
ar
X

iv
:c

on
d-

m
at

/0
61

05
44

v2
  [

co
nd

-m
at

.s
tr

-e
l]

  1
9 

M
ar

 2
00

7
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We systematically derive an effective Hamiltonian for the dipolar magnet LiY1−xHoxF4, including
quantum corrections which arise from the transverse dipolar and hyperfine interactions. These
corrections are derived using a generalised Schrieffer-Wolff transformation to leading order in the
small parameters given by the ratio of the interaction energies to the energy of the first excited
electronic state of the Holmium ions. The resulting low-energy Hamiltonian involves two-level
systems, corresponding to the low-lying electronic states of the Holmiums, which are coupled to one
another and to the Holmium nuclei. It differs from that obtained by treating the electronic states
of the Holmium as a spin-1/2 with an anisotropic g-factor. It includes effective on-site transverse
fields, and both pairwise and three-body interactions among the dipoles and nuclei. We explain the
origins of the terms, and give numerical values for their strengths.

I. INTRODUCTION

The rare-earth compound LiY1−xHoxF4has often been
described as a model quantum magnet, and as such
has been studied for over three decades1,2,3,4,5,6. The
basic model for this material is a diluted Ising model
with dipole interactions, and depending on the dilu-
tion the low-temperature phase is expected to be ei-
ther a ferromagnet or a spin-glass7. Applying a strong
transverse field to the material introduces quantum
fluctuations which can lead to domain wall tunnelling
in the ferromagnet8, and to quantum melting of the
ferromagnet3 and the spin-glass9,10,11,12,13. Even in
the absence of an applied transverse field, however,
quantum tunnelling of magnetic dipoles can be ob-
served in LiY1−xHoxF4

4,14. Furthermore, samples with
a Holmium concentration of 4.5% do not appear to be-
have as a spin-glass on cooling, as expected for a clas-
sical Ising model. Instead they show unexplained “anti-
glass” properties which have been attributed to quan-
tum mechanics.5 This attribution is supported by the-
oretical predictions of the static susceptibility, which
agree with experiments only once quantum corrections
are included6.

Although quantum effects are implicated in several
phenomena in LiY1−xHoxF4in the absence of an applied
transverse field, there is no derivation in the literature
of an effective low-energy Hamiltonian which contains
them. Here we derive such a Hamiltonian, projecting
out the high-energy electronic states to obtain a theory
describing the low-lying electronic doublet and the nuclei.
We shall find a Hamiltonian which has a different form
from that appropriate in a strong applied field15, and
whose electronic part differs from the two-level model
previously proposed for the zero-field case6.

II. MODEL

The magnetic degrees of freedom in LiY1−xHoxF4are
the f electrons on the Ho3+ ions. The strong spin-orbit
coupling of the ions leads to a well-defined J = 8 for

the ions, and an associated dipole moment µ = gLµB,
with the Landé g-factor gL = 5/4. The 2J + 1 = 17-fold
degeneracy of the free ion is broken by the crystal-field
Hamiltonian, leaving a degenerate ground-state doublet.
All matrix elements of Jx and Jy are zero within this
ground-state subspace, but there are non-zero matrix el-
ements for Jz . This is the source of the strong Ising
anisotropy in the interactions and response to an applied
field.

The interactions between Holmium ions are dipolar,
giving an interaction Hamiltonian

Hint =
1

2

∑

i,j

µ0µ
2
Bg2

L

4πr3
ij

(Ji.Jj − 3(r̂ij .Ji)(r̂ij .Jj)). (1)

The crudest way to obtain a low-energy effective Hamil-
tonian from (1) is to truncate the electronic state-space
to the ground-state doublet on each Holmium ion. It is
possible to choose a basis for the doublet in which Jz has
no off-diagonal matrix elements, while the diagonal ma-
trix elements are α and −α. With this choice of basis,
truncating leads to the dipolar Ising model

Hint =
1

2

∑

i,j

α2µ0µ
2
Bg2

L

4πr3
ij

(1 − 3(r̂ij .k̂)2)σz
i σz

j , (2)

where σx, σy and σz are the usual Pauli matrices. As
discussed in previous studies of this system3,4,10,15 the
contact hyperfine interaction between the Holmium nu-
clei and the electronic degrees of freedom also plays an
important role, as it is typically of similar strength to
the dipolar interaction. Under the simple two-state trun-
cation scheme described above the hyperfine interaction
also takes a simple Ising form,

Hhyp =
∑

i

AJIi · Ji (3)

−→ α
∑

i

AJIz
i σz

i , (4)

as do other couplings to the Holmium moments.

http://arXiv.org/abs/cond-mat/0610544v2


2

The procedure of projecting into the low-energy sub-
space of the single-ion Hamiltonian has been applied in
the presence of an applied transverse field.15 The field
changes the low-energy states, leading to finite matrix
elements for Jx and Jy within the low-energy doublet.
This leads to corrections to the Ising forms (2,4) that are
pair interactions involving at least one of σx, σy, Ix, Iy,
and to effective field terms.

To obtain quantum terms in the absence of an applied
transverse field we must go beyond a simple projection
onto the low-lying single-ion states. We thus now con-
sider the lowest three levels of the crystal-field Hamil-
tonian, denoting the two states of the doublet as | ↑〉,
| ↓〉 and the first excited state, with energy ∆, as |Γ〉.
The parameters in such a three-level model are ∆ and
the matrix elements of the angular momentum operators,
and can be obtained from a numerical diagonalisation of
the full crystal field Hamiltonian. With an appropriate
choice of basis this gives,15

〈↑ |Jz| ↑〉 = −〈↓ |Jz| ↓〉 = 5.52 = α, (5)

〈↓ |Jx|Γ〉 = 〈↑ |Jx|Γ〉 = 2.4 = ρ, (6)

〈↓ |Jy|Γ〉 = −〈↑ |Jy|Γ〉 = iρ, (7)

∆ = 10.8K. (8)

All other matrix elements of angular momentum among
the three states vanish.

III. DERIVATION OF THE EFFECTIVE

HAMILTONIAN

Quantum corrections to the Ising Hamiltonian (2,4)
appear once one includes the state at |Γ〉 because
the interaction terms (1) and (3) couple |Γ〉 to the
electronic ground-state doublet. The typical nearest-
neighbour dipolar interaction energy scale is ≈ 300mK
and AJ ≈ 38mK4,15. Since these interaction scales are
small compared with ∆ the couplings to the |Γ〉 states
can be treated in perturbation theory, and an effective
Ising model obtained using the standard Schrieffer-Wolff
procedure16. The resulting model will include quan-
tum terms arising from virtual transitions between the
ground-state doublet and the |Γ〉 state.

To derive the effective Hamiltonian we begin by writing
the three-level model as H = H0 + HT , where H0 con-
tains terms which do not couple the doublet to |Γ〉, and
HT contains those which do. Measuring energy from the
electronic ground-state doublet, H0 contains the crystal
field term Vc = ∆

∑

i |Γi〉〈Γi| and the Ising parts of the
interactions, while HT contains the parts of the interac-
tions which involve Jx and Jy. Including the hyperfine
interaction the Hamiltonian can be spilt as

H0 = Vc +
1

2

∑

i6=j

Jzz
ij Jz

i Jz
j +

∑

i

AJIz
i Jz

i , (9)

HT =
1

2

∑′

i6=j
ν,µ

Jνµ
ij Jν

i Jµ
j + AJ

∑

i

(Ix
i Jx

i + Iy
i Jy

i ), (10)

where ν, µ = x, y, z, but the prime on the sum indicates
that we must exclude all terms that have ν = µ = z.

We then seek a unitary transformation H → eSHe−S

which decouples the electronic doublet from the |Γ〉 state
to first order in HT . Such a transformation obeys

[S, H0] = −HT . (11)

An S which approximately satisfies (11) can be con-
structed from HT using projection operators,

S =
∑′

i6=j
ν,µ

Jνµ
ij (Γν

i Γµ
j Jν

i Jµ
j PiPj − PiPjJ

ν
i Jµ

j Γν
i Γµ

j )

2ǫνµ∆

+
AJ

∆

∑

i

Γi(I
x
i Jx

i + Iy
i Jy

i )Pi

−
AJ

∆

∑

i

Pi(I
x
i Jx

i + Iy
i Jy

i )Γi, (12)

Pi = | ↑i〉〈↑i | + | ↓i〉〈↓i |, (13)

Γν
i =

{

|Γ〉〈Γ| if ν = x, y
Pi if ν = z

, (14)

ǫνµ =

{

2 if ν = µ
1 if ν 6= µ.

. (15)

The form (12) for S actually obeys the relation [S, Vc] =
−HT , and although we have successfully eliminated the
linear term in HT the remainder of the commutator
[S, H0−Vc] generates new couplings between the doublet
and |Γ〉. However these tunnelling terms are of order
(interaction)2/∆, and as they can only couple between
the ground states and |Γ〉, they can only contribute to
the effective low-energy Hamiltonian in higher order per-
turbation theory. Therefore they do not contribute to
the effective low-energy Hamiltonian to leading order in
(interaction)2/∆, and vanish when we project onto the
Ising basis at the end of the Schrieffer-Wolff procedure.

Having eliminated HT , the effective two-state Hamil-
tonian is given to lowest order in (interactions)2/∆ by16

Heff =
∏

i

Pi(H0 +
1

2
[S, HT ])

∏

i

Pi. (16)

This form extends the Ising interaction Hamiltonian by
including second-order processes in which HT causes vir-
tual transitions from the electronic doublet to |Γ〉 and
then back again.

IV. EFFECTIVE HAMILTONIAN

Substituting the form (12) for S into Eq. 16 and dis-
carding irrelevant energy shifts we find that the effective
Hamiltonian takes the form

Heff = H0 + HD + HDTB + HN + HND. (17)
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This Hamiltonian operates in the space with sixteen
states for each ion: two low-lying electronic states, each
with the eight nuclear states. The various contributions
to Heff are labelled according to the interactions that give
rise to them.

A. Dipolar processes

The first term in (17) arises from the second-order
dipolar processes that involve only single pairs of spins,
and is

HD =
∑

i

(hx
i σx

i + hj
iσ

y
i ) +

∑

i6=j

∆ν µ
ij σν

i σµ
j . (18)

We see that the pairwise dipolar interaction thus gener-
ates both transverse interaction terms and effective mag-
netic fields. In appendix A we give expressions for the
strengths of the parameters hi and ∆νµ in terms of the
parameters of the underlying three-level model. Using
these relations we estimate the characteristic magnitude
of these corrections by calculating the contribution from
a single nearest-neighbour. This yields hx ≈ 3mK, hy ≈ 0
and ∆νµ ≈ 0.06mK, which may be compared to the dipo-
lar Ising energy Jzz

NN ≈ 300mK, and the Ising hyperfine
splitting αAJ ≈ 210mK. Note that terms such as (18) de-
scribe tunnelling between the low-lying electronic states.
It is important to stress that this is not sufficient to gen-
erate tunnelling between the two electro-nuclear ground
states of H0

10.
In addition to the dipolar processes involving only a

single pair of Holmium ions there are processes involving
three ions. In such a process the interaction between one
pair of spins, say i, j, virtually excites the jth spin into
|Γ〉, and the dipolar interaction of this spin with the kth
spin brings the jth spin back into the Ising doublet. This
generates two- and three- body interaction terms in the
effective theory,

HDTB = −
α2ρ2

∆

∑

i6=j 6=k

(Jxz
ik Jxz

ij + Jyz
ik Jyz

ij )σz
kσz

j (19)

−
α2ρ2

∆

∑

i6=j 6=k

(Jxz
ik Jxz

ij − Jyz
ik Jyz

ij )σz
kσz

j σx
i (20)

−
α2ρ2

∆

∑

i6=j 6=k

(Jxz
ik Jyz

ij + Jyz
ik Jxz

ij )σz
kσz

j σy
i .(21)

For an isolated group of three spins in which {i, j} and
{i, k} are nearest neighbours we obtain 3 mK for the
magnitude of the interaction terms σz

kσz
j , σz

kσz
j σx

i and

σz
kσz

j σy
i .

B. Hyperfine processes

The contributions to the effective Hamiltonian from
the hyperfine interactions are simpler to deal with, as

they are confined to each site. They are

HN =
ρ2A2

J

∆

∑

i

(

(I2
i − (Iz

i )2) + ((I+
i )2 + (I−i )2)σx

i

)

−
ρ2A2

J

∆

∑

i

(

i((I+
i )2 − (I−i )2)σy

i − 2Iz
i σz

i

)

. (22)

We see that in second order perturbation theory the
hyperfine interaction leads to spin flipping terms which
require the z component of the nuclear spin to change
by two units, gives a slight correction to the longitudi-
nal hyperfine interaction, and introduces a weak nuclear
anisotropy. The factors outside the sum give 0.86mK for
the interaction energy.

C. Mixed hyperfine-dipolar processes

Finally, the term in the effective Hamiltonian labelled
HND arises due to second-order processes whereby the
electrons are virtually excited into the state |Γ〉 by the
dipolar interaction and then de-excited by the hyperfine
interaction or vice versa:

HND = −
αρ2AJ

∆

∑

i6=j

Jzx
ij (Ix

i (1 + σx
i ) + Iy

i σy
i )σz

j

−
αρ2AJ

∆

∑

i6=j

Jzy
ij (Iy

i (1 − σx
i ) + Ix

i σy
i )σz

j . (23)

Note that the nuclei mediate a coupling between elec-
tronic states of the form σx,yσz which does not occur in
HD.

V. DISCUSSION

In recent papers10,11,12,13 it was shown that the non-
Ising parts of the dipolar coupling provide a route by
which an applied transverse field can destroy spin-glass
order in LiY1−xHoxF4. Although our model contains
spontaneous transverse fields we do not expect them to
destroy the spin-glass phase in this way, because the
model retains time-reversal symmetry. An interesting
feature of the effective Hamiltonian is that the spon-
taneous transverse fields and the two- and three- body
interactions are all correlated. Theoretical work on spin
models with several forms of random couplings, such as
the random transverse-field Ising model17, generally con-
siders different interaction terms as independent.

The approach given here could be straightfor-
wardly extended to derive an effective Hamiltonian for
LiY1−xHoxF4in an applied transverse field, so long as the
field strength is sufficiently small for perturbation theory
to apply. This generates a variety of new processes at
second order. The straightforward process, in which the
applied field excites to the |Γ〉 state and back again, leads
to an electronic tunnelling term ∝ B2/∆. But note that
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there will also be mixed processes, for example where the
applied field causes the transition to |Γ〉 and the dipole
interaction causes the transition back into the electronic
doublet, which will generate electronic tunnelling terms
∝ B/∆.

We stress that although our Hamiltonian contains
terms which generate transitions between the states of
the electronic Ising doublet, and further such terms will
be introduced by an applied field, these terms alone do
not couple the doubly-degenerate electro-nuclear ground
states of the Ising single-ion Hamiltonian. To generate
quantum fluctuations between the electro-nuclear ground
states requires processes which flip the nuclear spin, and
hence the splittings of the electro-nuclear ground states
will be much smaller than the tunnelling terms connect-
ing the bare electronic states.

Although we do not expect the quantum corrections
to formally destroy the ordered phase unless there is
an applied field, they can still affect the thermodynam-
ics, changing the susceptibilities and moving the phase
boundary. However, we only expect this to occur at
very low temperatures. In this context we note that the
experimental susceptibility of LiY1−xHoxF4in the 10 –
100 mK temperature regime of the antiglass experiment
has been reproduced by a quantum theory of a two-level
model6. That model is obtained by neglecting the nu-
clei and treating the Holmium ions as spin-1/2 ions with
an anisotropic g-factor, i.e. writing Jµ

i = gµσµ
i , with

µ = x, y, z. We note that the resulting Hamiltonian
is very different from that which would be obtained by
neglecting the nuclei in our model: there are no spon-
taneous field terms and the non-Ising interactions de-
cay as 1/r3 (here 1/r6), while the quoted values for g
give the energy scale for the largest non-Ising coupling of
≈ 30mK, whereas here we have 3mK.

While we do not expect the small corrections derived
here to affect thermodynamics except at very low temper-
atures, they may be relevant to understanding dynam-
ics at much higher temperatures. Quantum tunnelling
of the magnetisation has been observed in the magneti-
sation relaxation and susceptibility of the dilute com-
pound LiY0.998Ho0.002F4, due to both single-ion4 and
two-ion processes14, and it would be interesting to com-
pare the details of these results with the processes given
here. An understanding of the single or few-ion electro-
nuclear dynamics, based on the Hamiltonian (17), may
also help to explain the antiglass experiments5. In the
high-temperature regime these experiments show a char-
acteristic relaxation time for the magnetisation which is
activated, with a barrier similar to the width of the hy-
perfine multiplet and the nearest-neighbour interaction
strength. Extrapolating this behaviour indicates that
this particular activated dynamics freezes out on the ex-
perimental frequency scale as the temperature is lowered
into the antiglass regime. The quantum terms derived
here, although small, may perhaps then provide a route
to the observed dynamics. The potential significance of
quantum electro-nuclear dynamics for the antiglass ex-

periment has been noted by Atsarkin18, who proposes a
specific relaxation mechanism due to interactions of the
form (18).

VI. CONCLUSIONS

In this paper we have motivated the need to go beyond
the simple dipolar electro-nuclear Ising Hamiltonian com-
monly used to describe LiY1−xHoxF4, and have derived
an effective low energy Hamiltonian which includes the
quantum corrections caused by the transverse elements
of the dipolar and hyperfine interactions. We have given
estimates for the typical magnitudes of these correction
terms and have shown that they are typically about one
percent as strong as the energy scale associated with the
Ising interactions. As a result, we do not expect any
qualitative changes to the Ising phase diagram, but as
we have highlighted in this paper, these quantum cor-
rections can describe a large variety of single and many-
body processes which might play significant roles in the
observed dynamics. Thus, for low temperatures, our ef-
fective Hamiltonian should serve as a good starting point
for a microscopic investigation of the dynamical physics
of LiY1−xHoxF4, and as it can be used across the whole
dilution series, should contain the rich low energy physics
which characterises the spin glass, free ion, and presum-
ably, the “antiglass” phases of this material.
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APPENDIX A: RELATION OF MICROSCOPIC

PARAMETERS TO THE EFFECTIVE

INTERACTION AND ON-SITE TERMS IN HD

The components of the effective magnetic field hi, de-
fined in Eq. 18, are related to the original microscopic
Hamiltonian by,

hx
i =

ρ2α2

∆

∑

j

((Jzy
ij )2 − (Jzx

ij )2)

+
ρ4

2∆

∑

j

((Jyy
ij )2 − (Jxx

ij )2), (A1)

hy
i = −2

ρ2α2

∆

∑

j

Jzy
ij Jzx

ij

−
ρ4

2∆

∑

j

Jxy
ij (Jxx

ij + Jyy
ij ) (A2)

hz
i = 0. (A3)
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The components of the effective magnetic field vanish
in the undiluted crystal, as expected from the crystal
symmetry.

The transverse dipolar interactions between spins are
described by the following couplings,

∆xx
ij =

ρ4
(

2(Jxy
ij )2 − (Jxx

ij )2 − (Jyy
ij )2

)

4∆
, (A4)

∆yy
ij =

−ρ4
(

Jxx
ij Jyy

ij + Jxy
ij Jxy

ij

)

2∆
, (A5)

∆zz
ij =

ρ4
(

Jxx
ij Jyy

ij − Jxy
ij Jxy

ij

)

2∆
, (A6)

∆xy
ij =

ρ4
(

Jyy
ij Jxy

ij − Jxx
ij Jxy

ij

)

2∆
, (A7)

∆yx
ij = ∆xy

ij . (A8)

These are the only couplings generated; there are no
terms such as σxσz , since these would break time-reversal
symmetry.
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