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Measurements by means of the short-circuit (S/C) and open circuit (O/C) transmission line techniques, are well 
established methods for investigating the magnetic and dielectric properties of magnetic colloids, respectively. In
particular, the S/C technique has been used in the investigation of the resonant properties of ferrofluids; resonance
being indicated by the transition of the real component of the magnetic complex susceptibility,
χ (ω) = χ' (ω) −iχ"(ω), from a +ve to a –ve value at a frequency, fres.  
However, under certain circumstances, the accuracy of the S/C technique is affected by the dielectric properties of 
the sample, hence incurring errors in the measurement of χ (ω) and indeed of fres. Here we present a model which, by 
combining short-circuit and open circuit measurements, is developed in a manner in which the permeability, μ and 
the permittivity, ε, contribute simultaneously to the calculation of χ (ω), thereby providing superior experimental 
results in comparison to those obtained by the S/C technique alone.   
For the two ferrofluid samples measured it is demonstrated that the dielectric properties affect the high frequency
content of the susceptibility spectrum. 

                                                                                                                     © 2010 Elsevier B.V. All rights reserved.
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1. Introduction 

    Ferrofluids are stable colloidal systems consisting of single-domain 
nanoparticles of ferromagnetic or ferrimagnetic materials dispersed in a carrier 
liquid and stabilized by a suitable surfactant. The particles have radii ranging 
from approximately 2-10 nm and when in suspension their magnetic properties 
can be approximately described by the paramagnetic theory of Langevin. The 
particles are considered to be in a state of uniform magnetization with a 
magnetic moment m= Msv, where Ms denotes the saturation magnetization 
and v is the magnetic volume of the particle. 
    The magnetic susceptibility,  χ (ω) = χ' (ω) −iχ"(ω), of  such an assembly of 
single domain particles can also be described in terms of its parallel, χ||(ω), and 
perpendicular, χ⊥(ω), components, with[1] 

χ(ω)=•(χ||(ω) + 2χ⊥(ω)) , (1) 
where χ||(ω) is purely relaxational in character and χ⊥(ω) is the resonant 

component. 

χ||(ω) can be described  by the Debye equation 
[2] with ,   

where χ||(0) is the static parallel susceptibility and τ
||
 is the parallel 

relaxation time consisting of a combination of Brownian[3] and 
Néel[4] relaxational components. τ

||
 is related to the frequency, fmax, 

at which the imaginary component of χ"(ω) is a maximum, by the 
expression,  fmax = 1/(2π τ ||). 
The perpendicular or transverse susceptibility, χ⊥(ω), can have a resonant 
character[5], whereby precession of the magnetic moment occurs about an 
easy axis (i.e. the direction of the internal field HA); the existence of a 
resonance phenomenon being indicated by a transition in the value of   χ' 
(ω) from a + ve to a -ve  quantity at a frequency, fres. In equilibrium, the 
magnetic moment, m, would be directed along this easy axis if it were not for 
thermal fluctuations. The extent of this disturbance depends on σ. In the case 
of a small disturbance, the angular resonant frequency, ωres, is given by, 

 ωres
 = 2πfres =  γ Hres    (2) 

where γ (mA-1s-1) is the gyromagnetic ratio. Applying an external polarising 
field, H, results in an increase in ωres given by, 

   ωres = 2πf res= γ (H + HA)  (3) 
Equation (3) is the equation of a straight line and from a plot of fres against H, 
the value of HA can be determined from the intercept of the plot with the x-axis 
whilst γ is determined from the slope . 
 
In this paper we employ the co-axial transmission line technique as first 
reported by Roberts and von Hippel [6, 7], in the determination of the complex 
impedance of the magnetic fluid samples.  Fig 1, (from Appendix 1) shows an 
equivalent circuit of a transmission line terminated in a load impedance ZR. 
The method [8, 9], uses a 50Ω coaxial line incorporating a co-axial test cell , 
(which contains the sample under test, ZR), with inner diameter 3 mm and 
outer diameter 7 mm. Ferrofluids have an advantage over solids in that they 
easily fill the coaxial test cell which has almost radial electric field and a 
concentric magnetic field. Use of standard open and short calibrating 
components enables accurate measurements to be made without disturbing the 
sample during the measurement.  
 

 
Fig 1. Equivalent circuit of a transmission line terminated in a load impedance 

ZR. The line has a characteristic impedance Z0, and propagation constant γ0 

 
A short circuit tends to produces a maximum magnetic field and a minimum 
electric field at the sample whilst, in contrast, an open circuit produces a 
maximum electric field and a minimum magnetic field at the sample.  
For good measurement accuracy, the sample depth must be large enough to 
ensure sufficient interaction of the sample with the measuring signal, whilst 
also being small enough to ensure the absence of dimensional resonance [10, 
11]. Generally speaking, the lower the measurement frequency, the deeper the 
test cell required. 
Considering the case of the short-circuit (S/C) transmission line, as the 
frequency of measurement increases, the corresponding wavelength decreases, 
becoming comparable to the dimensions of the test cell sample depth, with the 
result that the effects of the electric field can no longer be discounted, leading 
to a decrease in the accuracy of the measurement. 

The object of this work is to show how a combination of data obtained 
from both O/C and S/C measurements can be used to obtain more accurate 
equations to describe both the permeability, μ(ω) and the permittivity, ε(ω), 
than are possible by measuring μ(ω) and ε(ω) separately[12].  As μ(ω) = 
1+χ(ω),  the complex components, χ'(ω) and χ"(ω), are readily determined. 

The combined model is a development of the model presented in [8] for 
the case of then S/C technique alone and is presented in Appendix 1. 
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2. Combined Method for Measurement 

 To improve on the S/C model proposed in [8], two sets of 
impedance measurements are taken, one for an open circuit, (Zinoc), one for the 
short circuit, (Zinsc) and as shown in Appendix 1, the following equations for μr 
and εr, are determined for the combined model. 
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where γ0, the propagation constant=α0+iβ0, α0 is the attenuation factor, Z0 is 
the characteristic impedance of the lossless part of the line, Zinsc and Zinoc are 
the input impedances for the open and short circuits. 

3. Measurement and Results 

 For the measurements reported here, a Hewlett-Packard(HP) 50Ω 
coaxial line incorporating a coaxial cell with 3 mm inner diameter and 7 mm 
outer diameter was used in conjunction with a HP 8753C and HP 8722D  
network analyzers. The samples were placed in the coaxial cell and standard 
HP open-circuit(O/C) and short-circuit(S/C) test devices used as terminations 
and the input impedance of the line measured in each case. These instruments 
automatically measure the reflection and transmission characteristics of 
devices by use of the scattering parameters, S, which are a measure of the 
power reflected from a load to the power incident on the load. When operating 
in the one-port mode the S11 parameter is measured. Now S11= (ZR-
Z0)/(ZR+Z0), where ZR is the load impedance and Z0=50 Ω . The instrument has 
the facility to convert the S11 measurements to the complex components of ZR 
by computing the equation, ZR = Z0(1+S11)/(1-S11). Thus in the case of an 
inductive load it automatically measures the reactive component, XL and the 
resistive component R, respectively. 

Using the technique presented, measurements were performed on two 
samples, sample 1 and sample 2. Sample 1 was a 400 G suspension of 
magnetite particles of mean radius 5 nm, dispersed in an iso-paraffin carrier 
(fluid 1), measured over the range 100 MHz to 3 GHz using a 9.5 mm dept cell 
and the HP 8753C network analyzer.  Sample 2, was a 600 G suspension of 
cobalt particles of mean radius 5nm in oil, measured over the range 1 GHz to 
16 GHz using a 1.94 mm depth cell and the HP 8722D network analyzer.   

For comparison purposes, measurements were performed using both the 
separate short -circuit method and the combined method as previously. One 
would expect both methods to provide the same results at the lower 
frequencies of each range, and because of capacitive effects, the difference 
between the methods to become significant at the higher ends of each range.  

Figure 2 shows a plot of χ' (ω)  and χ"(ω) for sample 1,  over the frequency 
range 100 MHz to 3 GHz. It can be seen that in the case of the combined 
model a resonance occurs when fres=1.78 GHz, in contrast to the case of the 
S/C only model where no resonance is displayed. The figure also illustrates the 
discrepancy between the χ"(ω) components.  

Fig 3 shows a plot of χ' (ω)  and χ"(ω) for sample 2,  over the frequency 
range 1 GHz to 16 GHz. In this case there is only a slight difference between 
the fres and fmax values obtained for both models, however the major difference 
lies in the region following the fres point where the χ' (ω)  profiles differ 
substantially, with in the case of the S/C only, the profile going from a –ve to a 
+ve value at a frequency of approx 15 GHz; this latter action being invalid. 

 
Fig.2. Plots of χ’(ω) and  χ’’(ω) for sample 1 in the frequency range 100 MHz 
to 3 GHz. 

 

Fig.3. Plots of χ’(ω) and  χ’’(ω)  for sample 2 in the frequency range 1 GHz to 
16 GHz. 

 
It is very clear from the above results that the accuracy of the S/C 
measurement technique breaks down at higher frequencies. As expected, the 
plots of χ(ω) are almost identical in the lower frequency sections of the 
measured frequency range. This is because the wavelength of the frequency of 
measurement is very much greater than the sample depth at these particular 
frequencies. 
 
3.1 Polarised Measurements 
  As indicated in equation (3), application of an external polarising field, H, to 
a sample, results in an increase in ωres given by, ωres = 2πfres = γ(H+HA). 
Equation (3) is the equation of a straight line and from a plot of fres against H , 
the value of HA  can be determined from the intercept of the plot with the x-
axis whilst γ, the gyromagnetic ratio,  is determined  from the slope . 
 Sample two was subjected to a polarising field over the approximate range  0- 
168.5 kA/m, and the results obtained in the case of both models are shown in 
Fig4(a) for the χ’(ω) components and in Fig 4(b) for the χ’’(ω)  components. 

 
 

Fig. 4(a). Plots of χ’(ω) as a function of polarizing field, H, for sample 2 in the 
frequency range 1 GHz to 16 GHz. 

 
 

Fig.4 (b) Plots of χ’’(ω) as a function of polarizing field, H, for sample 2 in the 
frequency range 1 GHz to 16 GHz. 

 
From Fig.4(a) it is quite clear, in the case of the S/C model that, following the 
unpolarised fres value of 6.25 GHz, the ‘depth’ of the resonance, i.e. the depth 
below the y = 0 axis to which χ’(ω) extends to, diminishes with increase in H. 
Finally at a value of H = 102.4 kA/m, the resonance disappears, at an 
approximate frequency of 12GHz. This is in stark contrast to the case of the 
combined model where fres is distinct and well defined over the whole range of 
H, thereby enabling fres /H to be plotted, as shown in Fig 5, resulting in a value 
of HA = 170 kA/m and γ = 2.32 105 mA-1s-1, being determined. This data could 
not have been obtained in the case of the S/C model alone. 
  Fig 4(b) shows that there is a slight different in the values of fmax, with the 
major difference occurring at high frequencies where the loss (χ’’(ω)) 
component of the S/C model is greater than that determined by the combined 
model. This difference could give rise to errors in the determination of 
parameters which are a function of the χ’’ component, such as the tanδ loss 
factor [13, 14] and the Neel pre-factor, τ0, [15]  
 

 

Fig.5. Plots of fres as a function of polarizing field, H, for sample 2 in the range 
0-164.5 kA/m. 

 

4. Conclusion 

Measurements obtained by means of the short-circuit (S/C) and open circuit 
(O/C) transmission line techniques, are well established methods for 
investigating the magnetic and dielectric properties of materials, in particular, 
ferrofluids. The S/C technique has previously been used in the investigation of 
the resonant properties of magnetic fluids; resonance being indicated by the 
transition of the real component of the magnetic complex susceptibility, 
χ (ω) = χ' (ω) −iχ"(ω), from a +ve to a –ve value at a frequency, f res.  
However, depending upon the depth of the measurement cell, and the 
frequency of measurement, the accuracy of the S/C technique is affected by the 
dielectric properties of the sample, hence incurring errors in the measurement 
of χ (ω) and indeed of fres; as clearly demonstrated in this work. 
To overcome this deficiency, a model which is developed in a manner whereby 
μ and ε contribute simultaneously to the calculation of χ (ω), thereby 
providing superior experimental results in comparison to those obtained by the 
S/C technique alone, is presented.  In the case of sample 2, it is shown how, for 
polarized measurements, the combined model produces extended fres data 
thereby enabling data on HA and γ to be determined; this data would have been 
impossible to generate had the S/C model alone been used. 

 
   

0 0 0 0

0 0 0 0

2

1 0 0 0 0
2 2

0 0 0 0 0 0

tanh( ) tanh( )x x
tanh( ) tanh( )

tanh( ) tanh( )1 tan x
tanh( ) tanh( )

insc inoc

insc inoc

r

insc inoc

insc inoc

Z x Z Z x Z
Z x Z Z x Z

Z x Z Z x Zi
d Z x Z Z x Z

γ γ
γ γ

μ
γ γ

ε μ ω γ γ
−

⎧⎛ ⎞− −
⎪⎜ ⎟− −⎝ ⎠⎪⎪= ⎨⎡ ⎤⎧ ⎫⎛ ⎞− −⎪ ⎪⎪⎢ ⎥−⎜ ⎟⎨ ⎬⎪ ⎜ ⎟⎢ ⎥− −⎪ ⎪⎝ ⎠⎩ ⎭⎪⎣ ⎦⎩

1
2

.

⎫
⎪
⎪⎪
⎬
⎪
⎪
⎪⎭



Acc
ep

te
d m

an
usc

rip
t 

   

 

( )
0 0 0

0 0 0

cosh( ) sinh( )
cosh( ) sinh( )

in R R
in

in R R

V V x Z I xZ
I I x V Z x

γ γ
γ γ

+
= =

+

R 0 0
in 0

0 R 0

i tan( )
i tan( )

Z Z xZ Z
Z Z x

β
β

⎧ ⎫+
= ⎨ ⎬+⎩ ⎭

Refrences. 
[1] M.I. Shliomis and Yu.L. Raikher, IEEE Trans. Magn. Mag. 16, (1980) 237. 
[2] P.Debye,1929, Polar Molecules, (New York, The Chemical Catalogue Company). 

[3] W.F.Brown, J. Appl. Phys.34, (1963) 1319. 
[4] L. Néel, Ann. Géophys. 5 (1949) 99. 

[5] L. D. Landau and E. M. Lifshitz, Phys. Z. Sovietunion, 8 (1935) 153  
[6] S . Roberts and A.R. von Hippel, J.Appl.Phys. 17, (1943), 610. 
[7] M.A. Stuchly and S.S. Stuchly; IEEE Trans.  Instrum. Meas., 29,( 1980), 176  
[8] P.C.Fannin, T.Relihan and S.W. Charles. J.Phys.D:Appl.Phys. 28,(1995), 2003. 
[9] P.C.Fannin, ‘Wideband Measurement and Analysis Techniques for the Determination of the 
Frequency-Dependent, Complex Susceptibility’, Adv. in Chem.Phys.104,(1998),181. 
[10] E.C. Snelling, and A.D.Giles, 1983, ‘‘Ferrites for Inductors and Transformers’’, (New York; 
John Wiley & Sons Inc). 
[11] F.G. Brookman, P.H. Dowling & W.G. Steneck, Phys. Rev., 77, (1950), 85. 
[12] P.C.Fannin, T.Relihan and S.W. Charles . J.Magn.Magn.Mater. 167, (1997) 247. 
[13] P.C Fannin. J.Magn.Magn.Mater. 321, 7 (2009) 850. 
[14] R. E. Collin, Foundations of for microwave Engineering, McGraw-Hill Inc. 1966. 
[15]P.C Fannin, C.N. Marin,C.N, and C.Couper. J.Magn.Magn.Mater.  In Press. 
 

Acknowledgements. 
Acknowledgement is due to B.K.P.Scaife, T.Relihan, L.Kinsella and A.T.Giannitsis and also to 
ESA for part funding of this work. 
 
 
 

Appendix 1 
 

Model of Combined Measurement Technique 
A1     The proposed model is an extension of that presented in [8] for the case 
of the S/C Coaxial Transmission line.  
Consider the following transmission line terminated in a load, ZR, as shown 
 in Fig 1(A). 
 

 
 

Fig 1(A). Equivalent circuit of a transmission line terminated in a load 
impedance, ZR. 

 
The line has a characteristic impedance Z0, propagation constant γ0. The 
input impedance, Zin, at a distance x from the load is given by [6]: 

 
A1 
 

 
where γ0 = α0 + iβ0.  α0 is the attenuation factor, β0 = 2π/λ is the phase 
coefficient and λ is the operating wavelength in the line. In the case where the 
line has a very low loss, one can assume α0 ≈ 0 so that γ0 = iβ0 and Zin, 
becomes  

 
 
 A2 
 

For the special case where the load is a short i.e. ZR = 0, then the input 
impedance is,      
Zin = iZ0tan(β0x)  A3 

A2 Measurement of the Complex Permeability. 
  

 Consider the case of an air filled coaxial transmission line 
terminated with a sample of material  which is short circuited ( S/C). The 
sample has a thickness or depth d and Z0 and γ0 are the characteristic 
impedance and propagation constant of the air filled line. The S/C ensures that 
the magnetic field is large and the electric field small within the sample 
provided that the wavelength within the sample is much greater than the 
sample thickness. 
As shown in [8] the arrangement can be modelled as that of Fig.1A by having 
the load impedance include the section of line with the sample and shorted at 
the end. 
Now Z1 and γ1 are the characteristic impedance and propagation constant 
of the sample filled line. In this case it cannot be assumed that this section 

of the line is loss-less so the general equation (eqn (A3)) has to be used. 
Since the line is shorted then the input impedance, ZRSC , becomes, 

ZRSC = Z1 tanh(γ1d)   A4 

The intrinsic impedance Z of a medium is given by , 

Where μ1 and ε1 are the absolute values of complex permeability and 
permittivity of the medium. The propagation factor of the medium is 
γ1 = iω √ε1μ1, where ω is the angular frequency.  

 

Therefore it follows that and the characteristic  

impedance of a coaxial line containing such a medium as the dielectric 
is given by [8],  
                                              

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
π

=
i

o
1 r

r
lnZ

2
1Z

 A5 

where ro is the radius of the outer conductor and ri is the radius of the inner 
conductor of the coaxial line. Assuming that γ1d << 1, then tanh(γ1d) ≈ γ1d  and 
ZRSC becomes 
 ZRSC = iAcωμ1d A6 
 
Where Ac= (1/2π)ln(ro/ri).This result gives us the load impedance, ZRSC, in 
terms of the permeability of the sample medium.  
In [8] it is shown that, 

⎭
⎬
⎫

⎩
⎨
⎧

βωμ−
β+ωμ

=
)xtan(dAZ
)xtan(ZidAi

ZZ
01c0

001c
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Which, upon elimination of AC, gives the relative permeability, μr, of the 
sample medium as, 

( )
( ) ⎭

⎬
⎫

⎩
⎨
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+β
β−

π
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μ
μ

i)xtan(ZZ
)xtan(iZZ

d2 00in

00in

0

1 = μr A8 

A3 Measurement of Complex Permittivity. 
 

 To measure the complex permittivity of a medium one places the 
sample at the end of the coaxial line as before but this time the line is 
terminated by an open circuit (O/C). This ensures that the electric field is large 
and the magnetic field small within the sample, provided that the wavelength 
within the sample is much greater than the sample thickness. 
 Following the procedure used in determining μr, one readily obtains 
the following for the load impedance 
                        ZROC = 1

1
1

coth( )cA d
i
γ γ
ωε

 A9  

Again making the assumption that the sample depth is much less than the 
wavelength in the sample so that coth(γ1d) ≈ 1/γ1d ,  eqn (A9) becomes 

                    ZROC= Z1coth(γ1d) A10  

Substituting eqn (A10) into eqn (A2) one obtains the following for the input 
impedance, 

( ) ⎭
⎬
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⎩
⎨
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βωε+
β+ωε

=
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ZZ
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Rearranging equation (A11) one obtains,  
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⎫

⎩
⎨
⎧

+β
β−

π
λ=

ε
ε
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d2 0in0
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1 . A12 

 

A4   Combined Method for Measuring Permeability and Permittivity 
 In the previous sections it was assumed that the sample thickness d 
was small compared to the wavelength within the sample. In the case of 
measuring the permeability, the sample was placed at the short-circuited end of 
a coaxial line where the effect of the electric field was considered to be 
negligible. This assumption breaks down when the sample depth becomes an 
appreciable fraction of the wavelength, which may happen at high frequencies 
and/or for materials which have a high dielectric constant such as water and 
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ferrites. When this happens it is no longer possible to determine μ 
independently of ε and vice versa and the necessity arises for a model which 
overcomes this deficiency. In this section we develop more general 
expressions for μ and ε. 
For the short circuit termination, the load impedance is given by, 

 ZRSC = Z1 tanh(γ1d) A13  

and for the open circuited load,  

 ZROC = Z1coth(γ1d) A14 

Thus we have two equations for Z1 and γ1 and can calculate both μ and ε of the 
sample in the following manner. 
Substituting eqns (A13) and (A14) into eqn (A1) and with, Z1 = Ac√μ1/ε1, one 
obtains the following, 
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From eqns (A15) and (A16) one can obtain two expressions containing √μ1/ε1 
namely: 
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These equations can be further simplified by knowing that the characteristic 
impedance of the loss less part of the line is given by, 
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On using eqn (A19) in eqns (A17) and (A18) the line parameter, Ac, cancels 

out and dividing across by √μ0/ε0 leaves 
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0 0

0 0

d Z x Z
Z x Z
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And 

μ
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γ

r

r

in

in

coth( ) tanh( )
tanh( )1

0 0

0 0

d Z x Z
Z x Z

oc

oc

= −
−

. A21 

Multiplying eqn A20 by A21 one obtains μr/εr, where 

0 0 0 0

0 0 0 0

tanh( ) tanh( )x .
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insc inoc
r r

insc inoc

Z x Z Z x ZP iQ
Z x Z Z x Z

γ γμ ε
γ γ

− −= + =
− −

 A22 

P and Q denote the real and imaginary parts of the multiplication of the right 
hand sides of eqns (A20) and (A21).  
 
Dividing eqn (A20) by (A21) results in, 

2 0 0 0 0
1

0 0 0 0

tanh( ) tanh( )tanh ( ) x ,
tanh( ) tanh( )

insc inoc

insc inoc

Z x Z Z x Zd R iS
Z x Z Z x Z

γ γγ
γ γ

− −= + =
− −

 A23  

with R and S denoting the real and imaginary parts of the division exercise. 
Inserting γ1 = iω √ε1μ1 into eqn (A23), and noting that tanh(iθ) = itanθ, we 
obtain, 

 itan(ωd √ε1μ1 ) = √R+iS. A24  

Solving for ε1μ1 , gives,                       

 ( )[ ]2
2211 SiRiarctan

d
1 +−

ω
=με  A25              

 Dividing A25 by ε0μ0
 gives the relative values, ε rμr as  

21
2 2

0 0

1 tan ( ) .r r i R iS X iY
d

ε μ
ε μ ω

−⎡ ⎤= − + = +⎣ ⎦
  A26 

Where,           
2

1 0 0 0 0
2 2
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γ γ
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 A27 

where X and Y represent the real and imaginary parts of the right hand side of 
eqn (A26). By combining eqns (A22) and (A26) one can solve for εr and μr. 
Firstly, if eqn (A22) is multiplied by eqn (A26), εr cancels out and one obtains, 

 ( )( )YiXQiPr ++=μ . A28 

If eqn (A26) is divided by eqn (A22) then μr cancels out one obtains, 
     ( ) ( )QiPYiXr ++=ε . A29 

Thus we have two equations for determining the complex permeability and 
permittivity, and all the parameters P, Q, X and Y can be determined from 
impedance measurements.  
Further expanding (A28) and (A29) leads to, 
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and 
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Fig 1. Equivalent circuit of a transmission line terminated in a load impedance 
ZR. The line has a characteristic impedance Z0, and propagation constant γ0. 

 

 

 

 
Fig.2. Plots of χ’(ω) and  χ’’(ω) for sample 1 in the frequency range 100 MHz 

to 3 GHz. 
 
 

 
Fig.3. Plots of χ’(ω) and  χ’’(ω)  for sample 2 in the frequency range 1 GHz to 
16 GHz. 
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Fig. 4(a). Plots of χ’(ω) as a function of polarizing field, H, for sample 2 in the 

frequency range 1 GHz to 16 GHz.
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Fig.4 (b) Plots of χ’’(ω) as a function of polarizing field, H, for sample 2 in the frequency range 1 GHz to 16 GHz.
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Fig.5. Plots of fres as a function of polarizing field, H, for sample 2 in the range 0-164.5 kA/m. 

 

 
Fig 1(A). Equivalent circuit of a transmission line terminated in a load impedance, ZR. 

 




