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Abstract – We propose an unwinding model based on helical fractures confirmed by spectroscopic
and microscopic observations. This model combined with the fixed helical pitch can explain the
various physical phenomena observed in SmC∗ phase of ferroelectric liquid crystals. These are
the dc field dependencies of i) dielectric strength, ii) relaxation frequency of the Goldstone mode,
and iii) the effective polarization. The conventional diverging pitch model where the helical pitch
increases with an increase in the field is shown not to satisfactorily explain these observations.

Copyright c© EPLA, 2008

The mechanism of unwinding of a helical structure is
common to many areas in soft condensed matter physics
and in biology. The super twisted helix of DNA is unwound
with the addition of enzymes called topoisomerases which
fracture the helix selectively, and then reconnects it for
duplication and reproduction [1]. The break in the helical
structure into segments is an easier and an efficient method
for solving a topological problem caused by the unwind-
ing, i.e. the phase difference of 2πm between the two ends
of the helix (m denotes the number of nodes including
zero). Without this break, the end molecules of the helix
must make numerous turns for an unwinding process to be
completed. The helical unwinding in FLCs brought about
by the application of an external electric field has a simi-
lar problem as that of DNA, but has been solved differ-
ently. In 1977, Meyer [2] gave a model for the field-induced
helical unwinding process in SmC∗, analogous to that in
cholesteric liquid crystals also proposed by him [3]. The
continuity of directors along the normal to layers is not
broken during the unwinding process because the unwind-
ing occurs through the pitch diverging, that is, the pitch
increases with an increase in the applied field and finally
it diverges to infinity at the critical field for completely
unwound state Ec [4–8]. This is called the diverging pitch
model and is based on the continuum approximation,
where the elastic energy is proportional to the square of
the deformation of directors, hence the deformation by an
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external force should be spatially continuous for minimiz-
ing the elastic energy. However, we showed recently that
a number of helical fractures are produced by a relatively
low field in some FLCs [9]. This is to state that the conti-
nuity of the helix can easily be broken, and a number of
helical fractures occur. The helical fracture means that
the angle difference (∆φi,i+1) between the c directors of
the two adjacent layers experiences a large change whereas
the other angle differences stay small. This is fundamen-
tally different from the diverging pitch model and the
continuum approximation. Note that the helical fracture
requires too large elastic energy to appear in the contin-
uum approximation. However, it is well known that in the
field-induced switching of antiferroelectric phase to ferro-
electric state, ∆φi,i+1 changes easily from 0 to π by moder-
ate electric fields through a non-homogeneous process, i.e.
the solitary-wave propagation [10]. This implies that the
fractures between the smectic layers could occur through
a non-homogeneous process. Thus, the helical unwinding
in FLCs can be based either on the continuum theory
or on a theory where the helix is fractured into smaller
segments.
This letter proposes the theory for the helical unwinding

of SmC∗ phase based on the model where the topological
problem of the helical unwinding is solved by helical
fractures, and explains the experimental observations of
dielectric response as a function of the bias field. This
cannot be explained satisfactorily by the diverging pitch
model.
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Fig. 1: (a) Visible spectroscopy (a-i) and the selective reflection peak (a-ii) with increasing fields for a thick homeotropic cell
(d≈ 100µm, space between two metal wall electrodes ≈ 500µm). It shows a step-like increase at 0.07∼ 0.1V/µm. (b) Microscopy
for a thin homeotropic cell (d≈ 7µm, 88 ◦C). From the field where the step-like increase of the peak occurs, many domains
indicating the helical fractures appear and propagate. The boundary between A and B moves along the arrow. (c) Schematics
for the helical fractures shown for a homeotropic cell, π walls always are accompanied by discrete c directors, that is, helical
fractures. For example, A and B are separated by a π wall, and A area has the fractured plane between the two layers. The
fractured plane may reunite by an additional propagating wall at the same layers. (d) Schematics for the diverging force of the
pitch middle line as zero value of cos(φ). In the diverging pitch model, when E <Ec (d-i), the unbalanced elastic forces at 2π
solitons makes the elastically connected 2π solitons diverging to the cell boundary, but when E >Ec (d-ii), the unwound parts
between 2π solitons isolates 2π solitons and no diverging force exists. (Note that the 2π solitons along normal to layer shown
in (d-ii) is different from the π walls along the layers in (b,c).)

Recently, Krueger et al. [11] reported that the helical
pitch in various FLC materials does not change during the
helical unwinding in planar cells in contrast to a few earlier
observations [12] on DOBAMBC and similar compounds.
They explained the phenomenon by using earlier models
where the surface effect with disclination lines on surface is
large enough to prevent helix from diverging [13], and that
the relaxation frequency of the helical unwinding is too low
to be detected in the usual experiments [6]. In a thin cell
using a long helical pitch material, the helical structure is
suppressed by the surface effect, and a deformed helical
structure appears in the center of the cell. The unwinding
process in this cell is rather easily explained by the model
suggested by Glogarova et al. [13], where the surface-
induced unwound part expands with increasing field.
However, an intrinsic bulk helical unwinding process in
a thick planar cell having short helical pitch or in a
homeotropic cell is not understood clearly.
We measured the selective reflection peak using

12OF1M7 (Kingston Chemicals Hull, UK) and a thick
homeotropic cell (d≈ 100µm), where the surface effect
is minimized. Surprisingly, the selective reflection peak
λ (p≈ λ/n, n is a refractive index) shows a step-like
increase at 0.07∼ 0.1V/µm (fig. 1(a-ii)), and at this
range of fields, the peak was not observed. At large fields,
the broad and multi-peaks reappeared, and disappeared
with a further increase in the field (fig. 1(a-i)). Micro-
scopic observation with increasing fields using a thin
homeotropic cell (d≈ 7µm) shows that many domains
occur for E ≈ 0.07V/µm as shown in fig. 1(b). The electric
field for the emergence of the domain walls corresponds

exactly to the step-like increase of the selective reflection
peak. The domain walls have single sharp lines and
propagate independently of each other indicating that
these are π walls propagating along layers [9]. π walls
always accompany with the helical fractures as shown in
fig. 1(c) (see caption). As the walls propagate, the fracture
area enlarges. This observation clearly shows that the
helical unwinding occurs through the helical fractures.
The applied field increases the stress on the helix, and the
stress is released by the helix getting fractured through
the domain wall propagation. Here, the helical pitch also
increases with the helical fractures, because each π wall
propagation reduces the helix by about half a turn. This
is fundamentally different from a continuous increase in
the helical pitch expected from the diverging pitch model.
The helical fracture with propagating solitary wave is a

non-homogeneous process, and it is difficult to express the
free energy of the cell governing the unwinding process
exactly. Moreover, the mechanism of the emergence of
the fractures is not clear at this stage, though a possible
model was suggested in our previous paper based on a
special steric energy [9]. However, a break in the helix
gives rise to an additional flexibility to explain various
physical properties occurring during the unwinding. We
can introduce a completely unwound part (U) between
the highly deformed c directors along normal to the
layers called as 2π soliton [4] as shown in fig. 1(d). Note
that the completely unwound part (U) cannot exist in
the diverging pitch model, because it makes the soliton
isolate and it prevents the pitch from diverging. That is,
the isolated soliton cannot have a diverging force normal
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to the applied field, because the diverging force arises
from the unbalanced elastic forces of the 2π soliton so
as to reduce the total elastic energy (fig. 1(d-i)), but the
horizontal shift of the isolated 2π wall does not reduce
the total free energy (fig. 1(d-ii)). Urbanc et al.’s rigorous
calculation [6] based on the diverging pitch model shows
that the relaxation frequency of the pitch divergence
converges to zero at Ec, which means that the diverging
force disappears when E >Ec.
Using the diverging pitch model, the dielectric response

of the SmC∗ phase with dc bias voltage was already
studied by Urbanc et al. [5,6]. However, the theoretical
prediction does not directly accord with the experimental
results such as the dielectric strength (∆εG) and the
relaxation frequency (fG) for the Goldstone mode and
the effective polarization along electric field (〈PE〉). These
properties have theoretically been predicted to have a
sudden change near Ec as shown later in fig. 3. However,
all the experimental results [13–18] given so far have
shown that these parameters do change gradually and
finally reach saturation. For the bias dc field dependencies
of ∆εG and fG, a threshold voltage at a much lower
field than Ec has been observed experimentally [18],
which cannot be explained by the diverging pitch model.
Moreover, fG in SmC

∗ is observed to increase with dc
bias field [13–18], but it is expected to decrease with
increasing pitch in the diverging pitch model. Pfeiffer
et al. [14] suggested that the phenomenon may arise from
a nonlinear elastic constant, that is, the elastic constant
increases with increasing deformation as is in a practical
elastomer. However, according to the Landau expansion
for the free energy in SmC∗, the elastic constant with
angular distortion will decrease rather than increase for
a larger angular distortion [10,19].
Here, we explain the experimental observations based

on the non-diverging pitch model. We fix the pitch inde-
pendent of the bias field and we consider the completely
unwound parts between the highly deformed parts. We
start from the well-known free-energy expression and
the corresponding Euler-Lagrange equation in the static
case [2]:

f =

∫ [
K

2

(
dφ

dz
− q
)2
−PsE cosφ

]
dz, (1)

K
d2φ

dz2
−PsE sinφ= 0, (2)

where the wave vector q(= 2π/p, where p is the pitch) is
adopted to produce a helical structure at zero field.
We derive an analytical expression using the assumption

of the fixed pitch and introducing the completely unwound
part in the helix. Using the Fourier expansion, we write
the expression for the dependence of the azimuthal angle
as a function of the distance along the layer normal φ(z) =
qz+

∑
φi sin[(i+1)qz], where i= 0, 1, . . . , and φi’s are the

Fourier coefficients. To estimate the dielectric strength
as function of the applied field, a simplified form of the

Fig. 2: Schematic and plots for a homogeneous aligned planar
cell. Director distributions for different dc fields. (a) simulating
eq. (1) directly. (b) Simplified φ of eqs. (3) and (4); z0 and
p− 2z0 are plotted for E = 2kV/mm. Simulation conditions:
Ps = 100 nC/cm

2, K = 10−7 dyn, p= 400 nm and thickness of
a single layer = 4 nm. φ is defined in the inset of part (a).

director distribution function is required. We shall use
up to the second term of the Fourier expansion at low
fields (E <Et). At high fields (E >Et), some part of the
helix is unwound completely, and the other part is highly
distorted. Therefore, we divide the unwinding process into
two stages: low and high fields, separated by a transition
field Et:

i) low fields (E <Et)

φl(z)� qz−φ0 sin(qz), where φ0 < 1, (3)

ii) high fields (E >Et)

φh(z)� ρ(z− z0)− sin[ρ(z− z0)],
for z0 < z < (p− z0),

φh(z) = 0, for z < z0 or z > (p− z0), (4)

where ρ= 2π/(p− 2z0), that is, z0 = p/2−π/ρ.
From eqs. (2), (3) and (4), we can find φ0, ρ and Et as

φ0 � PsE
Kq2

[
1+
1

2

(
PsE

Kq2

)2]
, (5)

ρ�
√
5PsE

4K
, Et � 4Kq

2

5Ps
. (6)

Surprisingly, Et is found to have similar dependencies on
the various parameters as Ec = π

2Kq2/(16Ps) obtained by
Meyer [2]. This will be discussed later.
To verify the simplified director distribution functions

eqs. (3) and (4), we compare the two director distributions
by simulating from the free energy eq. (1) and by simu-
lating the simplified eqs. (3) and (4). As shown in fig. 2,
two distributions agree with each other. This confirms the
validity of the simplified distributions.
Corresponding to eq. (1), the dynamic Euler-Lagrange

equation for the motion of the c director by a weak ac
field is written as

γ
∂φ

∂t
−K∂

2φ

∂z2
+PsE sinφ= 0, (7)
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where γ is the viscosity of the medium. The applied field
and φl under the low-field case are written as

E =Edc+ δE =Edc+ δE0e
jwt, (8)

φl(z)� qz−φ0 sin(qz)− δφ0 sin(qz)ejwt. (9)

By using eqs. (8), (9) and (7), and the fact that the time-
dependent and -independent terms should independently
be zero, we can obtain δφ0 as

δφ0 =
φ0δE0/Edc

1+ jwγ/(Kq2)
. (10)

The dielectric susceptibility can be obtained,

χ=d〈PE〉/dE = ∂〈PE〉/∂δE, (11)

where PE is the component of Ps parallel to the applied
field, and PE = Ps cosφ.

〈PE〉l = (Ps/16)
[
8φ0−φ30+(8− 3φ20)δφ0ejwt

−3φ0δφ20ej2wt+ . . .
]
. (12)

From eqs. (11), (12), and on assuming that χ= (ε0∆εG)/
[1+ jw/(2πfG)], we find ∆εG,l and fG,l at low fields as

∆εG,l � PsA
32ε0

[
16+

2P 2sE
2
dc

K2q4
− 9P

4
sE
4
dc

K4q8

]
, (13)

fG,l =
Kq2

2πγ
. (14)

For the dielectric response at high fields, we can use
eq. (4) for the director distribution. The unwound part
of the helix (φ= 0) does not contribute to the dielectric
response, so we need only to consider the distorted part.
We shall use z′ ≡ z− z0. Then, φ under high applied fields
is written as φh(z)� ρz′− sin(ρz′)− δφ0 sin(ρz′)ejwt.
Following the similar procedure as for low fields, we
obtain

〈PE〉h = 2z0Ps
p
+
(p− 2z0)Ps

p

[
7

16
+
5

16
δφ0e

jwt

]
=

Ps

16ρ

[
16ρ− 9q+5qδφ0ejwt

]
, (15)

∆εG,h =
5qPs
16ε0ρEdc

=

√
5q2KPs
64ε20E

3
dc

, (16)

fG,h =
Kρ2

2πγ
=
5PsEdc
8πγ

. (17)

In eq. (15) the term (p− 2z0)/p shows that only the
distorted part of the helix can contribute to the dielectric
response. Thus, both the dielectric strength and the
relaxation frequency are found to depend strongly on
the amplitude of the dc bias at large fields. However, the
mechanism does not arise from the nonlinearity of K, but
from an increase in the effective wave vector ρ. That is, the
high bias field increases z0 and reduces the effective pitch
(p− 2z0), which in turn increases the relaxation frequency.
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Fig. 3: Experimental data for 50µm (open squares) and
25µm (solid circles) thickness planar cells using 12OF1M7 and
simulation results for the fixed and diverging pitch models.
(Simulation conditions selected for the best-fitted curves.)
Transition temperatures are SmC∗A 77.2, SmC

∗
γ 80.2, AF 82.8,

SmC∗ 91.8, SmA 105.7 I (in units ◦C).

The dc bias dependencies of ∆εG, fG and 〈PE〉 are
compared with experimental data in fig. 3, 〈PE〉 is
measured using the experimental method (see [8,20]).
Those simulated from the diverging pitch model are
also plotted for comparison [5]. 〈PE〉 was measured
using a 25µm thickness planar cell and 12OF1M7 at a
temperature 2 ◦C below from SmA∗-SmC∗ transition. As
shown in fig. 3, the experimental results agree with those
predicted by our model in spite of even using simplified
φ functions. It shows also clear differences between the
two models; ∆εG, fG and 〈PE〉 change suddenly at Ec
in the diverging pitch model, while those in the fixed
pitch model these change gradually. Moreover, additional
threshold voltage Et where the unwound part of the helix
just appears, which we cannot find in the diverging pitch
model, is found experimentally and explained by the fixed
pitch model. The dielectric response for the Goldstone
mode and the effective polarization with dc bias voltage
is also explained. According to fig. 3, Ec found in the
diverging pitch model is underestimated. This can be
easily understood; in this model, the completely unwound
part (U) shown in fig. 1 is not allowed, and Ec is the same
as the field, at which the U part could appear for very
large values of helical pitch. However, if the pitch does not
diverge continuously, the U part should appear, and the
completely unwound state of helix can be obtained at a
much larger field than Ec predicted in the diverging pitch
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model, and Ec may not be a distinctly defined field, since
the physical parameters reach saturated values gradually.
The model for dielectric response during the helical

unwinding process suggested in this letter is not complete,
because it does not consider the helical fractures in the
calculations. The helical fracture may enhance the appear-
ance of the U part and expand its length, and hence, at
the field at which the helical fracture occurs, the physical
properties may also change sharply. However, the mecha-
nism for the occurrence of the helical fracture is not clear,
and it is difficult to estimate the electric field required to
generate helical fractures at this state. As reported in our
previous paper [9], we observed that the electric field, at
which the helical fracture occurs, varies according to the
enantiomeric excess ratio in the racemized mixtures. This
implies that the material parameters such as the sponta-
neous polarization, pitch and the interlayer interactions
might affect the emergence of the helical fracture. The
complexity in the unwinding process of helix in ferroelec-
tric materials, in particular those having large spontaneous
polarization, has been reported. Haase et al. [21] suggested
a modulated helical structure caused by the tendency of
the spontaneous polarization to compensate itself, and
Pikin et al. [22] reported dislocation walls induced by
moderate electric fields in ferroelectric liquid crystals
having large spontaneous polarization. Their interpreta-
tions for their observations are different from the heli-
cal fracture; the modulated helical structure by Haase
et al. [21] uses the continuum approximation, and the
dislocation walls by Pikin et al. [22] are apparently differ-
ent from the π walls occurring in smectic layers without
significant deformation of the smectic layers themselves.
However, their observations imply that the large sponta-
neous polarization might also play a role in generating the
helical fractures. For complete understanding the helical
unwinding, the emergence and the propagation of the soli-
tary wave propagation should be investigated to find the
mechanism.
As pointed out by Krueger et al., the pitch divergence

is interrupted by the surface effects and by the slow and
weak diverging force [6,11,13], hence the ideal pitch diver-
gence may be possible only under rather limited experi-
mental and material conditions, though the phenomenon
of pitch divergence surely occurs as reported in an earlier
paper [12]. Therefore under normal conditions, the fixed
pitch model with a broken continuity of the helix is reason-
able. The helical fractures are observed under a polariz-
ing microscope. The mechanism of the helical unwinding
process in the SmC∗ phase is rather similar from a topo-
logical point of view to that affected in a DNA structure.
The validity of the model is confirmed by a close agree-
ment between the theoretical and the experimental results
for the dielectric strength and the frequency of the Gold-
stone mode, and the effective polarization. In the diverging
pitch model, the critical field Ec for a complete unwinding

is accompanied with sharp changes in the physical proper-
ties. However, the fixed pitch model implies that Ec may
not be a distinct field since the physical parameters reach
saturated values gradually. Electro-optical measurements
for the unwinding process support it [9]. In the future, we
need to extend this model to include the non-homogeneous
domain wall propagation.
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