
A Testing Theory for a Higher-Order
Cryptographic Language?

(Extended Abstract)

Vasileios Koutavas and Matthew Hennessy

Trinity College Dublin
{Vasileios.Koutavas, Matthew.Hennessy}@scss.tcd.ie

Abstract. We study a higher-order concurrent language with crypto-
graphic primitives, for which we develop a sound and complete, first-
order testing theory for the preservation of safety properties. Our theory
is based on co-inductive set simulations over transitions in a first-order
Labelled Transition System. This keeps track of the knowledge of the ob-
server, and treats transmitted higher-order values in a symbolic manner,
thus obviating the quantification over functional contexts. Our charac-
terisation provides an attractive proof technique, and we illustrate its
usefulness in proofs of equivalence, including cases where bisimulation
theory does not apply.

1 Introduction

The verification of higher-order distributed systems that employ security proto-
cols is now more than ever relevant to software development. Extensions of the
π-calculus [18] with cryptographic primitives, such as the spi-calculus [3] and
the applied π-calculus [1], have provided an effective framework for modelling
security and authentication protocols of first-order systems [3, 1, 4, 8, 2, 5, 9, 6,
11, 10]. It is only natural that similar extensions to the higher-order π-calculus
(HOπ) [19] would be equally effective for modelling and verifying security and
authentication protocols of higher-order systems, such as distributed systems in
which code is communicated between principals over public channels [17, 25].

This paper is inspired by the work of Maffeis et al. [17], where the focus is
in the safety of higher-order authentication protocols. The authors use a higher-
order version of the spi-calculus, augmented with a combination of static and
dynamic typing that enables the use of untrusted code in the dynamic verification
of authentication policies. They call this “Code-Carrying Authorisation”.

Our goal is to develop behavioural theories for such a language, and in this pa-
per we make the first step by studying safety in the language HOspi, a version of
HOπ augmented with the symmetric cryptographic primitives of the spi-calculus
and an extremely simple type system. To the extent of our knowledge, this is
the first theory of safety for such a language.

? This research was supported by SFI project SFI 06 IN.1 1898.

2 V. Koutavas, M. Hennessy

Even in HOspi there are examples of systems that use Code-Carrying Au-
thorisation similar to those in [17]. Consider a rather simple part of a conference
server that expects the submission of a review for a particular paper by a par-
ticular reviewer Rev1 or any legitimate delegate reviewer:

Conf = inp subm(xsubm). decxsubm as {|(xr , fprf) |}sp
in νa. fork fprf ({|a |}srev1

). inp a(). outp ok(xr). 0

The paper has been associated by the server to key sp and the reviewer to key
srev1 . After receiving a possible submission on subm, the server verifies that the
sender had access to the paper by successfully decrypting the input message
with sp . The message contains the review (bound to xr) and a function (bound
to fprf) which can be used to prove that the review came from Rev1 or by a
delegate reviewer. To do this, the server generates a fresh channel a, encrypts it
with the key srev1 , and gives it as an argument to the function. The legitimacy
of the review is verified by an input on a, which can only be matched by an
output in the function bound to fprf , after it successfully decrypts its argument.

Reviewer Rev1 can submit a review by the following code:

Rev1 = outp subm({|r,Fprf 1
|}sp). 0

where Fprf 1
= λx. decx as {|z |}srev1

in outp z(). 0

Alternatively, Rev1 can delegate the review of the paper to Rev2 by giving to the
latter access to the paper (i.e. the key sp) and a function that can be used to
prove the delegation:

Rev′1 = outp deleg({|sp ,Fdel12 |}srev2
). 0

Fdel12 = λ(x, y). decx as {|z |}srev1
in outp y({|z |}srev2

). 0

When this function is applied to a challenge {|a |}srev1
bound to x and a contin-

uation channel bound to y, it sends the challenge {|a |}srev2
on y. Hence, Rev2

can submit a review using the following code:

Rev2 = inp deleg(xdeleg). decxdeleg as {|xp , fdel12 |}srev2

in outp subm({|r,Fprf 2
|}xp

). 0
Fprf 2

= λx. νb. fork fdel12(x, b). inp b(y). dec y as {|z |}srev2
in outp z(). 0

One would want to prove that the system where Rev1 submits a review is
equivalent to the system where the review is delegated to Rev2. This can be done
by proving that the system

Sys1 = νsp , srev1 , srev2 . (Conf | Rev1 | D)

is observationally equivalent to

Sys2 = νsp , srev1 , srev2 . (Conf | Rev′1 | Rev2)

where D generates dummy traffic on channel deleg .

A Testing Theory for a Higher-Order Cryptographic Language 3

It is important therefore to develop techniques for proving the equivalence
of higher-order concurrent systems with cryptographic primitives. These tech-
niques depend on the particular choice of semantic equivalence, ranging from
branching-time equivalences, such as reduction barbed congruence [25, 1, 4, 13]
and bisimulation equivalence [2], to linear-time equivalences, such as may-testing
equivalence [3, 4, 12] and must-testing equivalence [12]. We aim at developing
proof techniques that are adaptable to many semantic equivalences;1 here we
focus on safe equivalence, which is closely related to may-testing equivalence [7].

There are two main previous approaches that could potentially be used for
proving safe equivalence for HOspi. The first would be to adapt Sangiorgi’s well-
known translation from the HOπ with finite types into the standard π-calculus
[20], based on triggers, thereby in principle allowing first-order proof principles
to be applied to HOspi. However it is unclear how the translation could be
adapted to HOspi in a way that will be fully abstract and useful in proofs
of equivalence. The second approach would be to make use of environmental
bisimulations [23], which has been shown to provide a sound, complete and useful
proof technique for reduction barbed congruence in Applied HOπ, a higher-order
concurrent language with cryptographic primitives [25]. However, environmental
bisimulations do not provide a complete proof principle for linear-time semantic
equivalences, such as safe equivalence.

Here we pursue an alternative strategy similar to that of Jeffrey and Rathke
[14], developing a proof technique which works at the level of a Labelled Transi-
tion System (LTS) for HOspi. The success of LTS-based reasoning for first-order
calculi makes us confident that this approach is adaptable to semantic equiv-
alences other than safe equivalence, and to higher-order concurrent languages
with richer type-systems, as that by Maffeis et al. [17].

Configurations in our LTS record the interaction of the observer with the pro-
cess, as well as the knowledge of the observer at every step of this interaction.
This is similar in spirit to the environments used in environmental bisimulations
[23, 25] and in proof techniques for first-order cryptographic calculi [2, 4]. Our
LTS is first-order because it employs a symbolic treatment of higher-order val-
ues generated by the context, which obviates the need for quantification over
functional contexts. Our approach is informed by the translation to triggers but
avoids the complexities and incompleteness issues of a potential translation to
a first-order language. We believe this to be the first first-order semantics for a
higher-order language with cryptographic primitives.

We develop a sound and complete first-order co-inductive proof principle for
safe equivalence for HOspi processes in terms of novel set simulations. These are
essentially simulations over our first-order LTS between configurations and sets
of configurations.

The symbolic treatment of functions in the LTS is a sound approach for
HOspi because the language allows attackers to only apply functions or test
them for equality. A variation of the language and theory that can express more

1 For example semantic equivalences that can be used to prove security properties
such as safety and non-interference.

4 V. Koutavas, M. Hennessy

Syntax

x, y, f ∈ Var a, b, c, n, k, r ∈ Name u, v ∈ Var ∪ Name

T ::= Nm | Pr | T × T | Enc(T) Type

P,Q ::= 0 | outpu(V :T). P | inpu(x:T). P | (P | P) | νn. P | forkV (u). P Proc
| ifV =V thenP elseP | let f =λx. P inP
| matchV as (x, y) inP | decrV as {|x |}u inP elseP

U, V,W ::= x | n | (V, V) | λrx. P | {|V |}k Val

Reduction Semantics

outp c(V :T). P | inp c(x:T). Q → P | Q{V/x} (Rcomm)
decr {|V |}k as {|x |}k inP elseQ → P{V/x} (Rdec-S)
decr {|V |}l as {|x |}k inP elseQ → Q if k 6= l (Rdec-F)
match (V,U) as (x, y) inP → P{V/x, U/y} (Rmtch)
let f =λx. P inQ → νr.Q{λrx. P/f} if r 6∈ fn(P,Q) (Rlet)
fork (λrx. P)(n). Q → P{n/x} | Q (Rapp)
ifU =V thenP elseQ → P if `equal(U, V) (Rif-T)
ifU =V thenP elseQ → Q if 6 `equal(U, V) (Rif-F)
P1 | Q → P2 | Q if P1 → P2 (Rpar)
νa. P1 → νa. P2 if P1 → P2 (Rnu)
P1 → P2 if P1 ≡ P ′1 → P ′2 ≡ P2 (Rcng)

Fig. 1. Syntax and reduction semantics of HOspi.

sophisticated attackers, for example attackers that can learn the complete source-
level text of transmitted code, as in Applied HOπ [25], would also be possible,
but not first-order, and it would be closer to the theory of Sato and Sumii [25].

The language and reduction semantics are given in Section 2 while the LTS
of configurations is in Section 3. In Section 5 we explain set simulations and state
their soundness and completeness. We illustrate the usefulness of set simulations
in Section 6, by giving coinductive proofs relating higher-order systems, such as
those discussed above. The paper concludes with discussion of related and future
work in Section 7.

2 Semantics of HOspi

We study the language HOspi, a higher-order concurrent calculus with primitives
for symmetric-key cryptography, similar to those of the spi-calculus [3]. Public-
key cryptography can be added to the language without any significant change to
the semantics and the theory of the following sections. The syntax and reduction
semantics of HOspi are shown in Figure 1. We employ the standard π-calculus
abbreviations; (≡) is the standard π-calculus structural equivalence.

We use a lightweight dynamic type system for HOspi which helps stream-
line the presentation of our theory. Closed values in HOspi, ranged over by V
and U , are either names of type Nm, process abstractions (λrx. P) of type Pr,

A Testing Theory for a Higher-Order Cryptographic Language 5

pairs of type T × T ′, and messages encrypted with a name ({|V |}k) of type
Enc(T). Abstractions, for simplicity, can be applied to names with the construct
fork (λrx. P)(n). Q and fork the body P as a new process in parallel with the
continuation Q (Rapp). We write fork (λrx. P)(n) when the continuation is 0.

Communication happens by synchronisation of an output (outp c(V :T). P)
and an input (inp c(x:T). Q) over a common channel c (Rcomm). The dynamic
type system guarantees that communication happens only when the transmitted
and the expected value have the same type. Restriction (νn. P) encodes privacy
of information, such as keys, which can be extruded by communication.

In a cryptographic calculus it is important for processes or attackers to be
able to detect the retransmission of messages. This creates the requirement for an
equality semantics defined at any type, including function type (Rif-T, Rif-F).
We use an equality semantics, denoted by equal and present in languages like
Scheme, which identifies only functional values representing the same object,
identical names, and pairs and encrypted packages with equal components. Ob-
ject identity for functional values is possible by requiring each such value to be
generated by the construct let f =λx. P inQ, which annotates the value with
a fresh name r (Rlet). Equality at function type is thus reduced to equality
of names. Such an equality construct is convenient for a symbolic treatment of
functions in the following sections. We call a closed process with no functional
values source-level ; the reduction semantics of Figure 1 are defined only for
processes derivable by a source-level process, which guarantees that functional
values annotated with the same name were generated by a single let statement.

The remaining reduction rules are rather standard and deal with decryption
of messages (Rdec-S, Rdec-F), the deconstruction of pairs (Rmtch), and π-
calculus processes (Rpar, Rnu, Rcng). We omit the else branch of decryption
if it is 0.

A safety property can be formulated as a safety test Tω; a process which
reports bad behaviour on a special channel ω. Let us write R ↓ω whenever R ≡
νñ. outpω(V :T). R1 | R2, and ω 6∈ {ñ}.

Definition 2.1 (Passing Safety Tests). A process P passes a safety test Tω,
written P cannot Tω, when P | Tω →∗ R implies R ��↓ω.

Definition 2.2 (Safety Preservation). Two source-level processes P and Q
are related by P @∼safe Q when for all source-level tests Tω, P cannot Tω implies
Q cannot Tω. We use P 'safe Q to denote the associated equivalence.

The reader familiar with [7] will recognise this safe-preorder as the inverse of
the well-known may-testing preorder. An important property of (@∼safe), as with
other contextual equivalences, is that it enables compositional reasoning.

Proposition 2.3 (Compositional Reasoning). If P @∼safe Q then P | R @∼safe
Q | R and νn. P @∼safe νn.Q.

6 V. Koutavas, M. Hennessy

3 First-Order Semantics

We describe the interaction between a process and an observer by transitions in
an LTS. The LTS uses configurations that record the values transmitted from
the process to the observer and vice versa, the knowledge of the observer, and
the private knowledge of the process. The LTS is first-order : only the names
that annotate abstractions are exchanged between the process and the observer,
not the abstractions themselves. Below we explain the details of configurations
and transitions in this LTS.

3.1 Configurations

An LTS configuration describes the state of a process interrogated by an observer
and takes the form 〈H ‖K ‖ I〉B P where

– K is the current knowledge of the observer, a finite set of names
– I is the current private knowledge of the process, the set of names known to

the process P but not the observer
– H is the history of the interaction between the observer and the process, in

which the messages exchanged are accessible via indices
– P is an extended process, which may contain pointers to values in the history.

The interrogation of the process by the observer proceeds by the exchange of
messages between them, each message being recorded in H, and available for
use in future interactions. We first explain how these interactions take place,
and how they are recorded.

Example 3.1. First we consider the configuration

〈H0 ‖K ‖ s, r〉B outp c({|λrx. P0 |}s). P1

where the key s (and the annotation r) are private to the configuration. Suppose
the channel name c is known to the observer; that is c ∈ K. Then the process
can output the encrypted message on c, resulting in the configuration

〈H1 ‖K ‖ s, r〉B P1

where H1 = H0, κ7→{|λrx. P0 |}s. The history is extended with a new entry,
indexed by the fresh κ, which records the message received, {|λrx. P0 |}s; these
indices κ of messages received from the process are taken from a distinct set of
output abstract names (OAName) The observer now has access to this message
via the index κ, but not to the contents since the key s is private to the process.

If P1 = outp c(s). P2, it can send the key s to the observer and end up in the
configuration

〈H1 ‖K, s ‖ r〉B P2

Here the history has not changed since it is only necessary to record the non-
base values used in the interactions. But the knowledge of the observer has been

A Testing Theory for a Higher-Order Cryptographic Language 7

extended with the key s. Now using this key the observer has access to the
abstraction and may apply it to a name or use it in a message sent back to
the process. However in the latter case, in order to maintain a clear interface
between the observer and process, the abstraction itself is not used. For example
if P2 = inp c(x). P3, the above configuration can transition to

〈H2 ‖K, s ‖ r〉B P3{ι/x}

where H2 is the history H1, (ι 7→{|κ.decrs |}l), ι is a fresh index taken from a
separate set of input abstract names (IAName) used for recording the messages
sent from the observer to the process, and l is any key in the observers knowledge
(K, s). But note that the process actually only receives the input index ι, and in
the history the observer pattern κ.decrs represents the actual abstraction λrx. P0

previously received from the process. ut

Thus, in a configuration the history H records the non-base messages exchanged,
using κ ∈ OAName for those sent by the process, and ι ∈ IAName for those
received by the process. We use the following metavariables to range over these
sets.

ι ∈ IAName α ∈ AName = IAName ∪ OAName
κ ∈ OAName ζ ∈ AName ∪ Name

Moreover, as we have seen in the previous example, observers can access
data bound to output names in the history using observer patterns in order to
further interrogate the process. As we will see, the process can dually access
data bound to input names in the history using process patterns. The structure
of these patterns is:

φ ::= ι | φ.op ProcPattern
ψ ::= κ | ψ.op ObsPattern

op ::= 1 | 2 | decrs Op
π ∈ Pattern = ProcPattern ∪ ObsPattern

The process (observer) pattern ι (resp. κ) refers to the value in the history that
is bound to that name; π.i refers to the ith projection of the value referred to by
π, and π.decrs refers to the contents of a message encrypted with s and referred
to by π.2 Therefore we extend the syntax for values (AVal) and processes (AProc)
to contain such patterns (U ,V ::= . . . | π AVal).

The meta-function fan(P) gives the abstract names in P, and T (α) gives the
type of the abstract name α. Patterns are typed by the following rules.

`α : T (α)
`π : T1 × T2

`π.i : Ti

`π : Enc(T)
`π.decrs : T

The observer may use its accumulating knowledge K, together with the ab-
stract values received from the process, occurring in the history H, to further
the interrogation of the process. However, unlike [21, 23, 25], in order to keep

2 The use of s in the pattern π.decrs is only for quantifying over possible patterns,
given a set of known keys.

8 V. Koutavas, M. Hennessy

the LTS first-order we severely restrict the ability of the observer to construct
higher-order values. The soundness of our technique in Section 5 shows that this
restriction does not compromise the possible observations made in the LTS.

Example 3.2. Consider the following configuration

〈H0 ‖K ‖ ·〉B inp c(x). inp c(y). decx as {|z |}y in fork z(n)

where c ∈ K. The process is expecting an encrypted function on the channel c. In
our LTS the observer can only supply a symbolic representation of an abstrac-
tion, denoted ♦r, informally representing an arbitrary but unknown function
annotated with the name r. So after the first input we get the configuration

〈H1 ‖K, s, r ‖ ·〉B inp c(y). dec ι1 as {|z |}y in fork z(n)

where H1 = H0, (ι1 7→{|♦r |}s). The key s and annotation r are freshly generated
by the observer and are added to the knowledge.

After the key s is passed to the process by the next input we get

〈H1 ‖K, s, r ‖ ·〉B dec ι1 as {|z |}s in fork z(n)

The process can now use the key s to decrypt the message indexed by ι1. How-
ever, in order to keep the process independent of the actual observer interrogat-
ing it (i.e. avoid the propagation of observer-generated non-base values in the
process), our operational semantics will ensure that the successful decryption of
pattern ι1 will actually generate the process pattern ι1.decrs, and we obtain the
configuration

〈H1 ‖K, s, r ‖ ·〉B fork (ι1.decrs)(n)

The pattern ι1.decrs gives to the process access to the “function” ♦r in the
history H1. However, since this is purely symbolic its application to n cannot
lead to any real computation; as we will see, this symbolic application is recorded
by the LTS. ut

Well-formed histories map abstract names to values of the same type. More-
over, indexed input values contain only observer patterns and indexed output
values contain only process patterns, and all references to abstract names are to
the left of each binding.

if (ι 7→V) ∈ H then fan(V) ⊂ OAName
if (κ7→V) ∈ H then fan(V) ⊂ IAName
if H,α 7→V, H ′ then fan(V) ⊆ dom(H)

Given a well-formed historyH and a pattern π we define the partial dereferencing
operation HK(V), relative to the knowledge K:

HK(V) = V if V 6∈ Pattern
HK(α) = V if (α 7→V ′) ∈ H and HK(V ′) = V
HK(π.decrs) = V if HK(π) = {|V ′ |}s, HK(V ′) = V, and s ∈ K
HK(π.i) = HK(Vi) if HK(π) = (V ′1,V ′2) and HK(V ′i) = Vi

A Testing Theory for a Higher-Order Cryptographic Language 9

We write H(V) when only the first two rules are used and H∗(V) when the
knowledge contains all names.

The closure of the observers knowledge K under decryption of messages in
the history H is given by the construction K?

H .

Definition 3.3 (Knowledge closure). n∈K?
H if n∈K or ∃ψ.H(K?

H)(ψ) =n.

In the rest of this paper will only consider well-formed configurations, and
we will use C to range over them.

Definition 3.4. 〈H ‖K ‖ I〉B P is well-formed when:

– H is well-formed, and K is closed (K?
H ⊆ K)

– Observer values use only K: ∀(ι 7→V) ∈ H. fn(V) ⊆ K.
– Private and global names are distinct: K ∩ I = ∅.
– Closed: fv(codom(H),P) = ∅, fn(codom(H),P) ⊆ K ∪ I, and

fan(codom(H), P) ⊆ dom(H).
– Well-annotated: if λrx.P is in the configuration then r ∈ I; if λrx.P ′ is also

in the configuration then P = P ′; if ♦r in the codomain of H then r ∈ K.

3.2 Transitions

Our LTS defines labelled transitions between the configurations, briefly discussed
informally in the examples of the previous section. The main transitions of the
LTS are shown in Figure 2, subject to the well-formedness conditions for config-
urations.

Rule Tout describes an output on channel c, labelled by c!ζ. The channel
name c must be in the knowledge of the observer and the effect of the action on
the configuration is calculated using the auxiliary relation outp(V : T):

(n, ·, {n}) ∈ outp(n : Nm) (κ, (κ7→V), ∅) ∈ outp(V : T) if T 6= Nm

Thus, if the output value V is a name it is added directly to the observers
knowledge; otherwise it is added to the history H via a new index. In both cases
the output transition may allow the observer to discover previously private names
known only to the process, by decrypting the current and previous messages.
This knowledge extension of the observer is taken into account by the closure of
the environment’s knowledge ()?H .

Rule Tin describes an input transition, labelled by c?ζ; as for the output
rule, the channel name c must be in the knowledge of the observer. The input
value of type T is provided by the set inpH,K,I(T) as a tuple of an abstract or
actual name ζ, a history extension H ′, and a knowledge extension K ′:

(n, ·, {n}) ∈ inpH,K,I(Nm) if n 6∈ I
(ι, (ι 7→♦r), {r}) ∈ inpH,K,I(Pr)

(ι, (ι 7→(H1(ζ1), H2(ζ2))), (K1,K2))
∈ inpH,K,I(T1 × T2) if (ζi, Hi,Ki)∈ inpH,K,I(Ti)

(ι, (ι 7→{|H1(ζ) |}s), (K1,K2))∈ inpH,K,I(Enc(T)) if (ζ,H1,K1)∈ inpH,K,I(T)
and (s, ·,K2)∈ inpH,K,I(Nm)

(ι, (ι 7→ψ), ∅) ∈ inpH,K,I(T) if `HK(ψ) : T 6= Nm

10 V. Koutavas, M. Hennessy

(ζ,H ′,K′) ∈ inpH,K,I(T) c ∈ K

〈H ‖K ‖ I〉B inp c(x:T).P c?ζ−−→ 〈H,H ′ ‖K,K′ ‖ I〉B P{ζ/x}
Tin

(ζ,H ′,K′) ∈ outp(V:T) I ′ = I\(K,K′)
?

H,H′ c ∈ K

〈H ‖K ‖ I〉B outp c(V:T).P c!ζ−−→ 〈H,H ′ ‖ (K,K′)
?

H,H′ ‖ I ′〉B P
Tout

〈H ‖K, I ‖ ·〉B P c!ζ−−→ 〈H,H ′ ‖K′ ‖ ·〉B P ′

〈H ‖K, I ‖ ·〉BQ
c?ζfr−−−→ 〈H ′′ ‖K′′ ‖ ·〉BQ′ ζfr 6∈ fan(Q)

〈H ‖K ‖ I〉B P | Q τ−→ 〈H ‖K ‖ I〉B P ′ | Q′{H ′(ζ)/ζfr}
Tcomm

HK(ψ) = λrx.Q

〈H ‖K ‖ I〉B P app(ψ,r,n)−−−−−−→ 〈H ‖K ‖ I〉B P | Q{n/x}
Tapp-Obs

HK∪I(φ) = ♦r I ′ = I\(K,n)?H

〈H ‖K ‖ I〉B forkφ(n).P sig(r,n)−−−−−→ 〈H ‖ (K,n)?H ‖ I
′〉B P

Tapp-♦

HK∪I(V) = λrx.P
〈H ‖K ‖ I〉B forkV(n). Q

τ−→ 〈H ‖K ‖ I〉B P{n/x} | Q
Tapp-λ

Fig. 2. Main LTS rules (omitting symmetric rules).

At type Nm, the input value is a name disjoint from the private names of
the process I that can be either in K or fresh. At type Pr, the input can be the
symbol ♦r and r is added in the knowledge K. The cases for T1×T2 and Enc(T)
proceed by induction on the type, returning a singleton history extension and
the union of the knowledge extension. At any non-base type, an output pattern
can be used to reference a value that was previously sent to the observer.

Communication is achieved by rule Tcomm. Here, one of the processes inputs
a fresh (actual or abstract) name, which is replaced by the value output by the
other and may be indexed in the history. This is a τ -transition in which the
observer does not participate; therefore the history H and knowledge K remain
unchanged.

At any point in time the observer may choose to apply to a name n one of the
abstractions reachable by an observer pattern ψ using keys from the knowledge
K (Tapp-Obs). Intuitively this means that the abstraction in question λrx.Q
was previously sent by the process to the observer, perhaps as the contents of an
encrypted message, but which can be now decrypted with the current knowledge
K. The resulting transition, labelled app(ψ, r, n), causes the application to run
in parallel with the observed process.

Tapp-♦ encodes the situation where the process applies an unknown abstrac-
tion that was created by the observer; such abstractions are only reachable by the
process via a process pattern φ that uses keys from K ∪ I. The effect of this rule
is merely a signal sig(r, n) to the observer containing the annotation of the ab-

A Testing Theory for a Higher-Order Cryptographic Language 11

Tdecr-S
H ` V.decrs V ′

〈H ‖K ‖ I〉B decrV as {|x |}s inP elseQ
τ−→ 〈H ‖K ‖ I〉B P{V ′/x}

Tdecr-F
HK∪I(V) = {|V ′ |}l s 6= l

〈H ‖K ‖ I〉B decrV as {|x |}s inP elseQ
τ−→ 〈H ‖K ‖ I〉BQ

Tcond-T
H ` equal(V1,V2)

〈H ‖K ‖ I〉B ifV1 =V2 thenP elseQ
τ−→ 〈H ‖K ‖ I〉B P

Tcond-F
H ` ¬equal(V1,V2)

〈H ‖K ‖ I〉B ifV1 =V2 thenP elseQ
τ−→ 〈H ‖K ‖ I〉BQ

Tmatch
H ` V.1 V1 H ` V.2 V2

〈H ‖K ‖ I〉B matchV as (x1, x2) inP
τ−→ 〈H ‖K ‖ I〉B P{V1/x1,V2/x2}

Tdef-λ
r 6∈ I ∪K

〈H ‖K ‖ I〉B letx=λy.P inQ
τ−→ 〈H ‖K ‖ I, r〉BQ{λry.P/x}

Tpar-L
〈H ‖K ‖ I〉B P µ−→ 〈H ′ ‖K′ ‖ I ′〉B P ′

〈H ‖K ‖ I〉B P | Q
µ−→ 〈H ′ ‖K′ ‖ I ′〉B P ′ | Q

Tnu
a 6∈ I ∪K

〈H ‖K ‖ I〉B νa.P τ−→ 〈H ‖K ‖ I, a〉B P

Fig. 3. More LTS rules (omitting symmetric rules).

straction that was applied and the argument given. The resulting process is just
the continuation of the application. As we will see, this transition is sufficient to
reason about applications of input values and can be seen as a form of trigger se-
mantics [19, 20, 14]. The process can also apply a process-generated abstraction,
which is a τ -step in the LTS (Tapp-λ) since the application is unobservable.

The rest of the LTS rules are shown in Figure 3 and encode silent transitions
and a congruence rule for parallel composition (Tpar-L). Rules Tdecr-S and
Tdecr-F reduce a successful and an unsuccessful decryption using the following
evaluation predicate:

H,K ` {|V |}s.decrs V
H,K ` (V1,V2).i Vi
H,K ` φ.op φ.op if HK(φ.op) = V 6= n
H,K ` φ.op n if HK(φ.op) = n

The important point in the rule Tdecr-S is that if the encrypted message V is
a process pattern, that refers to some data in the history H, then the successful
decryption returns not the actual contents of the message but rather another
process pattern with which the contents can be extracted from the history.

Rule Tmatch reduces the decomposition of a pair using the same evalua-
tion predicate, while rules Tcond-T and Tcond-F reduce conditionals using a

12 V. Koutavas, M. Hennessy

standard equality predicate that dereferences all patterns:

H ` equal(n, n)
H ` equal(♦r,♦r)
H ` equal(λrx.P, λrx.Q)
H ` equal({|V |}s, {|V ′ |}s) if H ` equal(V,V ′)
H ` equal((V1,V2), (V ′1,V ′2)) if H ` equal(V1,V ′1) and H ` equal(V2,V ′2)
H ` equal(π,V ′) if H ` equal(H∗(π),V ′)
H ` equal(V, π) if H ` equal(V, H∗(π))

Bound names in the process are promoted to actual names at the level of the
configuration by a τ -move (Tnu) that simplifies the handling of extrusion.

We write
µ
=⇒ to mean the reflexive, transitive closure of τ−→, if µ = τ , and

τ=⇒ µ−→ τ=⇒ otherwise. We call t=⇒ a weak trace of C if it is a sequence of non-τ
actions t = µ1 . . . µn and for some C′, C τ=⇒ µ1−→ τ=⇒ . . .

τ=⇒ µn−−→ τ=⇒ C′.
The following propositions show that silent transitions do not change the

history and knowledge of a configuration, weakly correspond to reduction steps
of HOspi, and are invariant to transfer of knowledge between the process and
the environment.

Proposition 3.5. If 〈H1 ‖K1 ‖ I1〉B P
τ−→ 〈H2 ‖K2 ‖ I2〉BQ′ then H1 = H2

and K1 = K2.

Proposition 3.6. If P → Q then there exist ã, c̃, Q′, such that fn(P) ⊆ c̃,
Q ≡ νã.Q′ and 〈· ‖ c̃ ‖ ·〉B P τ−→∗ 〈· ‖ c̃ ‖ ã〉BQ′.

Proposition 3.7. If 〈· ‖ c̃ ‖ ã〉B P τ−→ 〈· ‖ c̃ ‖ b̃〉BQ then νã. P →∗ νb̃. Q.

Proposition 3.8 (Knowledge Transfer).

〈H1 ‖K1 ‖ I1, b〉B P
τ−→ 〈H2 ‖K2 ‖ I2, b〉BQ iff

〈H1 ‖K1, b ‖ I1〉B P
τ−→ 〈H2 ‖K2, b ‖ I2〉BQ

Finally, private names can be renamed to fresh names without affecting the
transitions of the configuration.

Lemma 3.9. If 〈H ‖K ‖ I, a〉BP µ−→ 〈H ′ ‖K ′ ‖ I ′, a〉BQ and b 6∈ I ′ ∪K ′ then

〈H{b/a} ‖K ‖ I, b〉B P{b/a} µ{b/a}−−−−→ 〈H ′{b/a} ‖K ′ ‖ I ′, b〉BQ{b/a}.

4 History Equivalence

Given a history H of a configuration C, an observer with knowledge K can make
a number of tests on the values previously output by C and bound to output
abstract names in H: it can attempt to decode encrypted values with keys from
K, and compare values reachable with keys from K with other constructed
values. The following equivalence states when two histories are indistinguishable
by these tests for a given knowledge K.

A Testing Theory for a Higher-Order Cryptographic Language 13

Definition 4.1 (History Equivalence (')). Two histories H, H ′ are equiv-
alent under the knowledge K, and we write K `H ' H ′, if

dom(H) = dom(H ′) (ι 7→V) ∈ H iff (ι 7→V) ∈ H ′

∀ψ,V. fn(ψ,V) ⊆ K ∧ fan(ψ,V) ⊆ dom(H) ∩ OAName
=⇒ (H ` equal(ψ,V) iff H ′ ` equal(ψ,V))

Intuitively the first two conditions of the above definition require that equiva-
lent histories describe the same sequence of inputs and outputs, and the observer-
generated inputs are equal. The final condition compares values in the history,
reachable by an observer pattern ψ using keys from K, with any other value
that the observer can construct. These tests subsume the decryption tests of the
observer.

Example 4.2. Consider an observer with knowledge K, where k1, k2 6∈ K, and
the histories H = (κ1 7→{|a |}k1

) and H ′ = (κ1 7→{|a |}k2
). The observer can test

whether the message in each of the histories is encrypted with a known key k ∈ K
by attempting to decrypt it using k. This test, which fails in both histories, is
encoded in the definition of (') by the equality: equal(κ1, {|κ1.decrk |}k).

In fact, under the given knowledge K, the two histories are indistinguish-
able by an observer and K ` H ' H ′. If, after an output of the configuration,
the knowledge K is extended with the key k1 then the observer can distin-
guish the two histories by successfully decrypting the message in H and fail-
ing to do so in H ′. The equality that distinguishes the histories in this case is
equal(κ1, {|κ1.decrk1 |}k1

), which is true under H and false under H ′. ut

Example 4.3. Consider a, k2 ∈ K, k1 6∈ K, and the histories H = (κ1 7→{|a |}k1
)

and H ′ = (κ1 7→{|b |}k1
). The observer cannot distinguish the two histories as

any decryption test will fail for both. If after a transition the histories become

H = (κ1 7→{|a |}k1
, κ2 7→{|k1 |}k2

) H ′ = (κ1 7→{|b |}k1
, κ2 7→{|k1 |}k2

)

the observer can decrypt the second message and increase the knowledge K with
the key k1. With the new knowledge, the decryption of the first message reveals
that its content is different in H and H ′. This is captured in the definition of
(') by the following equality that holds only under H: equal(κ1.decrk1 , a). ut

Example 4.4. The observer can also test two outputs of the configuration for
equality. Thus, even with an empty knowledge, the histories

H = (κ1 7→{|a |}k, κ2 7→{|a |}k) H ′ = (κ1 7→{|a |}k, κ2 7→{|b |}k)

are distinguished. This is captured by the equality equal(κ1, κ2). ut

The necessary equality tests to decide K ` H ' H ′ are finite. If we ignore
function types, we can easily verify this statement by considering that the length
of a history, the type of each position in the history, and the values of each type
using a finite knowledge K are finite. For function types, we observe that the

14 V. Koutavas, M. Hennessy

histories of well-formed configurations (Definition 3.4) contain functions λrx.P
with r in the private names of the configuration, and therefore r 6∈ K. This means
that in a well-formed configuration any equality H`equal(ψ, λrx.P) with r ∈ K
is false—these tests are unnecessary.

However, (') tests functions for equality via the use of patterns and ♦-values.

Example 4.5. Consider the knowledge K = {r} and the histories H = (ι 7→♦r,
κ7→ι) and H ′ = (ι 7→♦r, κ7→λr′x. fork ι(x)). The first history describes a process
that outputs the same function that it received as an input, while the second its
eta-expansion. These histories are distinguishable by an observer using the test
equal(κ,♦r), which is true under H but not under H ′. ut

The finite-test equivalence (') is not too permissive as it implies that the
equivalence theory of values under related histories is the same. Moreover, we
extend history equivalence to configurations.

Proposition 4.6. If K `H ' H ′ then for all values V1,V2 with fn(V1,V2) ⊆ K
and fan(V1,V2) ⊆ dom(H): H ` equal(V1,V2) iff H ′ ` equal(V1,V2).

Definition 4.7. 〈H ‖K ‖ I〉BP ' 〈H ′ ‖K ′ ‖ I ′〉BQ if K = K ′ ∧K `H ' H ′.

5 Set Simulations

Here we give a coinductive characterisation of safety preservation for HOspi
based on set simulations. This gives a convenient, and complete, proof method-
ology which, moreover, is amenable to the usual up-to techniques [22]. Indeed
our formulation is already up-to τ -moves. In this extended abstract we give a
sketch of the characterisation. A set simulation is a relation between configura-
tions and sets of configurations, ranged over by S. For the definition we need to
extend LTS transitions to sets.

Definition 5.1 (Set Transition). If S is a set of configurations: S µ−→ S ′ when
S ′ is non-empty and S ′ ⊆ {C′ | ∃C ∈ S. C µ−→ C′}; S µ

=⇒ S ′ when S ′ is non-empty
and S ′ ⊆ {C′ | ∃C ∈ S. C µ

=⇒ C′}.

Definition 5.2 (Set Simulation up-to τ). A relation X between configura-
tions and sets of configurations is a set simulation up-to τ if for all C X S:

1. there exists C′ ∈ S such that C ' C′
2. if C µ

=⇒ C′ and µ 6= τ then there exists S ′ such that S µ
=⇒ S ′ and C′ τ=⇒X S ′.

The definition for a set simulation up-to τ is monotone; therefore the largest set
simulation up-to τ exists and we write it as (�). Set similarity up-to τ is sound
and complete with respect to the safety preorder.

Theorem 5.3 (Soundness and Completeness of (�)). P @∼safe Q iff
〈· ‖K ‖ ·〉BQ � {〈· ‖K ‖ ·〉B P}.

A Testing Theory for a Higher-Order Cryptographic Language 15

The main intuition of set simulations is that they are insensitive to the
branching behaviour of processes.

Example 5.4. Consider the following example:

P = outp a(). (outp b(). 0+ outp c(). 0)
Q = outp a(). outp b(). 0+ outp a(). outp c(). 0

These two terms are not bisimilar because when P takes an a-move, Q would
need to match it, committing to one of the two branches. From a safety per-
spective, however, the two terms are equivalent since there is no safety test that
distinguishes them. We can construct a set simulation that relates the two pos-
sible states of Q with a single state of P , which effectively delays the choice of
a particular branch of Q; here we let C(R) = 〈· ‖ {a, b, c} ‖ ·〉BR:

{(C(P), {C(Q)}), (C(outp b(). 0+ outp c(). 0), {C(outp b(). 0), C(outp c(). 0)})}
ut

6 Examples

6.1 Messaging Servers

As our first example we consider a specification of a messaging service with
load balancing, which allows its clients to send a message once (using the state
channel st), and distributes clients to a number of transmission servers, each
listening to a separate channel in the set S. For simplicity the load balancing
algorithm is abstracted away by an internal choice operator, denoted by Σ:

MServerreq,res,p,S
= νsk , st . inp req(x). decx as {|yck |}p in∑

s∈S

(
outp res({|λrx. inp st(). outp s({|x |}sk). 0 |}yck). outp st(). 0

)
Here the choice of server is decided before the client receives a response from the
server. However, an implementation of this service may delegate this decision to
the code sent to the client:

MServer′req,res,p,S
= νsk , st . inp req(x). decx as {|yck |}p in

outp res({|λrx. inp st().
∑
s∈S

outp s({|x |}sk). 0 |}yck). outp st(). 0

It is not possible to show that the safety properties of the specification MSys =
νp. (Client | MServer) are preserved by the implementation MSys′ = νp. (Client |
MServer′) in a behavioural theory based on bisimulations. This is because the two
systems are not bisimilar: the choice of the messaging channel from S happens
before the message on res in MSys, and after that message in MSys′. However,
using our linear theory of safety we can prove this equivalence. The interesting
direction is proving MSys′ @∼safe MSys.

16 V. Koutavas, M. Hennessy

We do this proof by reasoning compositionally. By Proposition 2.3, it suffices
to show that MServer′ @∼safe MServer. We consider the following continuations of
MServer and MServer′.

Srv1 = inp req(x). .. Srv′1 = inp req(x). ..
Srv2(ck , s) = outp res({|F(s) |}ck). .. Srv′2(ck) = outp res({|F′ |}ck). ..
Srv3 = outp st(). 0 Srv′3 = outp st(). 0
Srv4(s) = outp s({|x |}sk). 0 Srv′4(s) = outp s({|x |}sk). 0
F(s) = λrx. inp st().

outp s({|x |}sk). 0
F′ = λrx. inp st().∑

s∈S
outp s({|x |}sk). 0

We let K0 = {req , res, p}∪S and I0 = {sk , st} and the configurations of MServer:

C1 = 〈· ‖K0 ‖ I0〉B Srv1

C2(H,K, ck , s) = 〈H ‖K0]K, ck ‖ I0, r〉B Srv2(ck , s)
C3(H,K) = 〈H ‖K0]K ‖ I0, r〉B Srv3

C4(H,K,R, s) = 〈H ‖K0]K ‖ I0, r〉B Srv4(s) | R
C5(H,K, I,R) = 〈H ‖K0]K ‖ I〉BR

and the corresponding configurations of MServer′ obtained by replacing Srv1 to
Srv4 by Srv′1 to Srv′4, respectively.

As shown in Figure 4, the choice of the messaging channel in MServer happens
before the response of the server, and after that in MServer′. Hence, in our set
simulation we relate each configuration C′2(H ′,K, ck) and C′3(H ′,K), where the
value {|F′ |}ck has been indexed by some κ in H ′, with the set S2(H ′,K, ck) and
S3(H ′,K, κ, ck), respectively:

S2(H,K, ck) = {C2(H,K, ck, s) | s ∈ S}
S3(H ′,K, κ, ck) = {C3(H,K, ck, s) | s ∈ S, H(κ) = {|F(s) |}ck ,

(∀α 6= κ.H(α) = H ′(α))}

We construct the relation of well-formed configurations:

X = {(〈· ‖K0 ‖ ·〉BMServer, {〈· ‖K0 ‖ ·〉BMServer′}), (C′1, {C1})}
∪ {(C′2(H,K, ck),S2(H,K, ck)) | ∃ι1. H(ι1) = {|ck |}p}
∪ {(C′3(H ′,K),S3(H ′,K, κ, ck)}) | H ′(κ) = {|F′ |}ck , ck ∈ K}
∪ {(C′4(H ′,K,R), {C4(H,K,R)}) | R deadlocked and Φ(H,H ′)}
∪ {(C′5(H ′,K, I ′, R), {C5(H,K, I,R)}) | R deadlocked and

r ∈ I, r ∈ I ′ and Φ(H,H ′)}

where Φ(H,H ′) def= ∃κ. H(κ) = {|F(s) |}ck and
H ′(κ) = {|F′ |}ck and (∀α 6= κ.H(α) = H ′(α))

We prove that X is a set simulation up-to τ by considering the possible weak
transitions from these configurations, the main of which are shown in Figure 4,
and by showing that configurations related in X are also related in ('). The latter
is easy since related histories contain either identical values, or abstractions with
the same annotations (F(s) and F′).

A Testing Theory for a Higher-Order Cryptographic Language 17

C1
...

C2

C2

...
...

...

C3

C3

C4(s1)

C4(sn)

C5

C5

req?ι1

req?ι1

res!κ1

res!κ1

app((κ1.decrp), r, n)

app((κ1.decrp), r, n)

s1!κ2

sn!κ2

C′1 C′2 C′3
...

C′4

C′4

...

C′5

C′5

req?ι1 res!κ1

app((κ1.decrp), r, n)

app((κ1.decrp), r, n)

s1!κ2

sn!κ2

Fig. 4. Main transitions of MServer and MServer′.

6.2 Example 2: Conference Servers

We now prove that the conference system Sys2, shown in the introduction, pre-
serves the safety properties of Sys1. Here the function annotations are not im-
portant and we omit them. We also assume that functions can be applied to
non-base values, which can be encoded by:

fork (λx. P)(V) def= νc. fork (λy. inp y(x). P)(c). outp c(V). 0

We prove that Sys1 @∼safe Sys2 by using Theorem 5.3 and giving a set simu-
lation X such that Sys2 X {Sys1}. First we consider the dummy process D and
the continuations of Conf and Rev2:

D1 = µX. inp del12(x). X D2 = µX. outp del12({|s, λ. 0 |}s). X
D = D1 | νs.D2 Conf1 = outp ok(r). 0
Rev21 = outp subm({|r,Fprf 2

{Fdel12/fdel12}|}sp). 0
Rev22(ι) = outp subm({|r,Fprf 2

{(ι.decrsrev1 .2)/fdel12}|}sp). 0

We let K0 = {subm, del12, r} and I0 = {sp , srev1 , s}, and consider the families
of configurations for Sys1:

C1 = 〈· ‖K0 ‖ I0〉B Conf | Rev1 | D1 | D2

C2(H,K) = 〈H ‖K0]K ‖ I0〉B Conf | D1 | D2

C3(H,K) = 〈H ‖K0]K ‖ I0〉B Conf1 | D1 | D2

C4(H,K) = 〈H ‖K0]K ‖ I0〉B D1 | D2

C5(H,K) = 〈H ‖K0]K ‖ I0〉B Rev1 | D1 | D2

We also let I ′0 = {sp , srev1 , srev2}, and consider for Sys2:

C′1 = 〈· ‖K0 ‖ I ′0〉B Conf | Rev′1 | Rev2

C′2(H,K) = 〈H ‖K0]K ‖ I ′0〉B Conf | Rev2

C′31(H,K) = 〈H ‖K0]K ‖ I ′0〉B Conf | Rev21

C′32(H,K, ι) = 〈H ‖K0]K ‖ I ′0〉B Conf | Rev22(ι)
C′4(H,K) = 〈H ‖K0]K ‖ I ′0〉B Conf
C′5(H,K) = 〈H ‖K0]K ‖ I ′0〉B Conf1
C′6(H,K,R) = 〈H ‖K0]K ‖ I ′0〉BR

18 V. Koutavas, M. Hennessy

Here R will represent the process in states that do not lead to an output on ok .
The proof is completed by showing that the following relation is a set simulation
up-to τ . The proof is similar to the one in the previous example, but due to
space constrains here we give only the relation.

X = {(〈· ‖K0 ‖ ·〉B Sys2, {〈· ‖K0 ‖ ·〉B Sys1}), (C′1, {C1}),
∪ {(C′2(H ′,K), {C1(H,K)}) | ∃κ. Φ1(H,H ′, κ)}
∪ {(C′31(H,K), {C1(H,K)})}
∪ {(C′32(H ′,K, ι), {C1(H,K)}) | ∃ι ∈ dom(H). Φ1(H,H ′, κ) ∧H ′(ι) = κ}
∪ {(C′4(H ′,K), {C2(H,K)}) | Φ2(H,H ′)}
∪ {(C′5(H ′,K), {C3(H,K)}) | H = H ′ ∨ Φ1(H,H ′) ∨ Φ2(H,H ′)}
∪ {(C′6(H ′,K, 0), {C4(H,K)}) | H0 = H ′0 ∨ Φ1(H0, H

′
0) ∨ Φ2(H0, H

′
0)}

∪ Y
where

Φ1(H,H ′, κ) def= ∃H0. H = H0, (κ7→{|s, λ. 0 |}s) ∧H ′ = H0, (κ7→{|sp ,Fdel12 |}srev2
)

Φ2(H,H ′) def= ∃H0, H
′
0, F. H=H0, (κ7→{|r,Fprf 1

|}sp) ∧H ′= H′0, (κ7→{|r, F |}sp)
∧
(

(H0 = H ′0 ∧ F = Fprf 2
{Fdel12/fdel12}) ∨

(∃ι, κ, . Φ1(H0, H
′
0, κ) ∧H ′0(ι) = κ ∧

F = Fprf 2
{(ι.decrsrev2 .2)/fdel12})

)
and Y relates the configurations that do not lead to a signal on ok :

Y = {(C′6(H,K, (Conf | Rev′1)), {C2(H,K)})}
∪ {(C′6(H ′,K,Conf), {C2(H,K)}) | ∃κ. Φ1(H,H ′, κ)}
∪ {(C′6(H,K,R), {C4(H,K)}) | R ∈ {Rev′1, (Rev′1 | Rev2),Rev21}}
∪ {(C′6(H ′,K,Rev2), {C4(H,K)}) | ∃κ. Φ1(H,H ′, κ)}
∪ {(C′6(H ′,K,Rev22(ι)), {C4(H,K)}) | ∃κ. Φ1(H,H ′, κ) ∧H ′(ι) = κ}

7 Related and Future Work

We have proposed a behavioural testing theory for safe equivalence for a higher-
order version of the spi-calculus. We have given a characterisation of safety
preservation in terms of novel set simulations, which provides a sound and com-
plete proof methodology for process equivalence; the usefulness of the method-
ology has been demonstrated via simple illustrative examples. The LTS in our
proof methodology makes extensive use of the current knowledge of observers,
or adversaries, a generalisation of similar ideas for the first-order spi-calculus [2,
4], and environmental bisimulations [23, 25].

Sato and Sumii [25] defined a higher-order version of the applied π-calculus
called the Applied HOπ calculus, developed a bisimulation method which is sound
and complete with respect to reduction barbed congruence, and gave bisimula-
tion proofs for secrecy properties of example higher-order systems. This work
uses a strong assumption about the power of attackers: higher-order terms are

A Testing Theory for a Higher-Order Cryptographic Language 19

sent over channels as decomposable syntax objects. The resulting proof method-
ology is significantly different from ours, employing environmental bisimulations
and sophisticated up-to-context techniques [23]. However, bisimulations do not
provide a complete proof technique for linear-time equivalences, such as safe
equivalence. We believe that an LTS-based theory can be developed for safe
equivalence for Applied HOπ, but that would not be first-order as for HOspi,
where a weak assumption about attackers is used. We leave this to future work.

Sangiorgi has given a translation of HOπ with finite types to the π-calculus
[20, 19] based on triggers, and a full-abstraction proof. This translation, gener-
ating a fresh trigger at every output, would be unsound for HOspi where trans-
mitted functions can be tested for equality. An adaptation of the translation
where a trigger is generated at every function definition [24, Sec. 13.2] would be
sound but incomplete, at least without the use of a complex type system in the
target language [24, pg. 402]. To the extent of our knowledge the details of such
a translation have not been published. However, our LTS directly encodes the
intuitions of the translation, avoiding the issues with full-abstraction.

Jeffrey and Rathke [14] used symbolic triggers, an encoding of triggers as ex-
tended processes in an LTS, to prove that bisimilarity in their LTS characterises
reduction barbed congruence in the presence of recursive types, where Sangiorgi’s
fully-abstract translation does not apply. Our LTS takes this idea a step further
by encoding a notion of triggers within the interaction history recorded in the
configurations. This allows us to define a first-order theory for HOspi, a more
intricate language that HOπ. Also we study a linear-time semantic equivalence,
via set simulations, rather than reduction barbed congruence and bisimulation.

We believe that the approach to higher-order semantics we follow here, using
an augmented LTS of configurations, is robust. In addition to safety for HOspi,
we have followed this approach to characterise reduction barbed congruence for
HOπ [15], and we believe that other equivalences, such as must-equivalence [12],
can be similarly treated. Different cryptographic primitives, such as those used
in the applied π-calculus, can also be easily accommodated. We believe that
this approach can be applied to higher-order cryptographic languages with more
complex type-systems such as the language in [17].

Symbolic techniques that reduce the quantification over first-order messages
have been developed for the spi- and applied π-calculus [8, 5, 9]. Our symbolic
treatment addresses the quantification over higher-order, rather than first-order,
values. The use of simple types keeps the quantification over first-order messages
finite up to fresh names.

Finally, we intend to investigate possible connections between our operational
notion of histories and game semantics models for HOπ [16].
Acknowledgements: We are thankful to Eijiro Sumii and the anonymous ref-
erees for useful comments on this work.

References

1. M. Abadi and C. Fournet. Mobile values, new names, and secure communication.
SIGPLAN Not., 36(3):104–115, 2001.

20 V. Koutavas, M. Hennessy

2. M. Abadi and A. D. Gordon. A bisimulation method for cryptographic protocols.
Nordic Journal of Computing, 5:267–303, 1998.

3. M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi
calculus. Inf. Comput., 148(1):1–70, 1999.

4. M. Boreale, R. De Nicola, and R. Pugliese. Proof techniques for cryptographic
processes. SIAM J. Comput., 31(3):947–986, 2001.

5. J. Borgström, S. Briais, and U. Nestmann. Symbolic bisimulation in the spi cal-
culus. In CONCUR, volume 3170, pages 161–176. Springer, 2004.

6. J. Borgström and U. Nestmann. On bisimulations for the spi calculus. Math.
Structures in Comp. Sc., 15(3):487–552, 2005.

7. R. De Nicola and M. C. B. Hennessy. Testing equivalences for processes. Theoretical
Computer Science, 34(1–2):83–133, 1984.

8. S. Delaune, S. Kremer, and M. D. Ryan. Symbolic bisimulation for the applied pi
calculus. J. of Comp. Security, 18(2):317–377, 2010.

9. L. Durante, R. Sisto, and A. Valenzano. Automatic testing equivalence verification
of spi calculus specifications. ACM Trans. Softw. Eng. Methodol., 12(2):222–284,
2003.

10. C. Fournet, A. D. Gordon, and S. Maffeis. A type discipline for authorization in
distributed systems. In CSF, pages 31–48. IEEE Computer Society, 2007.

11. C. Fournet, A. D. Gordon, and S. Maffeis. A type discipline for authorization
policies. ACM Trans. Program. Lang. Syst., 29(5), 2007.

12. M. Hennessy. The security pi-calculus and non-interference. J. Log. Algebr. Pro-
gram., 63(1):3–34, 2005.

13. K. Honda and N. Yoshida. A uniform type structure for secure information flow.
ACM Trans. Program. Lang. Syst., 29(6), 2007.

14. A. Jeffrey and J. Rathke. Contextual equivalence for higher-order pi-calculus re-
visited. LMCS, 1(1:4), 2005.

15. V. Koutavas and M. Hennessy. First-order reasoning for higher-order concurrency
(manuscript), Feb. 2010.

16. James Laird. Game semantics for higher-order concurrency. In FSTTCS, volume
4337 of LNCS, pages 417–428. Springer, 2006.

17. S. Maffeis, M. Abadi, C. Fournet, and A. D. Gordon. Code-carrying authorization.
In ESORICS, pages 563–579. Springer-Verlag, 2008.

18. R. Milner. Comunicating and Mobile Systems: the π-Calculus. Cambridge Univer-
sity Press, 1999.

19. D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-
Order Paradigms. PhD thesis, Univ. of Edinburgh, 1992.

20. D. Sangiorgi. From pi-calculus to higher-order pi-calculus–and back. In TAPSOFT,
volume 668 of LNCS, pages 151–166. Springer, 1993.

21. D. Sangiorgi. Bisimulation for higher-order process calculi. Information and Com-
putation, 131(2):141–178, 1996.

22. D. Sangiorgi. On the bisimulation proof method. Mathematical Structures in
Comp. Sci., 8(5):447–479, 1998.

23. D. Sangiorgi, N. Kobayashi, and E. Sumii. Environmental bisimulations for higher-
order languages. In LICS, 2007.

24. D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes. Cam-
bridge University Press, 2001.

25. N. Sato and E. Sumii. The higher-order, call-by-value applied pi-calculus. In
APLAS, pages 311–326. Springer-Verlag, 2009.

