a user. A variety of brush stroke shapes and

styles could be implemented for SBR, with paint-like textures and

lighting, as described by Hertzmann [10]. Rapid temporal changes

in the orientation of elliptical brush strokes are observable, and θ

could be smoothed in a manner similar to the temporal filtering of

color described in Section 8. Only some of the videos demonstrate

the result of limiting the stretch of elliptical strokes at edge sites,

some with a cartoon-like edge decoration and some not. It is quite

subjective which, if any, of this combination of effects is interesting

or aesthetically pleasing. Rather than curbing the stretch of the

detail brush strokes at edges to preserve high frequency detail as

presented in this paper, they could be orientated parallel to the edges

as in previous NPR work [18, 8]. The underlying skin and edge

detection algorithms could also be improved. The cartoon-like edges

are prone to flicker in periods of rapid motion (see stylized outputs

of Swimming) or changes in illumination (see stylized Male1), for

example. Background and/or hair can be falsely masked as skin (see

stylized Male1 and Hollywood), but it is subjective as to whether this

has a negative effect on the stylized video results.

11 Conclusion

A novel non-photorealistic/stroke-based rendering (NPR/SBR)

framework for the stylization of videos of people has been presented.

The resulting stylized sequences are visually interesting, and

demonstrate a variety of artistic outputs. The stylization is content-

based in that skin and detail regions are painted more finely and

highlighted, whereas the background is abstracted. The use of

motion-expressive elliptical brush strokes for SBR empowers

motion visualization and summarization, such that a snapshot of

the underlying source video motion is captured in every frame of

the stylized sequence. Furthermore, novel ideas for brush stroke

distribution, spatio-temporal color-sampling, and methods for dealing

with occlusion and uncovering in brush stroke animation have been

presented. This framework might be useful for the stylization of

home movies, films or camera mobile phone clips.
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