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On the SO(N) symmetry of the chiral
SU(N) Yang–Mills model
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Abstract

The posibility of quantizing the anomalous SU(N) Yang–Mills model preserv-
ing the symmetry under the orthogonal subgroup is indicated. The corresponding
Wess–Zumino action (1-cocycle) possesses the additional SO(N) symmetry and
can be expressed in terms of chiral fields taking values in the homogeneous space
SU(N)/SO(N). The modified anomaly and the constraints commutator (2-cocycle)
are calculated.
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‡L.P.T.H.E. Tour 16- 1er étage Université Pierre et Marie Curie 4, place Jussieu 75252 PARIS CEDEX

05 - FRANCE

1

http://arXiv.org/abs/hep-th/9212056v1


1 Introduction

It is known that chiral gauge models suffer from anomalies [1, 2, 3]. The calculation of the
anomalies was performed both in the framework of perturbation theory and by algebraic
and geometric methods [4, 5, 6, 7]. From algebraic point of view the anomaly corresponds
to infinitesimal 1-cocycle on a group G. The global 1-cocycle as was indicated by Faddeev
and Shatashvili [6, 7] is just the Wess–Zumino action [8], depending on the chiral fields
with values in the group G. The anomaly leads also to the appearence of an additional
term in the constraints commutator which is the infinitesimal 2-cocycle on the group G
[6, 7, 9]. It was argued that it may change the physical content of the theory.

The particular form of anomaly, the corresponding Wess–Zumino term and 2-cocycle
depend on the regularization used. Although the difference is a local term it may lead to
important physical consequences. In the two dimensional case it was shown by Jackiw and
Rajaraman [10] that different counterterms result in the different spectrum of the model.
In the anomalous case there is no regularization preserving the full gauge symmetry of
the theory and therefore a priori there is no unique choice of the particular form of
anomaly. However it seems natural to choose a form keeping as much of classical gauge
symmetries as possible. It is known that there exist some chiral gauge groups and the
fermion representations for which the anomalies compensate, for example the orthogonal
groups SO(N), N 6= 6. Presumably for such groups and representations one can construct
an invariant regularization explicitly preserving the gauge symmetry. In particular for the
spinor representations of the SO(N) groups such a regularization was proposed in ref.[11].

In the general case as we have already mentioned it is impossible to preserve the
full gauge symmetry but one can construct a regularization invariant with respect to
some nonanomalous subgroup. In this paper we shall consider the chiral SU(N) gauge
model with fermions in the fundamental representation. In this case one can maintain the
invariance under the orthogonal subgroup SO(N). The resulting anomaly and the Wess–
Zumino action differ from the ”standard” ones discussed in the papers mentioned above by
local terms. The Wess–Zumino action possesses the additional SO(N) invariance leading
to vanishing of the anomaly on the SO(N) subgroup. That means the Wess–Zumino
action depends in fact on the chiral fields taking values not in the group SU(N) as in
the usual case, but in the homogeneous space SU(N)/SO(N). Therefore the number of
degrees of freedom is reduced. Naturally the 2-cocycle is also changed and the constraints
commutator is anomaly free on the SO(N) subgroup.

The Wess–Zumino action over homogeneous spaces was considered in several publi-
cations (see for example [12, 13]). However the authors of these papers were interested
in the effective Nambu–Goldstone actions describing low energy QCD. In our case the
Wess–Zumino action over homogeneous spaces arises in the process of quantization of
chiral Yang–Mills model preserving a nonanomalous subgroup. We hope that it may be
of interest for analyzing the spectrum of anomalous models.

In the second section we give two expressions for the Wess–Zumino action. The first
one depends on the chiral fields with values in the group SU(N) and has the additional
SO(N) invariance. Then we introduce chiral fields on the homogeneous space and rewrite
the Wess–Zumino action in terms of these fields. Using this action we calculate anomaly.
In the third section we apply the method proposed in ref.[14] to get the expression for
the 2-cocycle, appearing in the anomalous constraints commutator.
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2 The SO(N) invariant Wess–Zumino action

We consider the model described by the Lagrangian

L = iψ̄γµ(∂µ + Aµ)ψ (1)

where Aµ is a SU(N) Yang–Mills field which in this section will be considered as an
external one, ψ ≡ 1

2
(1 + γ5)ψ is a chiral fermion in the fundamental representation. The

fundamental representation of the Lie algebra su(N) is generated by the antihermitian
matrices λa :

trλa λb = −
1

2
δab; [λa, λb] = fabc λc (2)

and Aµ = Aa
µ λ

a .
The gauge transformation looks as follows:

Aµ → Ag
µ = g−1Aµg + g−1∂µg

ψ → ψg = g−1 ψ, g ∈ SU(N) (3)

There is no SU(N) invariant regularization for this Lagrangian however one can write the
SO(N) invariant regularized Lagrangian of the form:

L = iψ̄γµ(∂µ + Aµ)ψ +
2K−1∑

r=1

[iψ̄rγ
µ(∂µ + Aµ)ψr −Mrψ

T
r Cψr −Mrψ̄rCψ̄

T
r ]

+i
2K∑

r=1

[(−1)rφ̄rγ
µ(∂µ + Aµ)φr −

2K∑

s=1

(Mrsφ
T
r Cφs −Mrsφ̄rCφ̄

T
s )] (4)

Here ψr are the anticommuting Pauli–Villars spinors and φr are the commuting ones.
Mrs is an antisymmetric matrix. The standard Pauli–Villars conditions are assumed.
The matrix C is the charge conjugation matrix. The only terms, which are not invariant
under the gauge transformation (3) of all fields, are the mass term for the Pauli–Villars
fields. The mass term transforms as follows

Mrψ̄rCψ̄
T
r → Mrψ̄rCgg

T ψ̄T
r . (5)

One sees that for g ∈ SO(N), ggT = 1 this mass term is invariant, and therefore the
regularization preserves the SO(N) gauge invariance.

The Wess–Zumino action αort
1 (A, g) is defined by usual formula

eiαort

1
(A,g) =

det(γµ(∂µ + Ag
µ))

det(γµ(∂µ + Aµ))
. (6)

Where it is understood that the determinant is calculated with the help of regularization
(4) and necessary counterterms are introduced. It follows directly from eq.(6) that the
Wess–Zumino action is a 1-cocycle and satisfies the condition:

αort
1 (A, g1) + αort

1 (Ag1 , g2) = αort
1 (A, g1g2) (mod 2π). (7)

Due to SO(N) gauge invariance of the regularized Lagrangian (4) the Wess–Zumino action
has the additional invariance

αort
1 (A, gh) = αort

1 (A, g), (8)
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where h ∈ SO(N).
Let us stress that in eq.(8) the field A is not transformed. Eq.(8) is a direct consequence

of the invariance of the gauge transformed mass term (5) under the transformation

g → gh, h ∈ SO(N). (9)

Eq.(8) expresses the hidden symmetry of the Wess–Zumino action in our case. Hidden
symmetries of this type in connection with models on homogeneous spaces were discussed
in refs.[17, 18, 13]. It follows from eqs.(7,8) that the Wess–Zumino action vanishes if the
chiral field g belongs to the orthogonal subgroup SO(N)

αort
1 (A, h) = 0, h ∈ SO(N) (10)

The geometric origin of the existence of such Wess–Zumino action is the triviality of the
cohomology group H5(SO(N)).

The Wess–Zumino action depends on the regularization scheme used. The difference
is a trivial local 1-cocycle. We can use this fact to calculate the Wess–Zumino action
corresponding to regularization (4) starting from the action given for example in the
paper [7]. The action we are interested in may be presented in the form:

αort
1 (A, g) = α1(A, g) + α0(A

g) − α0(A). (11)

Here α1(A, g) is the ”standard” Wess–Zumino action

α1(A, g) =
∫
d4x [d−1κ(g) −

i

48π2
ǫµνλσ tr [(Aµ∂νAλ + ∂µAνAλ + AµAνAλ)gσ −

−
1

2
AµgνAλgσ − Aµgνgλgσ]] (12)

and we use the notations
∫
d4xd−1κ(g) ≡ −

i

240π2

∫

M5

d5x ǫpqrst tr (gpgqgrgsgt) (13)

gµ = ∂µgg
−1. (14)

In eq.(13) the integration goes over a five-dimensional manifold whose boundary is the
usual four-dimensional space.

The functional α0(A
g) − α0(A) is a trivial local 1-cocycle which can be determined

from eq.(10). The explicit form of α1(A, g) (eq.(12)) dictates the following ansatz for
α0(A):

α0(A) = −
i

48π2

∫
d4x ǫµνλσ tr (a1AµAνAλA

T
σ + a2AµA

T
νAλA

T
σ +

+a3AµAνA
T
λA

T
σ + b1∂µAνAλA

T
σ + b2∂µAνA

T
λAσ + b3∂µAνA

T
λA

T
σ ) (15)

where AT
µ is a transposed matrix Aµ.

Let us stress that to satisfy eq.(10) it is necessary to introduce the terms depending
not only on Aµ but also on AT

µ . Eq.(10) determines uniquely the coefficients ai, bi. As a
result:

α0(A) = −
i

48π2

∫
d4x ǫµνλσ tr (AµAνAλA

T
σ −

1

4
AµA

T
νAλA

T
σ +

+∂µAνAλA
T
σ + Aµ∂νAλA

T
σ ) (16)
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Obviously one can add also any trivial local SO(N) invariant 1-cocycle. The correspond-
ing infinitesimal 1-cocycle (anomaly) is calculated in a standard way

∫
d4x ǫa(x)Aa

ort(A) = αort
1 (Ah, h−1g) − αort

1 (A, g) (17)

where h = 1 + ǫaλa.
It looks as follows

Aa
ort(A) =

i

48π2
ǫµνλσ tr [(λa + λa,T )(∂µ(Aν∂λAσ +

+∂νAλAσ + AνAλAσ − AνA
T
λAσ −

1

2
AT

ν ∂λAσ −
1

2
∂νAλA

T
σ ) −

−∂µAνAλA
T
σ −Aµ∂νAλA

T
σ − AT

µ∂νAλAσ −AT
µAν∂λAσ −

−AµAνAλA
T
σ +

1

2
AµA

T
νAλA

T
σ +

1

2
AT

µAνA
T
λAσ)] (18)

One sees that on the subgroup SO(N) (λa = −λa,T ) this anomaly vanishes. The Wess–
Zumino consistensy condition is obviously satisfied because our anomaly differs from the
standard one by the trivial 1-cocycle.

The additional SO(N) invariance of the Wess–Zumino action αort
1 (A, g) means that

it depends in fact not on all the elements of SU(N) but only on the elements of the
homogeneous space SU(N)/SO(N). One can introduce coordinates on this homogeneous
space and express the Wess–Zumino action in terms of these coordinates.

The natural coordinates are symmetric and unitary matrices

s = ggT (19)

This choice is suggested by the form of the mass term in the regularized Lagrangian (14).
As follows from eq.(5) after the gauge transformation it depends only on the combination
ggT . The gauge group transforms the coordinates s in the following manner

s→ g−1sg−1,T . (20)

In terms of these coordinates the Wess–Zumino action looks as follows:

αort
1 =

∫
d4x [

1

2
d−1κ(s) −

i

48π2
ǫµνλσ tr [(∂µAνAλ + Aµ∂νAλ + AµAνAλ −

−
1

2
∂µAνsA

T
λ s

−1 −
1

2
sAT

µs
−1∂νAλ −AµsA

T
ν s

−1Aλ)sσ −

−
1

2
AµsνAλsσ +

1

2
(sAT

µs
−1Aν − AµsA

T
ν s

−1)sλsσ − Aµsνsλsσ

+∂µAνAλsA
T
σ s

−1 + Aµ∂νAλsA
T
σ s

−1 + AµAνAλsA
T
σ s

−1 −

−
1

4
AµsA

T
ν s

−1AλsA
T
σ s

−1 − α0(A)]] (21)

where sµ = ∂µss
−1.

The derivation is straightforward but some comments are in order. Using the equality

gT
µ = s−1(sµ − gµ)s (22)
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we express gT
µ in terms of gµ and sµ and then comparing the terms of a given order in Aµ

and applying again eq.(22) we find the expression (21). This action may be used for the
construction of the symplectic form defining the integration messure in the path integral.
It is worthwhile to emphasize that contrary to the standard case the action (21) depends
not only on the chiral current ∂µss

−1, belonging to the Lie algebra of the group, but also
on the coordinates of the homogeneous space SU(N)/SO(N). It may be of importance
for analyzing possible stationary points of the effective action.

3 Anomalous constraints commutator

In this section we shall calculate the 2-cocycle associated to the Wess–Zumino action
(11). This 2-cocycle appears as the Schwinger term in the constraints commutator and
can be calculated either by direct summation of the Feynman diagrams [15, 16] or by using
the path integral representation for the commutator [14]. We use the second approach.
According to the Bjorken–Johnson–Low (BJL) formula the matrix element of the equal
time commutator may be expressed in terms of the expectation value of T -product as
follows:

lim
q0→∞

q0

∫
dt′ eiq0(t′−t)〈ϕ̃| TA(x, t′)B(y, t) |ϕ〉 = i〈ϕ̃| [A(x, t), B(y, t)] |ϕ〉 (23)

For the expectation value of T–product one can write the representation in terms of
the path integral

〈ϕ̃| TA(x, t′)B(y, t) |ϕ〉 =
∫
dµ eiSA(x, t′)B(y, t) (24)

Here it is understood that the integration goes over the fields satisfying the boundary
conditions corresponding to the initial and final states |ϕ〉 and 〈ϕ̃|. Following the approach
of [14] we can consider the chiral SU(N) Yang–Mills model in the Hamiltonian gauge
A0 = 0. In this gauge the S–matrix element can be written as the path integral

〈α|β〉 =
∫
dµ δ(A0)e

iS, (25)

where in the first order formalism

S =
∫
d4x [Ea

i Ȧ
a
i −

1

2
(Ea

i )2 −
1

4
(F a

ij)
2 + Aa

0G
a +

+iψ̄γ0∂0ψ − iψ̄γi(∂i − Ai)ψ] (26)

In the nonanomalous case the constraints Ga form a Lie algebra

[Ga(x), Gb(y)] = ifabcGc(y)δ(x− y) (27)

However as was shown in refs. [14, 15, 16] in the anomalous theory this relation is
violated and the Schwinger term arises.

To calculate this Schwinger term we make the gauge transformation of the variables
in the integral (25). The transformed integral may be written in the form

〈ϕ̃|ϕ〉 =
∫
dµ δ(A0)e

iS exp{−i
∫
d4x ga

0G
a(x) + iαort

1 (A, g) |A0=−g0
} (28)
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Here the 1-cocycle arises due to the noninvariance of the regularization in accordance with
eq.(6).

Using the representation for the chiral field g: g = eu and taking into account that
the integral (28) does not depend on g we can put equal to zero variation of this integral
over u. To the second order in u one has:

1

2

∫
d4xd4y 〈ϕ̃|TG̃a(x)G̃b(y)|ϕ〉∂0u

a(x)∂0u
b(y) +

+
i

2

∫
d4x fabcua(x)∂0u

b(y)〈ϕ̃|TG̃a(x)|ϕ〉 +

+
1

48π2

∫
d4x 〈ϕ̃| tr (ǫijk∂iAj{∂ku(x), ∂0u(x)})|ϕ〉 = 0. (29)

Here we introduced the notation

G̃a(x) = Ga(x) −
i

48π2
ǫijk tr [(λa + λa,T )(Ai∂jAk + ∂iAjAk + AiAjAk −AiA

T
j Ak)

−λa{∂iAj, A
T
k }] (30)

In the process of derivation of eqs.(29), (30) we used the explicit form of αort
1 (11), (16)

and made the shift of the variables Ea
i

Ea
i → Ea

i +
i

48π2
ǫijk trλa({Aj, gk} + g{Ag

j , A
T,g
k }g−1 − {Aj , A

T
k }) (31)

In eq.(29) we kept only the terms nonvanishing in the BJL limit.
To get the expression for the commutator of G̃ we apply to eq.(29) the operator:

lim
(p0−q0)→∞

p0 − q0
p0q0

∫
dx0dy0 eip0x0+iq0y0

δ

δua(x)

δ

δub(y)
(32)

Taking the limit we get the result

[G̃a(x), G̃b(y)] = ifabcG̃c(y)δ(x − y) −
1

24π2
ǫijk tr (∂iAj{λ

a, λb})∂x
kδ(x − y). (33)

Let us note that the commutator of G̃ (33) coincides with the analogous commutator
obtained in ref.[14] with the different Wess–Zumino action. However the definition of G̃
in our case is different. If one comes back to the constraints G one gets

[Ga(x), Gb(y)] = ifabcGc(y)δ(x− y) + aab
2,ort(A;x,y) (34)

Here aab
2,ort is the ultralocal 2-cocycle

aab
2,ort(A;x,y) = −

1

48π2
ǫijk tr ([λa + λa,T , λb + λb,T ] ×

×(Ai∂jAk + ∂iAjAk + AiAjAk −AiA
T
j Ak + AT

i ∂jAk + ∂iA
T
j Ak) +

+(λa + λa,T )(∂iAj − ∂iA
T
j − AiA

T
j − AT

i Aj)(λ
b + λb,T )Ak −

−(λb + λb,T )(∂iAj − ∂iA
T
j − AiA

T
j − AT

i Aj)(λ
a + λa,T )Ak) (35)

This cocycle obviosly differs from the one obtaned in ref.[14]–[16]. In particular it
vanishes if at least one of the constraints Ga corresponds to the subgroup SO(N). We
note that the adding to 1-cocycle any trivial 1-cocycle having topological nature does not
change the commutator of modified constraints G̃.
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4 Conclusion

In this paper we showed that the anomalous SU(N) gauge theory may be quantized in
such a way that the resulting effective action possesses the residual SO(N) symmetry.
This action is described in a natural way in terms of the coordinates of the homogeneous
space SU(N)/SO(N). An analogous construction may be carried out for other gauge
groups and representations having nonanomalous subgroups. A trivial local 1-cocycle in
this case can be calculated using the same equation α(A, h) = 0 where h is an element
of the nonanomalous subgroup. The next problem is to try to investigate the physical
content of this theory.

If one follows the approach of Faddeev and Shatashvili [9] to quantization of anomalous
theories one should add to the original classical action the Wess–Zumino term. In general
the physical content of the model depends on the particular form of modified Lagrangian.

The effective action we got and the constraints algebra differ from the ones obtained
by Faddeev and Shatashvili. It would be very interesting to investigate if the number of
physical degrees of freedom is the same or different in both cases. One possibility is that
the variables corresponding to the SO(N) subgroup in the Faddeev–Shatashvili action
are not dynamical and integrating them out one would get our action. If it is not the case
that means these two approaches lead to physically different models.

To analize the physical content of the theory one needs to develop the expansion of
the path integral near some stationary point. At present it is an open problem, because
in the four-dimensional case such a solution is not known, and in two dimensional models
this effect is absent.

Let us note that in our case the effective action depends not only on the chiral cur-
rents and in principle allows constant solution for coordinates of the homogeneous space
SU(N)/SO(N).
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