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Abstract

Motivated by attempts to extend AdS/CFT duality to non-BPS states we consider
classical closed string solutions with several angular momenta in different directions of
AdS5 and S5. We find a novel solution describing a circular closed string located at a
fixed value of AdS5 radius while rotating simultaneously in two planes in AdS5 with equal
spins S. This solution is a direct generalization of a two-spin flat-space solution where
the string rotates in two orthogonal planes while always lying on a 3-sphere. Similar
solution exists for a string rotating in S5: it is parametrized by the angular momentum
J of the center of mass and two equal SO(6) angular momenta J2 = J3 = J ′ in the two
rotation planes. The remarkably simple case is of J = 0 where the energy depends on J ′ as
E =

√

(2J ′)2 + λ (λ is the string tension or ‘t Hooft coupling). We discuss interpolation
of the E(J ′) formula to weak coupling by identifying the gauge theory operator that should
be dual to the corresponding semiclassical string state and utilizing existing results for its
perturbative anomalous dimension. This opens up a possibility of studying AdS/CFT
duality in this new non-BPS sector. We also investigate small fluctuations and stability of
these classical solutions and comment on several generalizations.
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1. Introduction

Generalizing AdS/CFT duality to non-BPS string mode sector can be guided by

semiclassical considerations, as suggested in [1,2]. Identifying classical solitonic solutions

of AdS5 × S5 sigma model carrying basic global charges is important in order to under-

stand the structure of the full string theory spectrum. In general, the states belonging

to representations of the isometry group SO(2, 4) × SO(6) are expected to be classified

by 6=3+3 charges corresponding to Cartan subalgebra generators, (E, S1, S2; J1, J2, J3).

Here S1 and S2 are the two spins of the conformal group (labelling representations of

SO(4) isometry of S3 subspace) and Ji are the three angular momenta of the S5 isometry

group. One may search for classical string solutions which have minimal energy for given

values of the 5 charges, E = E(S1, S2, J1, J2, J3).
1 The importance of such solutions (in

contrast to various other oscillating or pulsating solutions) is that having non-zero global

charges simplifies identification of the corresponding dual CFT operators.

Particular classical string solutions with special combinations of these charges were

discussed in the past. Point-like string solution (geodesic) lying in AdS5 does not carry

intrinsic spin. Geodesic running in S5 can carry only one component of momentum in S5

(e.g., J = J1), and expansion of AdS5 × S5 string theory near such geodesic was studied

in [1]. Extended string solution describing folded closed string rotating in a plane in AdS5

carries single spin, e.g., S = S1 [3,2]. One can boost the center of mass of the string rotating

in AdS5 along a circle of S5 getting a solution with two charges (S, J) [4]. Alternatively,

one can construct a solution describing folded string rotating about a pole of S5 [2]; while

it carries again only one component (say, J ′ = J2) of the SO(6) spin it is not equivalent to

a point-like orbiting solution.2 An interpolating solution with the three charges (S, J, J ′)

was constructed in [6]. One may think that while in general there should certainly be

extended string solutions with more spins in either or both AdS5 and S5 spaces, they

may be difficult to construct explicitly, and also their AdS/CFT interpretation may be

unclear. Here we would like to point out that such more general solutions are actually

easy to find in the special case when the two spins S1, S2 in AdS5 or the two of the three

1 The Casimir operators should be functions of these charges. In general, string theory “knows”

about many other conserved charges, being integrable. Here we concentrate on most obvious local

charges.
2 The corresponding string vertex operators [5] as well as dual gauge theory operators should

be different, with the “point-like” (BPS) one having minimal energy (dimension) for a given value

of the angular momentum (R-charge).
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angular momenta in S5 (e.g., J2 and J3) are equal. The analytic form of the solution with

S1 = S2 ≡ S turns out to be much simpler than in the single spin case of [3,2]: it is a direct

generalization of the flat-space solution describing circular string rotating simultaneously

in the two orthogonal spatial planes with equal angular momenta. Such “self-dual” string

always lies on an S3 surface in Minkowski space, and thus it can be easily “embedded”

into AdS5 space using global (or covering) coordinates. The string is positioned at a fixed

value of the AdS5 radius ρ = ρ0, being stabilized by rotation. Similar string solution exists

for a more general class of 5-d metrics ds2 = −g(ρ)dt2 + dρ2 + h(ρ)dΩ3, but not in AdS3

or AdS4: to stabilize the circular string at a fixed value of ρ one needs at least two equal

spin components.3

We will show that this stationary solution is stable under small perturbations if the

spins S1 = S2 = S are smaller than a critical value. The energy E is an algebraic function

of S. For a small-radius string having small S ≡ S√
λ

≪ 1, i.e. located close to the center

of AdS5, one finds the usual Regge trajectory relation, E = (
√
λ 4S)1/2 + .... For large

string located close to the boundary of AdS5 we get E = 2S + c1(λS)1/3 + ... (S ≫ 1). 4

The leading E = 2S behaviour is the same as for the single-spin folded string solution [3],

but the subleading correction here is proportional to S1/3 instead of lnS in [2].

Modulo the problem of instability of the two-spin solution at large S ≫
√
λ , it is

natural to conjecture (see section 5) that the Euclidean gauge theory operator in R4 that

should be dual to this two-spin string state should have the form tr[ΦM (D1 + iD2)
S(D3 +

iD4)
SΦM ] + ..., where ΦM are SYM theory scalars. It would be interesting to find how

its perturbative anomalous dimension ∆ depends on large S. An interpolation formula

suggested by the semiclassical analysis is ∆(S) = S + f(λ)S1/3 + ..., S ≫ 1, where

f(λ)λ≪1 = a1λ + a2λ
2 + ..., and f(λ)λ≫1 = λ1/3[c1 + c2√

λ
+ ...], As we shall see be-

low (following a similar discussion in the single-spin case [4]), if one formally ignores the

instability, the 1-loop string correction to the energy of the semiclassical 2-spin solution

does scale with spin as S1/3. However, it seems implausible that a perturbative anomalous

dimension may depend on the spin as a fractional power. We shall comment on this further

in section 3.

3 Note that a similar (but non-rotating) “winding” string configuration near the boundary of

AdS3 is stabilized by the Bmn flux [7].
4 Interestingly, the power of λ that multiplies a power of S in the semiclassical correction to

E − 2S is the same as the power of S only when it is equal to 1/3. One may speculate that a

weak-coupling interpolation of this formula is then E − 2S = (1 + cλS)1/3.
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The AdS/CFT correspondence seems easier to establish in a different sector corre-

sponding to the string solution carrying SO(6) spins, i.e. rotating in S5. Indeed, there

exists a similar circular string solution with two equal angular momenta in S5: the ro-

tating string moves on S3 within S5, with the radius of the string or of S3 being related

to the value of J ′. In addition, the center of mass of the string may be rotating along

another circle of S5, leading to a particular string solution with all the three S5 charges

being non-zero (J3 = J, J1 = J2 = J ′). In the most transparent case of J = 0 when the

string has maximal size (so that 2J ′ ≥
√
λ ) the energy turns out to depend on J ′ in a

remarkably simple way: E =
√

(2J ′)2 + λ. While the solution with J = 0 turns out to be

unstable, there is always a non-trivial region of stability when J 6= 0, and there are stable

solutions with both J and J ′ being large compared to
√
λ [8].

We suggest that the corresponding dual CFT operator (having minimal canonical

dimension for given values of R-charges J and J2 = J3 = J ′) should be tr[(Φ1+iΦ2)
J (Φ3+

iΦ4)
J ′

(Φ5 + iΦ6)
J ′

] + ..., where dots stand for appropriate permutations of factors. For

J = 0 the above semiclassical formula E(J ′) suggests that for large J ′ the anomalous

dimension of such operator should be ∆ = 2J ′ + f(λ)
4J ′ + .... We conjecture that f(λ) should

start with a λ-term both at strong and weak coupling, and we propose to check this against

known [9,10] perturbative results. Another interesting direction is to consider the limit

J ≫ J ′ and relate the resulting expression for the energy to the dimensions of operators

in the sector studied in [1].

The paper is organized as follows. In section 2 we first describe the two-spin closed

string solution in flat space and then generalize it to AdS5 and S5 spaces viewed as hyper-

surfaces in R2,4 and R6 respectively. In section 3 we rederive the AdS5 solution and study

it in more detail using explicitly the standard set of global coordinates in AdS5 space. In

particular, we obtain the action for small fluctuations near this solution and find that the

solution is stable only if the spin is bounded from above, S ≤ a
√
λ , where a is of order 1.

In section 4 we present a similar analysis of the S5 solution. We also note that there

exists a “combined” solution where string rotates in both AdS5 and S5 and thus carries

5 charges: S1 = S2, J = J1 and J2 = J3. We observe that there are two branches of the

solution with S = 0 and J = 0 with different dependence of the energy on J ′: one for

J ′ ≤ 1
2

√
λ and another for J ′ ≥ 1

2

√
λ . The solution with J ′ ≤ 1

2

√
λ is found to be

stable for J ′ ≤
√
λ 3

8 , while the solution with large J ′ and J = 0 turns out to be unstable.

Given that there are more general stable solutions with both J ′ and J being large [8], we
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shall assume that the instability may not preclude one from using the remarkably simple

solution with J = 0, J ′ ≫
√
λ in the context of the AdS/CFT duality. For example,

there may exist a more complicated (e.g., pulsating) solution with the same quantum

numbers J = 0, J ′ 6= 0 whose basic features like energy dependence on J ′ are the same

as of our simple solution. With this motivation in mind we comment on the form of the

1-loop sigma model correction to the energy, and conjecture about the existence of an

interpolation formula for E(J ′, λ).

In section 5 we discuss the structure of the (Euclidean) CFT operators which should

be dual to the semiclassical two-spin states. We mention, in particular, that the 1-loop

results of [9,10] may be used to check our conjecture that the anomalous dimension of the

scalar SYM operator with J = 0, J2 = J3 = J ′ (with lowest dimension above the BPS

bound) should scale with J ′ ≫ 1 as ∆ = 2J ′ + λ
4J ′ + ... not only at strong but also at weak

coupling. Section 6 contains some remarks on generalizations and open problems.

In Appendix A we give some details of the stability analysis for both the AdS5 and

S5 solutions (this will be discussed in more detail in [8]). In Appendix B we derive the

quadratic fermionic part of the AdS5 × S5 Green-Schwarz action that supplements the

bosonic fluctuation actions in sections 3 and 4. The total action should be the starting

point for a computation of 1-loop corrections to the energies of our solutions following [4].

We check, in particular, that the fermionic mass matrix contribution to the logarithmic

divergences cancels against the bosonic one, in agreement with the conformal invariance

of the AdS5 ×S5 superstring sigma model action. In Appendix C we sketch the derivation

of the bosonic fluctuation actions in the conformal gauge, and check consistency with

the static gauge results for the fluctuation actions used in sections 3 and 4. Appendix

D contains standard facts about relation between Young tableau and Dynkin labels of

representations of SU(4) group which is used to identify the operators on the gauge theory

side.

2. Two-spin solution in flat space and its AdS5 or S5 generalizations

2.1. Flat case

Let us start with closed bosonic string solutions in flat Minkowski space. In orthog-

onal gauge, string coordinates are given by solutions of free 2-d wave equation, i.e. by

combinations of ein(τ±σ), subject to the standard constraints Ẋ2 + X ′2 = 0, ẊX ′ = 0.

Let us consider, in particular, a closed string (with its center of mass at rest at the origin of
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the cartesian coordinate system) which is rotating in the two orthogonal spatial planes 12

and 34. From the closed string equations on a 2-cylinder (τ, σ ≡ σ + 2π) with Minkowski

signature in both target space and world sheet one finds

X0 = κτ , X = X1 + iX2 = r1(σ) eiφ(τ) , Y = X3 + iX4 = r2(σ) eiϕ(τ) , (2.1)

φ = n1τ , ϕ = n2τ , r1 = a1 sin(n1σ) , r2 = a2 sin[n2(σ + σ0)] . (2.2)

Here σ0 is an arbitrary integration constant, and ni are arbitrary integer numbers. In what

follows we assume that ni are positive. The relation between ai, ni and κ follows from the

conformal gauge constraint:

κ2 = n2
1a

2
1 + n2

2a
2
2 . (2.3)

The energy and the two spins are

E =
1

2πα′

∫ 2π

0

dσ Ẋ0 =
κ

α′ , (2.4)

S1 =
i

4πα′

∫ 2π

0

dσ (X ˙̄X − X̄Ẋ) =
n1a

2
1

2α′ , S2 = S1(X → Y ) =
n2a

2
2

2α′ , (2.5)

i.e.

E =

√

2

α′ (n1S1 + n2S2) . (2.6)

To get the states on the leading Regge trajectory (having minimal energy for given values

of the spins) one is to choose n1 = n2 = 1.

While for a special solution in (2.2) with σ0 = 0 the string is folded, for generic values

of σ0 it has the form of an ellipse. Another remarkable special case is when n2σ0 = π
2
, i.e.

when |X | ∼ sinσ but |Y | ∼ cosσ, and

n1 = n2 = n , a1 = a2 =
κ√
2n

. (2.7)

Then the string becomes circular and, while rotating, it always lies on S3 in R4 space

formed by (X1, X2, X3, X4). Indeed, the radius in R4 then remains constant

|X(τ, σ)|2 + |Y (τ, σ)|2 = X2
1 +X2

2 +X2
3 +X2

4 =
κ2

2n2
. (2.8)

In this case the two spins are equal

S1 = S2 =
κ2

4nα′ ≡ S , E =

√

4n

α′ S . (2.9)

Thus, the X ↔ Y symmetric circular string rotating in the two orthogonal planes and

corresponding to a state on the leading Regge trajectory (n1 = n2 = 1) is described by

the following solution

X0 = κτ , X1 + iX2 =
κ√
2

sinσ eiτ , X3 + iX4 =
κ√
2

cosσ eiτ . (2.10)

The crucial observation is that such solution can be easily generalised to a solution de-

scribing a string rotating in any homogeneous space containing S3, in particular, AdSn or

Sn with n ≥ 5.
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2.2. AdS5 case

Indeed, let us consider the AdS5 space described as a hypersurface in 6-dimensional

space R2,4:

XMXM ≡ ηMNX
MXN = −X2

5 −X2
0 +X2

1 +X2
2 +X2

3 +X2
4 = −1 . (2.11)

The corresponding string sigma model Lagrangian is (Λ is a Lagrange multiplier field)

I = − R2

4πα′

∫

dτdσ L , L = ∂aXM∂aXM + Λ(XMXM + 1) . (2.12)

The equations of motion in the orthogonal gauge then are

−∂2XM + ΛXM = 0 , XMXM = −1 , Λ = ∂aXM∂aXM , (2.13)

ẊMẊM +X ′
MX ′

M = 0 , ẊMX ′
M = 0 . (2.14)

A special class of solutions of these non-linear equations is characterised by the property

Λ = const. It is natural to organize the six coordinates XM into the three 2-planes or

complex lines,

W ≡ X5 + iX0 , X ≡ X1 + iX2 , Y ≡ X3 + iX4 , |W |2−|X |2−|Y 2| = 1 . (2.15)

Then it is easy to check that the following configuration is an example of the solution of

(2.13),(2.14) with Λ = κ2 = const (cf. (2.10))5

W = cosh ρ0 e
iκτ , X = sinh ρ0 sinσ eiωτ , Y = sinh ρ0 cosσ eiωτ , (2.16)

where ρ0 and ω are related to κ as follows

ω2 = κ2 + 1 , sinh2 ρ0 =
1

2
κ2 . (2.17)

Notice that the expressions for X and Y look exactly the same as in the flat space solution

(2.10). Indeed, since |W |2 = cosh2 ρ0 = 1+κ2 the AdS5 constraint |W |2 −|X |2 −|Y 2| = 1

is automatically satisfied.

5 It would be interesting to find other solutions with Λ = const. It might even be possible to

classify all such solutions.
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This solution describes a circular closed string rotating in the 12 and 34 planes in

the global AdS5 time t = κτ . It will be rederived in the next section using explicitly the

standard set of global AdS5 coordinates (t, ρ, θ, φ, ϕ) related to XM as follows:

W = cosh ρ eit , X = sinh ρ sin θ eiφ , Y = sinh ρ cos θ eiϕ . (2.18)

It is clear that the string described by this solution has equal angular momenta in the 12

and 34 planes. In this R2,4 embedding representation it is easy to identify the charges of the

isometry group SO(2, 4) of AdS5 that are non-vanishing on this solution. In general, the

15 rotation generators JMN of SO(2, 4) can be related to the conformal group generators

as follows (see, e.g., [11])

Jµν = Mµν , Jµ4 =
1

2
(Kµ − Pµ) , Jµ5 =

1

2
(Kµ + Pµ) , J54 = D , (2.19)

where µ, ν = 0, 1, 2, 3. We can identify the standard spin with S1 = M12 = J12, the second

(conformal) spin with S2 = J34 = 1
2
(K3 −P3), and finally the rotation generator in the 05

plane with the global AdS5 energy, E = J05 = 1
2
(K0 + P0).

6 In the present case the only

non-vanishing charges are J50 and J12, J34, i.e. the energy and the two spins

E =
√
λ κ(1 +

1

2
κ2) , S ≡ S1 = S2 =

1

4

√
λ κ2

√

κ2 + 1 . (2.20)

The three Casimir operators of SO(2, 4) are then expressed in terms of κ. Note also that

E2 − (2S)2 =
√
λ ( 3

4κ
4 + κ2) ≥ 0. For small κ we get E ≈

√

4
√
λ S, i.e. the usual Regge

trajectory relation, while for large κ we have E ≈ 2S = S1 + S2, similar to the single-spin

case in [2].

It may be worth stressing the following point. We consider classical string solutions

with large angular momenta. In quantum theory such a classical solution should correspond

to a vector of an irreducible representation labeled by the charges which would then be

(half-)integer. Since on our clasical solutions S1 and S2 (and E) are the only nonvanishing

charges among the relevant generators JMN , we may use them to label representations of

the SO(4) = SU(2) × SU(2) subgroup of the conformal group SO(2, 4). Assuming that

S1 ≥ S2, the usual labels j1 and j2 of SU(2) × SU(2) can be expressed in terms of S1

6 After the Euclidean continuation X0 → iX0E and mapping to R×S3 it is natural to classify

the representations of the conformal group in terms of maximal compact subgroup SO(4)×SO(2),

or SU(2) × SU(2) × SO(2). Exchanging X0E with X4 exchanges the generator J54 = D with

J05 = 1
2
(P0 + K0) = E.
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and S2 as 2j1 = S1 + S2, 2j2 = S1 − S2.
7 Moreover, the fact that only S1 and S2 do

not vanish means that in quantum theory the corresponding quantum state should be the

highest weight vector of an SO(4) representation. A similar remark will apply to the case

of solutions with angular momentum in S5 we study below: a similar relation will exist

between the only non-vanishing SO(6) charges Ji = (J12, J34, J56) which are directly (up

to permutations) related to the Young tableau labels, and the Dynkin labels of SU(4)

representations.

2.3. S5 case

Let us now consider an S5 analogue of the flat-space solution (2.1). Here all is similar

to the AdS5 case, apart from the fact that the decoupled time coordinate t is introduced

in addition to the S5 directions XA

XAXA = X2
1 + ...+X2

6 = |Z|2 + |X |2 + |Y |2 = 1 ,

Z = X1 + iX2 , X = X3 + iX4 , Y = X5 + iX6 . (2.21)

The relation to the standard 5 angles (γ, ψ, ϕ1, ϕ2, ϕ3) of S5 is

Z = cos γ eiϕ1 , X = sin γ cosψ eiϕ2 , Y = sin γ sinψ eiϕ3 . (2.22)

A particular solution of the S5 sigma model equations (which are the direct analogues of

(2.13),(2.14)) is (cf. (2.10),(2.16))

t = κτ , Z = cos γ0 e
iντ , X = sin γ0 cosσ eiwτ , Y = sin γ0 sinσ eiwτ , (2.23)

where Λ = ν2 and κ and ν are independent parameters while the constants γ0 and w are

expressed in terms of them (cf. (2.17))

w2 = 1 + ν2 , sin2 γ0 =
1

2
(κ2 − ν2) . (2.24)

Here the energy of the solution is E =
√
λ κ, and in addition we have 3 non-vanishing

components of the SO(6) angular momentum tensor JAB :

J1 = J12 , J2 = J34 , J3 = J56 ,

7 The charges S1 and S2 are, in fact, directly related to the Gelfand–Zeitlin labels of represen-

tations of SO(4).
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J ≡ J1 =
√
λ ν[1− 1

2
(κ2−ν2)] , J ′ ≡ J2 = J3 =

1

4

√
λ (κ2−ν2)

√

ν2 + 1 . (2.25)

This solution describes a circular closed string rotating (with equal speeds) in the two

planes in S3 within S5, with its center of mass orbiting along the orthogonal circle of S5.

When embedded into AdS5 × S5 it will be located at the origin ρ = 0 of AdS5. We shall

return to the discussion of this solution in section 4.1.

Notice that (2.24) implies the bound

ν2 ≤ κ2 ≤ ν2 + 2 . (2.26)

One limiting case is κ = ν when the string is point-like and has no spin J ′, i.e. moves

along the geodesic discussed in [1] and thus has E = J . The other is ν2 = κ2 − 2 so that

κ2 ≥ 2. 8 Here J = 0 and the string has maximal size (γ0 = π
2 ), while the energy and the

two equal SO(6) angular momenta J1, J2 take values

J ′ =
1

2

√
λ

√

κ2 − 1 ≥ 1

2

√
λ , E =

√
λ κ =

√

(2J ′)2 + λ ≥
√

2λ . (2.27)

This expression for E(J ′) is very simple and interesting, and we shall return to the discus-

sion of it in sections 4.2 and section 5.

Another special case with J = 0 is ν = 0: here κ2 ≤ 2 and w = 1 so that

J ′ =
1

4

√
λ κ2 ≤ 1

2

√
λ , E =

√

4
√
λ J ′ ≤

√
2λ . (2.28)

Remarkably, here the dependence of the energy on the SO(6) spin is exactly the same

as for the leading Regge trajectory in flat space! This is not too surprising since the

corresponding string solution (2.23) is then the direct embedding of the flat space solution

(2.10) into the S3 part of S5 (note that the Lagrange multiplier Λ in the S5 analog of

(2.13) vanishes when ν = 0 and so XM satisfy the flat-space equations of motion).

One can also construct more general multi-spin solution which has all 5 charges being

non-vanishing – S1 = S2 in AdS5, and J = J1 and J2 = J3 in S5. It will be given by

a direct combination of (2.16) and (2.23) with the parameters κ, ν, ρ0, γ0 related by the

conformal gauge constraint as κ2 = ν2 + 2 sinh2 ρ0 + 2 sin2 γ0. The expressions for the

8 Here one cannot take the flat-space limit in which κ → 0.
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SO(2, 4) × SO(6) charges are essentially the same as in (2.20) and (2.25), i.e. (see also

section 4.2)

E =
√
λ cosh2 ρ0 κ , S = S1 = S2 =

1

2

√
λ sinh2 ρ0

√

κ2 + 1 , (2.29)

J = J1 =
√
λ cos2 γ0 ν , J ′ = J2 = J3 =

1

2

√
λ sin2 γ0

√

ν2 + 1 . (2.30)

The parameters ρ0, ν, γ0 and thus κ can be expressed in terms of S, J and J ′, giving the

general expression for the energy E = E(S, J, J ′).

One can also study other similar multi-charge solutions, like an interpolation between

the J, J ′ solution on S5 and the single-spin S1 6= 0, S2 = 0 solution [3,2] in AdS5 (in this

case the radial coordinate ρ will no longer be constant). Then one will find E = E(S1, J, J
′)

which will be a generalization to J ′ 6= 0 of the expression obtained in [2,4].

3. Two-spin solution in AdS5 in global coordinates and stability

Here we shall rederive the AdS5 two-spin solution starting from a more general ansatz

with two unequal rotation parameters and then study small fluctuations near the resulting

solution.

The string action in AdS5 written in the conformal gauge in terms of independent

global coordinates xm is

I = −
√
λ

4π

∫

d2ξ G(AdS5)
mn (x)∂ax

m∂axn ,
√
λ ≡ R2

α′ (3.1)

Here ξa = (τ, σ), σ ≡ σ + 2π. We shall use the Minkowski signature in both target

space and world sheet, so that in conformal gauge
√−ggab = ηab =diag(-1,1). The equa-

tions of motion following from the action should be supplemented by the conformal gauge

constraints.

We shall use the following explicit parametrization of the (unit-radius) AdS5 metric

(related to the embedding coordinates of the previous section by (2.18))

(ds2)AdS5
= G(AdS5)

mn (x)dxmdxn = − cosh2 ρ dt2 + dρ2 + sinh2 ρ dΩ3 , (3.2)

dΩ3 = dθ2 + sin2 θ dφ2 + cos2 θ dϕ2 . (3.3)
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This metric has translational isometries in t, φ, ϕ so that a general string solution should

possess the following three integrals of motion:

E = Pt =
√
λ

∫ 2π

0

dσ

2π
cosh2 ρ ∂0t ≡

√
λ E , (3.4)

S1 = Pφ =
√
λ

∫ 2π

0

dσ

2π
sinh2 ρ sin2 θ ∂0φ ≡

√
λ S1 , (3.5)

S2 = Pϕ =
√
λ

∫ 2π

0

dσ

2π
sinh2 ρ cos2 θ ∂0ϕ ≡

√
λ S2 . (3.6)

The first integral is the space-time energy, and the second and third ones are the spins

associated with rotations in φ and ϕ.

3.1. Solution

Our aim is to look for a solution describing a closed string rotating in both φ and ϕ,

thus generalizing the single-spin solution of [3,2]. A natural ansatz for such a solution is

t = κτ , φ = ωφτ , ϕ = ωϕτ , κ, ωφ, ωϕ = const ,

ρ = ρ(σ) = ρ(σ + 2π) , θ = θ(σ) = θ(σ + 2π) , (3.7)

where ρ and θ are subject to the corresponding second-order equations (prime denotes

derivative over σ)

ρ′′ = sinh ρ cosh ρ (κ2 + θ′2 − ω2
φ sin2 θ − ω2

ϕ cos2 θ) , (3.8)

(sinh2 ρ θ′)′ =
1

2
(ω2

ϕ − ω2
φ) sinh2 ρ sin 2θ . (3.9)

The first of the conformal gauge constraints

G(AdS5)
mn (x)(ẋmẋn + x′mx′n) = 0 , G(AdS5)

mn (x)ẋmx′n = 0 , (3.10)

then implies that ρ(σ) and θ(σ) must satisfy the following 1-st order equation

ρ′2 + sinh2 ρ θ′2 = κ2 cosh2 ρ− sinh2 ρ (ω2
φ sin2 θ + ω2

ϕ cos2 θ) . (3.11)

Unfortunately, we do not know how to solve the system of non-linear equations (3.8),(3.11)

for generic values of the frequencies ωϕ and ωφ, so in what follows we shall assume that

the frequencies are equal:

ωϕ = ωφ = ω . (3.12)
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Then (3.9) implies

θ′ =
c

sinh2 ρ
, c = const. (3.13)

The special solution of (3.9) with c = 0, i.e. θ = const leads us back to the single-spin case

of [3,2]: one can make a global SO(3) rotation (or redefinition of φ, ϕ) to put the rotating

string in a single plane. If one assumes that θ′ 6= 0, one can show by a detailed analysis

that there exists no solution to (3.8),(3.11) with non-constant ρ, i.e. one must set 9

ρ(σ) = ρ0 = const . (3.14)

Then the equations (3.8) and (3.11) take the form

θ′2 = ω2 − κ2 , θ′2 = coth2 ρ0 κ
2 − ω2 . (3.15)

The solution to these equations is given by

θ = nσ , κ2 = 2n2 sinh2 ρ0 , ω2 = n2(1 + 2 sinh2 ρ0) = κ2 + n2 . (3.16)

Here n is an arbitrary integer representing how many times the string “winds” around the

θ-circle (cf. (2.18)). The parameter ρ0 determines the radius (sinh ρ0) of a circular string

rotating in S3. It is remarkable that one needs two rotation parameters to be non-zero in

order to stabilize the size of the string at fixed value of the AdS5 radius ρ.

In what follows we shall consider the case of (cf.(2.17))

n = 1 , i.e. κ =
√

2 sinh ρ0 , ω2 = κ2 + 1 . (3.17)

In the flat space limit (κ → 0, ρ0 → 0) this corresponds to a state on the leading Regge

trajectory, i.e. having minimal energy for a given spin. The dependence on the “winding

number” n can be easily restored in all the equations below.

The integrals of motion (3.4), (3.5), (3.6) on this solution are given by the same

expressions as in (2.20) (we consider the values rescaled by the string tension
√
λ as

defined in (3.4),(3.5),(3.6))

E = κ cosh2 ρ0 = κ(1 +
1

2
κ2) , (3.18)

9 Using (3.13) we get from (3.11): ρ′2 = −V (ρ) , V (ρ) ≡ c2

sinh2 ρ
− κ2 cosh2 ρ + ω2 sinh2 ρ.

From the form of the effective “potential” V in this equation one finds that one cannot satisfy the

closed string periodicity condition in σ (3.7) unless ρ is fixed to be at zero of V .
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S1 = S2 ≡ S , S =
1

2
ω sinh2 ρ0 =

1

4
κ2

√

κ2 + 1 , (3.19)

One can easily solve the cubic equation for κ2 as a function of S to find the dependence

of E on S. In the case of a small string with ρ0 → 0, κ → 0 (i.e. a string near the center

of AdS5) we get

E =
√

4S
[

1 + S +O(S2)
]

, S ≪ 1 . (3.20)

This is the usual Regge trajectory relation in flat space plus the first correction due to the

curvature of AdS5. In the case of a large string with ρ0 ≫ 1, κ ≫ 1 (i.e. a long string

close to the boundary of AdS5) we get

E = 2S +
3

4
(4S)1/3 +O(S−1/3) , S ≫ 1 . (3.21)

Note that here the first correction to E − 2S goes as S1/3, which is different from the

lnS behavior in the single-spin (folded rotating closed string) case in [2]. However, as we

explain in the next section, the solution with large S turns out to be unstable.

3.2. Fluctuations, stability and 1-loop correction

To compute the quadratic action for fluctuations near the above solution it is useful

to start with the Nambu-Goto analog of the action (3.1) and choose the static gauge

t = κτ , θ = σ . (3.22)

Let us note that the induced metric on our solution is flat:

ds22 = sinh2 ρ0 (−dτ2 + dσ2) . (3.23)

Shifting the remaining three fields away from their classical values

ρ→ ρ0 + ρ̃ , φ→ ωτ + φ̃ , ϕ→ ωτ + ϕ̃ , (3.24)

and expanding the Nambu-Goto action up to the second order in the fluctuation fields, we

get the quadratic Lagrangian for the fluctuations ρ̃, φ̃ and ϕ̃

L = −1

2
(∂aρ̃)

2 − 1

4
cos2 σ κ2[1 + cos2 σ (1 + κ2)](∂aϕ̃)2

− 1

4
sin2 σ κ2[1 + sin2 σ(1 + κ2)](∂aφ̃)2 − 1

2
cos2 σ sin2 σ κ2(1 + κ2)∂aφ̃∂

aϕ̃
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+ 2
√

κ2(1 + κ2)(2 + κ2)ρ̃(∂0ϕ̃ cos2 σ + ∂0φ̃ sin2 σ) + (2 + κ2)ρ̃2 . (3.25)

This Lagrangian takes simpler form after making the following change of variables (φ̃, ϕ̃) →
(α, β) 10

α = a (ϕ̃ cos2 σ + φ̃ sin2 σ) , β = b sin 2σ (φ̃− ϕ̃) , (3.26)

φ̃ =
α

a
+
β

2b
tanσ , ϕ̃ =

α

a
− β

2b
cotσ , (3.27)

a =
1√
2κ

√

2 + κ2 , b = − 1√
2κ

. (3.28)

An apparent singularity of the transformation (3.26) at σ = 0, π
2 , π,

3π
2 is not physical

because it is a reflection of the obvious coordinate singularity of the AdS5 metric (3.2),(3.3)

at θ = 0, π
2 , π,

3π
2 .11 In terms of the new fields (3.25) takes the following simple form

L = −1

2
(∂aρ̃)

2 − 1

2
(∂aα)2 − 1

2
(∂aβ)2

+ 2
√

2(1 + κ2)∂0α ρ̃− 2
√

2 + κ2∂1α β − 2(1 + κ2)β2 + (2 + κ2)ρ̃2 . (3.29)

The Lagrangian (3.29) can be rewritten as (omitting total derivative)

L = −1

2
(Daη

s)2 − 1

2
Msrη

sηr , Daη
s = ∂aη

s + Asr
a ηr , ηs = (ρ̃, α, β) , (3.30)

A
αρ̃
0 = −Aρ̃α

0 =
√

2(1 + κ2) , A
αβ
1 = −Aβα

1 =
√

2 + κ2 ,

Msrη
sηr = −2ρ̃2 + κ2α2 + (2 + 3κ2)β2 , (3.31)

where the 2-d non-abelian SO(3) gauge field Asr
a has a constant but non-vanishing field

strength F
βρ̃
01 =

√

2(1 + κ2)(2 + κ2). It is remarkable that in spite of the τ and σ depen-

dence of our background solution, the fluctuation action is quite simple, having constant

coefficients; in particular, it is simpler than the corresponding action in the one-spin case in

10 This transformation has a very simple interpretation in terms of fluctuations of the complex

fields X and Y in (2.18): expanding near their classical values (2.16) in the static gauge where

θ is not fluctuating and ignoring fluctuations of ρ we get: X̃ = i sinh ρ0 sinσ eiωτ φ̃, Ỹ =

i sinh ρ0 cosσ eiωτ ϕ̃. Then α, β expressed in terms of X̃ and Ỹ take the form (at each given τ)

of an O(2) rotation with angle σ.
11 While to cover S3 once one is usually assuming 0 ≤ θ ≤ π

2
with φ and ϕ changing from 0 to

2π, here to embed the closed string in S3 at each fixed moment of time (3.7) we need to consider

θ in the interval from 0 to 2π.
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[4]. The absence of explicit dependence on σ will allow us to solve the linearized equations

of motion for the fluctuations.

Note that the radial fluctuation ρ̃ has a negative mass term in (3.31), suggesting an

instability (the Hamiltonian corresponding to (3.30) is not positive definite). However,

since it is coupled to a gauge field (i.e. is mixing with other fluctuations) the latter may, in

principle, stabilize the ρ̃ evolution.12 Thus the stability issue needs to be carefully studied.

This is done in Appendix A. It is found there that the solution is stable only for a certain

range of values of κ, i.e. for not very large values of S (see (3.19))

0 ≤ κ2 ≤ 5

2
, i.e. 0 ≤ S ≤ 5

8

√

7

2
. (3.32)

Note that for the maximal value of S, i.e. S ≈ 1.17 the value of the spin S =
√
λ S is still

large since in the semiclassical approximation it is assumed that
√
λ ≫ 1.

It is of interest to compute the 1-loop superstring sigma model correction to the

energy of the two-spin solution. In principle, it can be done following the same approach

as was used in [4] in the single-spin case. It is straightforward to supplement (3.29) with

the Green-Schwarz quadratic fermionic term as in [12,4] (see Appendix B). The fermionic

contribution cancels the 2-d logarithmic divergence coming from the mass term in (3.30)

(which is proportional to
∑

r Mrr = 4κ2). If we ignore the instability of the solution for

large κ and formally consider the limit κ≫ 1 in (3.29) we will get

L
κ≫1

→ −1

2
(∂aρ̃)

2− 1

2
(∂aα)2− 1

2
(∂aβ)2 +2

√
2κ∂0α ρ̃− 2κ∂1α β −2κ2β2 +κ2ρ̃2 . (3.33)

Since κ is the only non-trivial parameter in (3.33), the 1-loop correction to the energy on

the 2-d cylinder is expected to scale as κ (see the discussion [4]). That would imply that

the large S expansion of the energy in (3.21) is corrected at the one loop order by (cf.

(3.19)) E1 ∼ κ√
λ

∼ 1√
λ
S1/3, S ≫ 1. This may be consistent with the following conjecture

for the general behaviour of E(S, λ)

E = 2S + [h(λ) + f(λ)S]1/3 + ... , S ≫ 1 , (3.34)

where

f(λ)
λ≫1

= λ(c0 +
c1√
λ

+ ...) , f(λ)
λ≪1

= λ(b0 + b1λ+ ...) . (3.35)

12 Examples of similar situations are a charged (inverted) harmonic oscillator in a magnetic

field, and a “tachyon” mode in AdS space.
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We caution, however, that the instability of the solution for large κ or large S may preclude

interpolation from strong to weak coupling in the large spin limit. One could still hope

that since the solution with large S should evolve into a solution which will still carry the

same spin, one may still find the classical energy behaving with spin as in (3.21). However,

one may not be able then to compute the sigma model loop corrections to the energy in a

reliable way.

4. Multi-spin string solutions in AdS5 × S5

Let us now find a similar rotating string solution in S5 and its generalizations having

spins in both AdS5 and S5 factors. This was already discussed in terms of the embedding

coordinates in section 2. Here we will rederive these solutions in terms of angles of S5 and

study some of their properties in more detail.

The bosonic part of the AdS5 × S5 string action is

I = −
√
λ

4π

∫

d2ξ
[

G(AdS5)
mn (x)∂ax

m∂axn + G(S5)
pq (y)∂ay

p∂ayq
]

,
√
λ ≡ R2

α′ . (4.1)

We shall use the following explicit parametrization of the unit-radius metric on S5:

(ds2)S5 = G(S5)
pq (y)dypdyq = dγ2+cos2 γ dϕ2

1+sin2 γ (dψ2+cos2 ψ dϕ2
2+sin2 ψ dϕ2

3) . (4.2)

This metric has three translational isometries in ϕi, so that in addition to the three AdS5

integrals of motion (3.4),(3.5),(3.6), a general solution should also have the following three

integrals of motion depending on the S5 part of the action:

J1 = Pϕ1
=

√
λ

∫ 2π

0

dσ

2π
cos2 γ ∂0ϕ1 ≡

√
λ J1 , (4.3)

J2 = Pϕ2
=

√
λ

∫ 2π

0

dσ

2π
sin2 γ cos2 ψ ∂0ϕ2 ≡

√
λ J2 , (4.4)

J3 = Pϕ3
=

√
λ

∫ 2π

0

dσ

2π
sin2 γ sin2 ψ ∂0ϕ3 ≡

√
λ J3 . (4.5)
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4.1. Circular string rotating in S5

Let us look for a solution describing a closed string located at the center ρ = 0 of

AdS5 and at a fixed value of one of the S5 angles γ = γ0 = const, rotating within S3 part

of S5 (with equal frequences as in the AdS5 case), with its center of mass orbiting along a

circle of S5. A natural ansatz for such a solution is

t = κτ , ρ = 0 , γ = γ0 , ϕ1 = ντ , ϕ2 = ϕ3 = wτ , ψ = σ , (4.6)

where κ, γ0, ν, w = const. The equations of motion for the fields and the conformal gauge

constraints then lead to the following relations between γ0, κ, ν and w

w2 = ν2 + 1 , κ2 = ν2 + 2 sin2 γ0 . (4.7)

Just as in the case of the two-spin solution in AdS5 the induced metric here is flat

ds22 = sin2 γ0 (−dτ2 + dσ2) . (4.8)

Taking into account that

J ≡ J1 = cos2 γ0 ν , J2 = J3 = J ′ , J ′ ≡ 1

2
sin2 γ0 w , (4.9)

we find the following equation for ν = ν(J ,J ′)

ν
√

ν2 + 1 = J
√

ν2 + 1 + 2J ′ν . (4.10)

Since the energy E in (3.4) is equal to κ, we can use eq.(4.10) to find the dependence of

the energy on the R-charges J and J ′

E2 = ν2 +
4J ′

√
ν2 + 1

, E = E(J ,J ′) . (4.11)

It is instructive to restore the λ-dependence in the formulas (4.10) and (4.11), i.e. to

rewrite them in terms of the energy E, the R-charges J, J ′ and the auxiliary “charge”

V =
√
λ ν = cos−2 γ J :

V
√

V2 + λ = J
√

V2 + λ+ 2J ′V , V ≡
√
λ ν , (4.12)

E2 = V2 +
4λJ ′

√
V2 + λ

= V2 + 2λ(1 − J

V ) , E = E(J, J ′) . (4.13)
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A nice feature of this representation is that if V ≫
√
λ then the expression for the energy

takes the form of a perturbative expansion in λ because V can be found from (4.12) as a

series in λ
(J+2J ′)

. In particular, we get the following expression for the energy at the first

order in λ

E2 ≈ (J + 2J ′)2 +
2λJ ′

J + 2J ′ , E ≈ J + 2J ′ +
λJ ′

(J + 2J ′)2
, (4.14)

where V ≈ J + 2J ′ − λJ ′

(J+2J ′)2
. Note that here there is no restriction on values of J and J ′

apart from the requirement that J + 2J ′ ≫
√
λ .

One may be tempted to conjecture that the formula (4.14) may be valid at small

values of λ if J + 2J ′ is very large. However, (4.14) was obtained in the strong coupling

λ≫ 1 regime, and we expect it to receive 1√
λ

string sigma model corrections. In particular,

even the coefficient in front of J + 2J ′ may get changed by the corrections, and, if so, the

one-loop perturbative correction to the dimension of the corresponding CFT operator dual

to the string solution will not be of order J ′

(J+2J ′)2
but of order J + 2J ′.

If J ≫ J ′ the energy (4.14) takes the form

E ≈ J + 2J ′ + λ
J ′

J2
. (4.15)

This expression for E is consistent with the string oscillation spectrum in the sector with

large J ≫
√
λ [1,13], i.e. with the plane-wave spectrum (similar comparison was done in

[4]). From the plane-wave spectrum point of view, J ′ represents the angular momentum

carried by string oscillations. Since the linear term in J is not renormalized in the BMN

limit, one may conjecture that the same should happen here.

If we set J = 0 in (4.15) we get

E2 = (2J ′)2 + λ , i.e. E ≈ 2J ′ +
λ

4J ′ . (4.16)

Thus at large J ′ the correction goes as 1
J ′ , instead of a constant shift found in the case of

the single-spin folded string rotating in S5 [2].

We can also consider the case with V ≪
√
λ (when V ≈ J)

E2 ≈ 4
√
λJ ′ + J2 . (4.17)

Setting J = 0 we reproduce the usual Regge trajectory relation.

It is interesting to note that the limit J → 0 depends on the value of the second

angular momentum J ′ (see also the discussion of this case in sections 2 and 4.3). When

J ′ = 1
2

√
λ the dependence of the energy on the angular momentum changes its form, i.e.

the system undergoes a kind of “second order phase transition” (the second derivative of

the energy over the orbital momentum has a discontinuity at J ′ = 1
2

√
λ). This happens

because for ν = 0 one has J ′ = 1
2

sin2 γ0, so that the value J ′ = 1
2

is found when the

string reaches its maximal size (γ0 = π
2 ), i.e. when it rotates on the maximal-size 3-sphere

within S5.
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4.2. Circular string rotating in both AdS5 and S5

As already discussed in section 2, it is straightforward to combine the two-spin so-

lution in AdS5 with the three angular momenta solution in S5. For completeness, let us

summarize the resulting solution depending on 3 different parameters in terms of the global

coordinates of AdS5 and S5 used in section 3 and in this section:

ρ = ρ0 , t = κτ , ϕ = φ = ωτ , θ = σ , (4.18)

γ = γ0 , ϕ1 = ντ , ϕ2 = ϕ3 = wτ , ψ = σ . (4.19)

The equations of motion and the conformal gauge constraint lead to the following relations

ω2 = κ2 + 1 , w2 = ν2 + 1 , κ2 = ν2 + 2 sinh2 ρ0 + 2 sin2 γ0 , (4.20)

and the energy and the 5 conserved charges are given by the same relations as in

(2.29),(2.30)

E = κ cosh2 ρ0 = κ [1 +
1

2
(κ2 − 2 sin2 γ0 − ν2)] , (4.21)

S = ω sinh2 ρ0 =
1

2
(κ2 − 2 sin2 γ0 − ν2)

√

κ2 + 1 , (4.22)

J = cos2 γ0 ν , J ′ =
1

2
sin2 γ0 w =

1

2
sin2 γ0

√

ν2 + 1 . (4.23)

One can use these equations to analyse the dependence of the energy on the spins and

SO(6) charges. In particular, when J is very large while the string size is small, one

reproduces the corresponding part of the oscillator plane-wave string spectrum (with spin

S and angular momentum J ′ here carried by the semiclassical string instead of being

produced by string oscillations as in [1]).

4.3. Fluctuations and stability of S5 solution with J = 0, J ′ 6= 0

Let us now discuss the stability of the simplest S5 solution with J = 0 and J ′ 6= 0.

There are two different cases that should be discussed separately.

J ′ ≤ 1
2 case

The solution with J ′ ≤ 1
2

is found by setting ν = 0 in (4.7),(4.9) (see also (2.28)).

Then (see (4.17))

ν = 0 , w = 1 , κ2 = 2 sin2 γ0 ≤ 2 , J ′ =
1

4
κ2 , E =

√
4J ′ . (4.24)
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As was already mentioned in section 2 (below (2.28)), this solution is essentially the em-

bedding of the flat space solution into S5. However, the fluctuation spectrum will of course

be different from the flat space case.

The computation of the quadratic fluctuation action is a repetition of the one done in

the AdS5 case in section 3.2. We choose the static gauge

t = κτ , ψ = σ

and expand the Nambu-Goto action up to the second order in fluctuations. As in the case

of point-like string orbiting in S5 [4], the Lagrangian for the AdS5 fluctuations will be

represented by the 4 massive field contributions13

LAdS5
= −1

2
(∂aη̃k)2 − 1

2
κ2η̃2

k , k = 1, 2, 3, 4 . (4.25)

The additional contribution of S5 fluctuations is (cf.(3.29))

LS5 = −1

2
(∂aϕ̂1)

2 − 1

2
(∂aγ̃)

2 − 1

2
(∂aα)2 − 1

2
(∂aβ)2 − 2µ∂0α γ̃

−2
√

2∂1α β + µ2γ̃2 − 2β2 , µ2 ≡ 2 − κ2 . (4.26)

Here ϕ̂1 = 1√
2
µϕ̃1 and the fields α and β are defined as in (3.26)

α = −κ(ϕ̃2 cos2 σ + ϕ̃3 sin2 σ) , β = − κ

2
√

2
sin 2σ (ϕ̃2 − ϕ̃3) . (4.27)

This Lagrangian is similar to the one (3.29) for fluctuations around the two-spin solution

in AdS5. Its γ̃, α, β part can be written in the form (3.30) as follows

L(γ̃, α, β) =
1

2
(∂0γ̃ + µα)2 − 1

2
(∂1γ̃)

2 +
1

2
(∂0α− µγ̃)2 − 1

2
(∂1α+

√
2β)2

+
1

2
(∂0β)2 − 1

2
(∂1β −

√
2α)2 +

1

2
µ2γ̃2 +

1

2
(2 − µ2)α2 − β2 . (4.28)

Note that the sum of squares of masses here vanishes, in agreement with the discussion of

fluctuation Lagrangian in conformal gauge in Appendix C.

13 Expanding near the ρ = 0 point in (3.2) one needs to introduce the 4 cartesian-type coordi-

nates, e.g., writing the AdS5 metric as ds2 = −
(1+

1
4

η2)2

(1−
1
4

η2)2
dt2 + dηkdηk

(1−
1
4

η2)2
.
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The Hamiltonian corresponding to (4.28) does not appear to be positive definite, and

so the stability of the solution is a priori in question. It is shown in Appendix A that the

solution is, in fact, stable if

1

2
≤ µ2 ≤ 2 , i.e. 0 ≤ J ′ ≤ 3

8
.

J ′ ≥ 1
2 case

The solution with J ′ ≥ 1
2 is found by setting γ0 = π

2 . Since cos γ0 = 0, the value of

ν in this case is undetermined (cf. (4.2)), and the conformal gauge constraint gives (cf.

(4.7),(4.9),(4.16))

κ2 = w2 + 1 ≥ 2 , J ′ =
1

2
w , E = κ , i.e. E =

√

(2J ′)2 + 1 . (4.29)

The coordinates γ and ϕ1 are not suitable for studying fluctuations around γ = π
2

(which

is a center of the “2-sphere” part dγ2 + cos2 γ dϕ2
1 of the S5 metric (4.2)). Introducing

instead the “cartesian-type” coordinates X1, X2 as in (2.22) (which have zero values on

the classical solution)

Z = X1 + iX2 = cos γ eiϕ1 , (4.30)

we find that the quadratic fluctuation action (obtained in the static gauge t = κτ, ψ = σ)

is then given by the sum of the AdS5 part (4.25) and (we ignore total derivative terms)

LS5 = −1

2
|∂aZ|2 −

1

2
(κ2 − 2)|Z|2 + L(α, β) , (4.31)

L(α, β) = −1

2
(∂aα)2 − 1

2
(∂aβ)2 − 2κ∂1α β − 2(κ2 − 1)β2

=
1

2
(∂0α)2 − 1

2
(∂1α+ κβ)2 +

1

2
(∂0β)2 − 1

2
(∂1β − κα)2 +

1

2
κ2α2 − 1

2
(3κ2 − 4)β2 , (4.32)

where, as in (3.26),(4.27),

α = −κ(cos2 σ ϕ̃2 + sin2 σ ϕ̃3) , β = −1

2
sin 2σ (ϕ̃2 − ϕ̃3) . (4.33)

The Lagrangian (4.32) is simpler than (4.26), describing a collection of 2 coupled fields with

a constant abelian connection; however, the mass matrix is not O(2) invariant, so after the

rotation there will be a remaining σ-dependence in the mass matrix. Note that the sum

of mass-squared terms for S5 fluctuations is equal to 2(κ2 − 2)− κ2 + 3κ2 − 4 = 4(κ2 − 2)
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in correspondence with the results in the conformal gauge and with the cancellation of

divergences between the bosonic and fermionic sectors (see Appendices B and C).

The negative mass term for α in (4.32) raises again the question about stability. To

analyze the stability of this solution it is sufficient to consider only the α, β part (4.32) of

the Lagrangian. Following the procedure explained for the AdS5 case in Appendix A, i.e.

expanding the fluctuations α and β in Fourier series in σ, and then looking for solutions

in the form eiωnτ , we find the following frequency spectrum

ω2
n = n2 + 2(κ2 − 1) ± 2

√

(κ2 − 1)2 + κ2n2 . (4.34)

It is clear that the ωn spectrum is real if

[n2 + 2(κ2 − 1)]2 − 4[(κ2 − 1)2 + κ2n2] = n2(n2 − 4) ≥ 0 . (4.35)

This condition does not depend on κ and is not satisfied for the mode with n = ±1.14 A

possible interpretation of this mode is that in the frame rotating together with the string

where string is at rest, it describes the obvious instability of a circular string wound around

large circle of S3 [8].15

We conclude that the rotating solution with J = 0 is not stable for any value of the

angular momentum J ′ ≥ 1
2

√
λ .

As was already mentioned in the introduction, to get a stable solution with large J ′

one needs also to switch on a non-zero (and large) value of the angular momentum J [8].

If one could ignore the instability, the solution with J = 0, J ′ ≥ 1
2

√
λ would be the

most simple and interesting case for the study of the AdS/CFT correspondence in a novel

sector of states. One could try to compute the 1-loop string sigma model correction to

the classical energy in (4.29) by starting with the sum of the bosonic fluctuation action

(4.32) (assuming one could formally omit the unstable mode absent at large J) and the

fermionic action derived in Appendix B. This will be discussed (for the general stable case

of J, J ′ 6= 0) in [8]. To estimate this correction at large values of J ′ one may note that for

14 The stability is obvious for the einσ fluctuation modes with n ≥ 2. Indeed, (4.32) can

be written as L(α, β) = 1
2
(∂0α)2 −

1
2
(∂1α + 2κβ)2 + 1

2
(∂0β)2 −

1
2
(∂1β)2 + 2β2, and thus the

corresponding Hamiltonian is non-negative for the modes with n ≥ 2. Let us note also that the

problem of analysing the small fluctuation spectrum of this theory is similar to the one of solving

string theory in “non-diagonal” (metric and 2-form field) plane-wave background (cf. [14]).
15 Such unstable mode would be absent in the S5/Z2 case.
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large κ all non-zero masses of the 2-d fields are equal to κ, and thus (see [4]) the 1-loop

correction to the energy should be expected to scale as

E1 ∼ κ√
λ

∼ 1√
λ

J ′ , J ′ ≈ 1

2
κ≫ 1 . (4.36)

That seems to suggest the following interpolation formula for the energy (cf. (4.16))

E = 2h(λ)J ′ + f(λ)
λ

4J ′ , J ′ ≫ 1 , (4.37)

h(λ)√
λ ≫1

= 1 +
a1√
λ

+ ... , f(λ)√
λ ≫1

= 1 +
b1√
λ

+ ... . (4.38)

In spite of the absence of 2-d supersymmetry in the corresponding quadratic part of GS

action, it may actually happen that the coefficients a1 and b1 vanish, i.e. the first two

terms in the energy are not renormalized at the leading order in 1√
λ

expansion. That

would support the conjecture, prompted by the appearance of the first power of λ in the

calssical expression for E, that E = 2J ′+ λ
4J ′ +... is actually true also at weak coupling, i.e.

is the exact result for the first two terms in the anomalous dimension of the corresponding

dual gauge theory operator. We shall discuss this conjecture further in the next section.

5. Towards testing AdS/CFT duality in non-supersymmetric multi-spin sectors

Let us now discuss the gauge-theory operators that should correspond to the string

states represented by the classical solutions found above. The eventual aim is to try to com-

pare their anomalous dimensions as functions of spins and R-charges to the semiclassical

expressions for the energies found above.

5.1. AdS5 rotation case

The semiclassical closed string states found in global coordinates in AdS5×S5 should

be dual to SYM states on R×S3. Going through the usual argument of Euclidean continu-

ation and conformal mapping to R4 (cf. [15]) they should correspond to local operators in

Euclidean 4-d space. One can then rotate back to Minkowski space, but here we prefer not

to do that. The SO(4) isometry of S3 in AdS5 is then becoming the “Lorentz” symmetry

of R4. Thus the Euclidean gauge theory operators will be classified by its representations,

i.e. will be labelled by the values (S1, S2) of the two SO(4) = SU(2) × SU(2) spins. In

addition, they will carry also the three quantum numbers of SO(6) R-symmetry group.
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Let us first recall the form of the gauge theory operators that are expected to be dual

to the single-spin string state in AdS5 [2]. If ΦM (M = 1, ..., 6) are the adjoint scalars

of N = 4 SYM theory and Dµ is the covariant derivative, a representative operator with

canonical dimension ∆0 = S + 2 is the standard gauge-invariant minimal twist operator

O{µ1...µS} = tr
(

ΦMD{µ1
...DµS}ΦM

)

, where {µ1...µS} denotes symmetrization and sub-

traction of traces. This operator will in general mix with similar operators obtained by

replacing the scalars ΦM by the gauge field strength Fµν or by the fermions so to find

its perturbative anomalous dimension one would need to diagonalise the corresponding

anomalous dimension matrix (see, e.g., [16,17,18] and references there).16 The equivalent

form of the above operator is

OS = tr (ΦMDµ1
...DµS

ΦM ) nµ1 ...nµS = tr
[

ΦM (nµDµ)SΦM

]

, (5.1)

where the multiplication by the product of constant null vector nµ (nµnµ = 0) factors

implements the symmetrization and subtraction of traces. In Minkowski R1,3 theory one

may choose nµ = (1, 0, 0, 1), getting OS = tr
(

ΦM (D+)SΦM

)

, D+ = D0 + D3. In the

Euclidean version which we use here one is to choose nµ to be complex, e.g., nµ = (1, i, 0, 0),

getting

OS = tr
[

ΦM (DX)SΦM

]

, DX ≡ D1 + iD2 . (5.2)

It is now clear how to generalize this discussion to the case of operators carrying two spins

of SO(4): a representative operator will be

OS1,S2
= tr

[

ΦM (DX)S1(DY )S2ΦM

]

, (5.3)

DX ≡ D1 + iD2 , DY ≡ D3 + iD4 , ∆0 = S1 + S2 + 2 . (5.4)

Since the covariant derivatives DX and DY do not commute, this operator will be mixing,

in particular, with various other operators containing permutations of S1 derivatives DX

and S2 derivatives DY and having the same canonical dimension, e.g.,

tr
[

ΦM (DX)k1(DY )m2 ...(DX)kl(DY )mlΦM

]

,
∑

i

ki = S1 ,
∑

i

mi = S2 . (5.5)

The eigenvector of anomalous dimension matrix is expected to be a particular combina-

tion of such operators (in addition to others involving gauge field strength and fermions).

16 Two-loop anomalous dimensions for some higher spin currents were found in [19].
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An irreducible representation of the rotation group is represented by a particular Young

tableau with two rows with S1 and S2 as numbers of boxes, i.e. should contain additional

antisymmetrizations of DX and DY factors in (5.3).17

The equivalent “covariant” form of (5.3) is found by introducing two independent null

vectors nµ and mν and generalising (5.1) as follows

OS1,S2
= tr(ΦMDµ1

...DµS1
Dν1

...DνS2
ΦM ) nµ1 ...nµS1mν1 ...mνS2 , nµnµ = 0 , mµmµ = 0 .

(5.6)

This operator can be readily extended to the Minkowski version of the theory by choosing,

e.g., nµ = (1, 0, 0, 1) and mµ = (0, 1, i, 0) with ηµν = (−1, 1, 1, 1).

As is well known [17], for S1 = S ≫ 1, S2 = 0 (or vice versa) the perturbative

anomalous dimension of such operators scales as lnS, which is the same as the scaling of

the energy of the single-spin rotating string solution in AdS5; this strongly supports the

existence of an interpolation formula ∆ = S + f(λ) lnS between the weak coupling and

the strong coupling regions [2,4].

To compare with the string solution found in the present paper where S1 = S2 = S ≫
1 one needs to know the perturbative (one-loop) anomalous dimension of the operators

like

OS,S = tr
[

ΦM (DX)S(DY )SΦM

]

+ ... . (5.7)

where dots stand for appropriate permutations of DX and DY . We are not aware of

computations of anomalous dimension of such operators in the literature, and here can

only speculate about possible interpolation formula for ∆(S) in this case (see also section

3.2). Assuming one can trust the expression (3.21) for the energy for large S = S√
λ

(in

spite of instability of the solution for large S) one would expect to find the order S1/3

correction in the anomalous dimension replacing the familiar lnS correction for the single-

spin operators (5.2). However, it seems hard to imagine how such fractional-power term

could appear in the 1-loop SYM computation for the anomalous dimension of (5.7). We

suspect that the interpolation formula (3.34),(3.35) may be a more plausible alternative,

implying that at large S but small λ (with λS ≪ 1) one should expect to find the anomalous

dimension of (5.7) going as

∆ = 2k(λ)S + ... , k(λ) = 1 + a1λ+ a2λ
2 + ... . (5.8)

It would be very interesting to check this by direct perturbative computations on the gauge

theory side.

17 Due to these antisymmetrizations the resulting operators may not be superconformal primary

operators.
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5.2. S5 rotation case

The construction of operators that carry several SO(6) “spins” and thus should be

dual to the string states represented by the solutions in section 4 describing closed strings

rotating in S5 is somewhat similar. Let us introduce the notation for the three complex

scalars of N = 4 SYM theory (cf. (2.21))

ΦZ = Φ1 + iΦ2 , ΦX = Φ3 + iΦ4 , ΦY = Φ5 + iΦ6 . (5.9)

Among the operators with the minimal canonical dimension for given (J1, J2, J3) values

of SO(6) charges there are operators with holomorphic dependence of the three complex

scalars:

OJ1,J2,J3
= tr[(ΦZ)J1(ΦX)J2(ΦY )J3 ] + ... , ∆0 = J1 + J2 + J3 , (5.10)

where dots stand for permutations of ΦX ,ΦY ,ΦZ factors needed to form an irreducible

representation of SO(6) that is expected to be an eigenvector of the anomalous dimension

matrix. The 1-loop anomalous dimension matrix for generic scalar operators of the form

OM1....Mj
= tr(ΦM1

....ΦMj
) (5.11)

was computed in [9,10]. Taking its symmetric traceless part (i.e. multiplying (5.11) by a

null vector, e.g., nM = (1, i, 0, 0, 0, 0)) one finds a chiral primary operator whose dimension

is protected. This case is equivalent to (5.10) with J1 = J and J2 = J3 = 0, i.e. OJ,0,0 =

tr(ΦZ)J , which is dual to the ground state of the string theory expanded near the point-like

string orbiting in S5 [1].18

The operator that should be dual to the string solution with J1 = J, J2 = J3 = J ′

found above should then be

OJ,J ′,J ′ = tr[(ΦZ)J(ΦX)J ′
(ΦY )J ′

] + ... , ∆0 = J + 2J ′ . (5.12)

This operator belongs to the irreducible representation of SU(4) with Young tableau labels

(J, J ′, J ′) or with Dynkin labels [0, J − J ′, 2J ′] (see Appendix D)19 if J ≥ J ′, and to

18 We are considering only single-trace operators as seems appropriate for the elementary string

state – gauge theory operator correspondence in the large N limit. Note that there exist also multi-

trace operators which may carry the same quantum numbers and may be 1/4 or 1/8 BPS (see,

e.g., [20] and refs. there).
19 We are grateful to M. Staudacher and N. Beisert for correcting a mistake in this identification

in the original version of this paper.
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the representation (J ′, J ′, J) = [J ′ − J, 0, J ′ + J ] if J ′ ≥ J , and does not seem to be

a superconformal primary operator. For example, it is known that the operator with

J = 0, J ′ = 2 is a superconformal descendant of the Konishi operator K = tr (ΦMΦM ).

In the near-BPS limit J ≫ J ′ the operators of the form (5.12) are examples of the BMN

operators [1] with a small number of impurities, and one can, in principle, make detailed

comparison between semiclassical predictions (4.15) and the perturbative results of [1]

and [9,10]. If J ′ is comparable to or much larger than J , we are very far from the BPS

operator tr(ΦZ)J , and the conformal dimensions of the operators cannot be computed

from the plane-wave string spectrum.

The semiclassical results obtained in section 4 are the only source of nonperturbative

predictions for the dimensions of these operators. Let us stress again that among a large

number of operators in these representations only the one with the lowest conformal di-

mension should be dual to the string solution we found. It is also interesting to point out

that one and the same formula (4.15) should be giving the conformal dimensions of the

operators from the two different ([0, J−J ′, 2J ′] or [J ′−J, 0, J ′ +J ]) representations. This

should be true not only in the large λ limit but also in the weak-coupling perturbation

theory.

As discussed in section 4.3, the simplest novel case for a non-trivial check of the

AdS/CFT duality in a non-supersymmetric sector is when the circular string orbiting in

S5 has maximal size, i.e. has J = 0, J ′ ≥ 1
2

√
λ . The exact expression for its classical

energy given in (2.27),(4.16) is E =
√

(2J ′)2 + λ. Provided the instability of this solution

could be ignored (e.g., by embedding it into a class of stable solutions with J 6= 0) for

large J ′ = J ′
√

λ
the expression for the energy E(J ′) gives the following prediction for the

strong-coupling behaviour of the anomalous dimension of the corresponding operator

O0,J ′,J ′ = tr[(ΦX)J ′
(ΦY )J ′

] + ... , (5.13)

∆ = 2J ′ +
λ

4J ′ + ... , J ′ ≫
√
λ ≫ 1 . (5.14)

As was already discussed in section 4.3, our conjecture is that this expression is actually

valid also at weak coupling, i.e. the first two terms in ∆ are not renormalized.

One can check this against the results of [21] applied to the operators transforming

in the [J ′, 0, J ′] representation for J ′ = 4 and J ′ = 5. At J ′ = 4 one finds that the lowest

anomalous dimension of the operators in [4, 0, 4] is γ = 0.0411λ while eq.(5.14) predicts the
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anomalous dimension to be γ = 0.0625λ, i.e. the deviation is about 34%.20 However, at

J ′ = 5 one gets the lowest anomalous dimension to be g = 0.042λ while eq.(5.14) predicts

γ = 0.05λ, i.e. the deviation in this case is just 16%. It would be useful to compute one-

loop anomalous dimensions of the [J ′, 0, J ′] operators for J ′ = 6 to see if the agreement

with eq.(5.14) is really getting better at large J ′.

Since it is sufficient to consider the operators with holomorphic dependence on the

fields ΦX and ΦY , the Hamiltonian of the integrable SO(6) spin chain considered in [10]

reduces to the Hamiltonian of the simplest XXX1/2 spin model [22]. It would be very

interesting to find the corresponding one-loop anomalous dimension and the explicit form

of the associated operator (5.13) in the large J ′ limit by utilizing this connection to the

XXX1/2 model.

6. Concluding remarks

There are various generalizations of the AdS5 and S5 solutions we have found. For

example, the special S5 solution considered in section 4.3 with maximal size of the string

(γ0 = π
2 ) is also a solution of string theory on Rt × S3:

ds2 = −dt2 + dψ2 + cos2 ψ dϕ2
2 + sin2 ψ dϕ2

3 ,

t = κτ , ψ = σ , ϕ2 = ϕ3 = wτ , κ2 = w2 + 1 . (6.1)

It is plausible, therefore, that it can be embedded into various other spaces containing S3

factors, in particular into AdS5 × T 1,1 space related via AdS/CFT to an N = 2 supercon-

formal theory [23].

Similarly, analogs of AdS5 two-spin solution of section 3 exist for a more general class

of 5-d (or higher-dimensional) metrics with SO(4) isometry, e.g., ds2 = −g(ρ)dt2 + dρ2 +

h(ρ)dΩ3. As in the AdS5 case, the two equal rotations in S3 allow one to stabilize a

circular string at a fixed value of ρ = ρ0 (stability under small fluctuations will depend

on the explicit form of g(ρ) and h(ρ) and on the value of the spin). In particular, such

solution will exist for an AdS black hole metric.21

20 Diagonalizing the matrix of anomalous dimensions from [9,10] one finds also an operator

with much closer value γ ≈ 0.0619λ, but comparison with the results of [9] shows that it belongs to

[2,4,2] representation. We are grateful to G. Arutyunov and J. Minahan for explanations related

to this point.
21 Single-spin solutions in this and similar “non-conformal” cases were discussed in [3,24].
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There are several directions in which the present work needs to be completed or

extended. In [8] we shall study the S5 solution with J 6= 0, J ′ 6= 0 in detail, identifying the

range of its stability, and computing the 1-loop superstring sigma model correction to the

classical energy. One should then be able to compare the string results (e.g., for J ∼ J ′)

to the perturbative results for anomalous dimensions of the corresponding gauge theory

operators. It would be very interesting also to compute the leading-order perturbative

contributions to the anomalous dimensions of the operators discussed in section 5. This

applies, in particular, to the operator (5.13) whose dimension should be possible to find

using the integrable-model connection suggested in [10].
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Appendix A. Stability analysis

Here we analyze the stability of the AdS5 and S5 two-spin solutions discussed above

under small perturbations.

A.1. Stability of the two-spin AdS5 solution

The equations of motion for fluctuations that follow from (3.29) are

¨̃ρ− ρ̃′′ − 2(2 + κ2)ρ̃− 2
√

2(1 + κ2)α̇ = 0 , (A.1)

α̈− α′′ − 2
√

2 + κ2β′ + 2
√

2(1 + κ2) ˙̃ρ = 0 , (A.2)

β̈ − β′′ + 4(1 + κ2)β + 2
√

2 + κ2α′ = 0 . (A.3)

To solve the system (A.1)–(A.3) of linear differential equations we expand the fluctuations

in Fourier series in σ

ρ̃ =
∑

n

ρn(τ)einσ , α =
∑

n

αn(τ)einσ , β =
∑

n

βn(τ)einσ . (A.4)

29



Then we get the following system of equations for the n-th modes of the fluctuations

ρ̈n + n2ρn − 2(2 + κ2)ρn − 2α̇n

√

2(1 + κ2) = 0 , (A.5)

α̈n + n2αn + 2ρ̇n

√

2(1 + κ2) − 2inβn

√

2 + κ2 = 0 , (A.6)

β̈n + n2βn + 4(1 + κ2)βn + 2inαn

√

2 + κ2 = 0 . (A.7)

We start the analysis of the system (A.5)-(A.7) by looking for solutions of the form

ρn(τ) = Cρ
neiωnτ , αn(τ) = Cα

n eiωnτ , βn(τ) = Cβ
neiωnτ . (A.8)

The stability of the two-spin string solution requires the frequencies ωn to be real. Substi-

tuting (A.8) into (A.5),(A.6),(A.7) we get

[n2 − 2(2 + κ2) − ω2
n]Cρ

n − 2iωn

√

2(1 + κ2)Cα
n = 0 , (A.9)

(n2 − ω2
n)Cα

n + 2iωn

√

2(1 + κ2)Cρ
n − 2in

√

2 + κ2Cβ
n = 0 , (A.10)

[n2 + 4(1 + κ2) − ω2
n]Cβ

n + 2in
√

2 + κ2Cα
n = 0 . (A.11)

This is a system of linear equations for the coefficients Cρ
n, C

α
n , C

β
n which can be written

in the form AijC
j = 0; it has nontrivial solutions only for such values of ωn for which the

determinant of the matrix Aij vanishes. This gives the equation for ωn:

fn(z) = 0 , z ≡ ω2
n ,

fn(z) ≡ z3−(8+10κ2+3n2)z2+(16+40κ2+24κ4+8κ2n2+3n4)z−n2(n2−4)(n2−4−2κ2) .

(A.12)

We need to find the values of κ such that all roots of this cubic equation are positive. It

is not difficult to show that the two extrema z− and z+ (z− < z+) of fn(z) are positive,

and fn(z−) > 0 and fn(z+) < 0. Therefore, all roots are positive if

fn(0) = −n2(n2 − 4)(n2 − 4 − 2κ2) ≤ 0 . (A.13)

We see that f0(0) = f2(0) = 0, f1(0) < 0 and f3(0) = −45(5 − 2κ2). From the expression

for f3(0) we conclude that the solution is stable only if

κ2 ≤ 5

2
. (A.14)
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We also see that for n = 0 and n = 2 the determinant of the matrix Aij in (A.12) vanishes

at ωn = 0. That means that for these modes there is a solution of the form

ρn(τ) = C̃ρ
nτ + Cρ

n , αn(τ) = C̃α
n τ + Cα

n , βn(τ) = C̃β
nτ + Cβ

n . (A.15)

Substituting (A.15) into the equations of motion (A.5), (A.6) and (A.7), one can easily

find the corresponding solutions for n = 0 and n = 2

ρ0(τ) = C
ρ
0 , α0(τ) = − 2 + κ2

√

2(1 + κ2)
C

ρ
0 τ + Cα

0 , β0(τ) = 0 , (A.16)

ρ2(τ) = C
ρ
2 , α2(τ) = − κ2

√

2(1 + κ2)
C

ρ
0 τ + Cα

2 , β2(τ) = − i√
2 + κ2

α2(τ) . (A.17)

Since the fluctuation ρ̃ corresponding to (A.16),(A.17) does not depend on τ , such solutions

do not lead to instability of the two-spin string solution. In fact, both solutions (A.16)

and (A.17) have simple interpretation. The n = 0 solution reflects the fact that the radius

ρ0 (or κ) of the two-spin string solution (3.12)–(3.16) is a free parameter. This parameter

can be changed, and this leads to the existence of the zero mode in the spectrum of

fluctuations. The n = 2 solution appears because the two-spin string solution was found

only for equal frequencies. We expect that the general solution will depend on the two

independent frequencies, and, therefore, on the two parameters; the existence of the zero

mode fluctuation with n = 2 is related to this (cf. (3.26)).

A.2. Stability of the two-spin S5 solution

The analysis of stability in the S5 case follows closely the procedure explained above

in the AdS5 case. Here we shall consider explicitly only the case of the solution with J = 0

and J ′ ≤ 1
2 discussed in section 4.3. The equations of motion for fluctuations that follow

from (4.26) are

¨̃γ − γ̃′′ − 2µ2γ̃ + 2µα̇ = 0 , (A.18)

α̈− α′′ − 2
√

2β′ − 2µ ˙̃γ = 0 , (A.19)

β̈ − β′′ + 4β + 2
√

2α′ = 0 . (A.20)

Expanding the fluctuations γ̃, α and β in Fourier series in σ, and then looking for solutions

in the form eiωnτ , we find the following equation for the frequency spectrum (µ2 ≡ 2−κ2)

fn(z) = 0 , z ≡ ω2
n ,

31



fn(z) ≡ z3 − (4 + 2µ2 + 3n2)z2 + (8µ2 + 3n4)z − n2(n2 − 4)(n2 − 2µ2) . (A.21)

Just as in the AdS5 case, the two extrema z− < z+ of fn(z) are positive, with fn(z−) > 0

and fn(z+) < 0. Therefore, all roots are positive if

fn(0) = −n2(n2 − 4)(n2 − 2µ2) ≤ 0 . (A.22)

Since µ2 ≤ 2, the solution is stable only if f1(0) = 3(1 − 2µ2) ≤ 0, i.e. if

1

2
≤ µ2 ≤ 2 .

Appendix B. Quadratic fermionic part of the superstring action

The quadratic part of the AdS5 ×S5 Green-Schwarz superstring action [25] expanded

near a particular bosonic string solution can be found as described, e.g., in [26,12] and

used in a similar context in [4]. Assuming the induced metric is flat, the relevant part of

the fermionic action is

LF = i(ηabδIJ − ǫabsIJ )θ̄I̺aDbθ
J , ̺a ≡ ΓAe

A
a , eA

a = EA
M∂aX

M , (B.1)

where I, J = 1, 2, sIJ =diag(1,-1), and ̺a are projections of the 10-d Dirac matrices.

Here XM are the string coordinates (given functions of τ and σ for a particular classical

solution) corresponding to the AdS5 (M = 0, 1, 2, 3, 4) and S5 (M = 5, 6, 7, 8, 9) factors.

The covariant derivative Da can be put into the following form

Daθ
I = (δIJDa − i

2
ǫIJΓ∗̺a)θJ , Γ∗ ≡ iΓ01234 , Γ2

∗ = 1 , (B.2)

where

Da = ∂a +
1

4
ωAB

a ΓAB , ωAB
a ≡ ∂aX

MωAB
M , (B.3)

and the “mass term” originates from the R-R 5-form coupling [25].
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B.1. AdS5 case

In the case of the AdS5 two-spin solution (4.18) the 2-d projections of Γ-matrices that

enter the fermionic action are (the indices A = 0, 1, 2, 3, 4 here will label the t, ρ, θ, φ, ϕ

directions in the tangent space):

̺0 = κ cosh ρ0 Γ0 + ω sinh ρ0Γ̃4 , ̺1 = sinh ρ0 Γ2 , ̺(a̺b) = sinh2 ρ0 ηab , (B.4)

Γ̃3 ≡ cosσ Γ3 − sinσ Γ4 , Γ̃4 ≡ cosσ Γ4 + sinσ Γ3 . (B.5)

The projected Lorentz connection ωAB
a = ∂aX

MωAB
M has the following components

ω01
0 = κ sinh ρ0 , ω31

0 = ω cosh ρ0 sinσ , ω41
0 = ω cosh ρ0 cosσ ,

ω32
0 = −ω cosσ , ω42

0 = ω sinσ , ω21
1 = cosh ρ0 . (B.6)

Then

D0 = ∂0+
1

2
(κ sinh ρ0Γ0+ω cosh ρ0Γ̃4)Γ1+

1

2
ωΓ2Γ̃3 , D1 = ∂1−

1

2
cosh ρ0 Γ1Γ2 . (B.7)

After the σ-dependent rotation of θI in the 34-plane, θI → ΨI = S−1θI , S = exp( 1
2σΓ3Γ4),

we find Γ̃3,4 → Γ3,4 in (B.4) and (B.7), at the expense of getting an additional constant

Γ3Γ4 term in D1. This eliminates the σ-dependence from the fermionic action. Note that

Γ∗ is invariant under this rotation.

To interpret the resulting fermionic action as a collection of massive 2-d fermions

with standard kinetic terms it is useful to make as in [4] a further “rotation” (Lorentz

boost) in the 04-plane, with S = exp( 1
2αΓ0Γ4), where coshα = κ cosh ρ0. Then we get

̺a = sinh ρ0 τa, τa = (Γ0,Γ2), τ(aτb) = ηab. There is the corresponding change in Da

while Γ∗ remains invariant. Fixing the kappa-symmetry gauge by Ψ1 = Ψ2 and rescaling

the fermions by sinh ρ0 we can interpret the resulting action

LF = 2i
(

Ψ̄τaDaΨ + iΨ̄MΨ
)

, (B.8)

M =
1

2
sinh ρ0 ǫ

abτaΓ∗τb = im
F
Γ134 , m

F
= sinh ρ0 =

1√
2
κ (B.9)

as describing a collection of 2-d massive Majorana fermions on a flat 2-d background cou-

pled to a constant non-abelian 2-d gauge field (represented by constant Lorentz connection

ωAB
a terms). Indeed, in the representation for ΓA where Γ0 and Γ2 are 2-d Dirac matrices

times a unit 8×8 matrix we get as in [4] 4+4 species of 2-d Majorana fermions with masses

±m
F
.

We will not go into a detailed analysis of this action here and just mention that, as

expected on the general grounds of conformal invariance of the AdS5×S5 string action [25],

the fermionic contribution to the divergent part of the 1-loop effective action (which is pro-

portional to the sum of mass-squared terms, i.e. 8× κ2

2 ) cancels the logarithmic divergence

coming from the bosonic fluctuation action (3.30) (connection terms in both the bosonic

and fermionic actions do not contribute to logarithmic divergences in 2 dimensions).
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B.2. S5 case

In the case of the S5 solution (4.6) we shall label the tangent space coordinates by

A = 0, 5, 6, 7, 8, 9 corresponding to the t direction of AdS5 and γ, ϕ1, ψ, ϕ2, ϕ3 directions

of S5. Then

̺0 = κΓ0 +ν cos γ0 Γ6 +w sin γ0 Γ̃8 , ̺1 = sin γ0 Γ7 , ̺(a̺b) = sin2 γ0 ηab , (B.10)

Γ̃8 ≡ cosσ Γ8 + sinσ Γ9 , Γ̃9 ≡ cosσ Γ9 − sinσ Γ8 . (B.11)

The projected Lorentz connection has the following non-zero components

ω65
0 = −ν sin γ0 , ω85

0 = w cos γ0 cosσ , ω95
0 = w cos γ0 sinσ ,

ω87
0 = −w sinσ , ω97

0 = w cosσ , ω75
1 = cos γ0 . (B.12)

As above, we first do local Lorentz rotation in the 89-plane to eliminate the σ-dependence;

as a result, Γ̃8,9 → Γ8,9. Then (for generic ν and γ0) we need to do two rotations – in the 68

and 06 planes – to put ̺0 into the form ̺0 = sin γ0 Γ0. After the rotation in the 68-plane

(under which Γ∗ in (B.2) is invariant) we get ̺0 = κΓ0+aΓ6, a
2 = ν2 cos2 γ0+w2 sin2 γ0 =

ν2 +sin2 γ0. Under the boost in the 06-plane S = exp( 1
2
βΓ0Γ6), where coshβ = κ

sinγ0

, the

expression for Γ∗ becomes

Γ′
∗ = S−1Γ∗S = i(cosh β Γ0 − sinh β Γ6)Γ1234 . (B.13)

Then fixing the kappa-symmetry gauge by Ψ1 = Ψ2 and rescaling the fermions by sin γ0

we finish with the same action as in (B.8) with τa = (Γ0,Γ7) and

M =
1

2
sin γ0 ǫ

abτaΓ′
∗τb = im

F
Γ07Γ12346 , m

F
= sin γ0 sinh β =

1√
2

√

κ2 + ν2 . (B.14)

The contribution to the divergences is then proportional to 8 × 1
2
(κ2 + ν2) = 4κ2 + 4ν2

which is indeed the same as coming from the bosonic sector (see also Appendix C).

The same result is found also in the special cases discussed in section 4.3. When ν = 0

(see (4.24)) we have ̺0 = κΓ0 + sin γ0 Γ̃8, ̺1 = sin γ0 Γ7 , sin γ0 = κ√
2
. Here we need a

boost in 08-plane with parameter cosh β =
√

2 to get ̺a = sin γ0 τa. Then m
F

is the same

as in (B.14). When γ0 = π
2 , w2 = κ2 − 1 (see (4.29))22 we get ̺0 = κΓ0 + wΓ̃8, ̺1 = Γ7

and thus the required 08-boost parameter has coshβ = κ. That gives

γ0 =
π

2
: M = im

F
Γ07Γ12348 , m

F
= sinh β =

√

κ2 − 1 . (B.15)

Note that the fermionic and bosonic masses are different, reflecting the absence of the 2-d

supersymmetry. The fermionic contribution to the logarithmic divergence is proportional

to 8 × (κ2 − 1) = 4κ2 + 4(κ2 − 2) which indeed cancels the contribution from the bosonic

fluctuations: 4 massive AdS5 fields (4.25) and 4 massive S5 fields in (4.31).

22 Note that for cos γ0 = 0 the connection (B.12) simplifies substantially.
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Appendix C. Bosonic fluctuation action in conformal gauge

In discussing fluctuation actions in the main part of the paper we used the static

gauge. Let us note for completeness that similar conclusions can be reached also if one

uses the conformal gauge (see, e.g., [12,4]). Let us recall that the general form of the

quadratic fluctuation action for a sigma model in the conformal gauge written in terms of

tangent-space fluctuations (XM → XM + ζM , ζA = EA
M (X)ζM) is

I
(2)
B = −1

2

∫

d2ξ
(√−ggabDaζ

ADbζ
B ηAB +MABz

AzB
)

, (C.1)

MAB = −√−ggabeC
a e

D
b RACBD , eA

a ≡ ∂aX
MEA

M (X) , gab = eA
a e

B
b ηAB , (C.2)

where Daζ
A = ∂aζ

A +ωAB
a (X)ζB with the same projected Lorentz connection as in (B.3).

For the AdS5 part the curvature is RACBD = −ηABηCD + ηADηCB while for the S5 part

it has the opposite sign, RACBD = δABδCD − δADδCB . If the induced metric is flat (as

in all examples discussed in the present paper), the divergent part of the 1-loop action is

determined simply by the trace of MAB and should be the same as found in the static

gauge, cf. [4].

Let list the expression for the mass matrix in (C.2) for the solutions discussed above

(the expressions for the corresponding connections can be found in Appendix B). In the

AdS5 case (4.18) one gets:

e00 = κ cosh ρ0, e21 = sinh ρ0, e20 = ω sinh ρ0 cosσ,

e30 = ω sinh ρ0 sinσ , gab = sinh2 ρ0 ηab ,

so that ηABM
AB = M2

AdS5
,

M2
AdS5

= 4ηabeC
a e

D
b ηCD = 4(κ2 cosh2 ρ0 + sinh2 ρ0 − ω2 sinh2 ρ0) = 4κ2 . (C.3)

This gives the same contribution to divergences as coming from the fermions (cf. (B.9)).

For the S5 solution (4.6) one has both the AdS5 and S5 fluctuations, and

e00 = κ, e60 = ν cos γ0, e71 = sin γ0,

e80 = w sin γ0 cosσ, e90 = w sin γ0 sinσ , gab = sin2 γ0 ηab ,

so that here

ηABM
AB = M2

AdS5
+M2

S5 , M2
AdS5

= 4ηabeC
a e

D
b ηCD = 4κ2 , (C.4)

M2
S5

= −4ηabeC
a e

D
b δCD = −4(sin2 γ0 − ν2 cos2 γ0 − w2 sin2 γ0) = 4ν2 . (C.5)

This is in agreement with the static gauge result (4.26) for ν = 0 and is the same as the

divergent contribution coming from the fermionic sector with mass matrix (B.14).

In the special case γ0 = π
2 , w2 = κ2 − 1 we get instead

M2
S5

= 4(κ2 − 2) , (C.6)

which is also in agreement with the static gauge result (4.31) and again cancels the diver-

gences coming from the fermionic sector (4.31).
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Appendix D. Dynkin labels and Young tableau labels of SU(4) irreps

In this Appendix we recall (see, e.g., [27]) how the Dynkin labels of representations

of the algebra so(6) or, equivalently, of su(4), are expressed in terms of the Young labels

(numbers of boxes in raws of a Young tableau). Recall that the generators J1 = J12, J2 =

J34, J3 = J56 form a basis of Cartan generators of so(6). The simple roots can be chosen

as

α
so(6)
1 = e1−e2 = {1,−1, 0} , α

so(6)
2 = e2−e3 = {0, 1,−1} , α

so(6)
3 = e2+e3 = {0, 1, 1} .

(D.1)

Since α
so(6)
2 · αso(6)

1 = α
so(6)
1 · αso(6)

3 = −1 and (α
so(6)
a )2 = 2 the root system is equivalent

to the su(4) root system with the following identification of the simple roots

α
su(4)
1 = α

so(6)
2 , α

su(4)
2 = α

so(6)
1 , α

su(4)
3 = α

so(6)
3 , (D.2)

i.e. the two algebras are isomorphic.

An irreducible representation of su(4) can be labelled by the eigenvalues of the Cartan

generators Ji on the highest weight vector:

Ji|j1, j2, j3〉 = ji|j1, j2, j3〉 , j1 ≥ j2 ≥ j3 ≥ 0 , (D.3)

where ji is the number of boxes in the i-th row of the Young tableau associated with the

representation which can then be denoted as (j1, j2, j3). The same representation can be

also labeled by the Dynkin labels da that are related to the Young labels ji as follows:

j =

3
∑

a=1

daλa , j ≡ {j1, j2, j3} , (D.4)

where λa are the fundamental weights defined by
2λa · αb

α2
b

= λa · αb = δab . (D.5)

By using (D.1) and (D.2), we can easily solve (D.5) to get

λ1 = {1

2
,
1

2
,−1

2
} , λ2 = {1, 0, 0} , λ3 = {1

2
,
1

2
,
1

2
} . (D.6)

Then from (D.4) and (D.6) we find

j1 =
1

2
(d1 + 2d2 + d3) , j2 =

1

2
(d1 + d3) , j3 =

1

2
(−d1 + d3) . (D.7)

Solving the system, we get the relation between the Dynkin labels and the Young labels

d1 = j2 − j3 , d2 = j1 − j2 , d3 = j2 + j3 . (D.8)

The Dynkin labels have to be non-negative. The representation associated with the Dynkin

labels di is denoted as [d1, d2, d3].

Coming back to the string solution (2.23), we see that if J ≥ J ′ then the representation

is (J, J ′, J ′) or [0, J−J ′, 2J ′]. If J ′ ≥ J the representation is (J ′, J ′, J) or [J ′−J, 0, J ′+J ].

Note that in the last case we also have to rearrange the Cartan generators in such an order

that j1 ≥ j2 ≥ j3 ≥ 0.
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