
The genetics of neurodevelopmental disease
Kevin J Mitchell

The term neurodevelopmental disorder encompasses a wide
range of diseases, including recognizably distinct syndromes
known to be caused by very rare mutations in specific genes or
chromosomal loci, and also much more common disorders
such as schizophrenia, autism spectrum disorders, and
idiopathic epilepsy and mental retardation.After decades of
frustration, the past couple of years have suddenly seen
tremendous progress in unravelling the genetics of these
common disorders. These findings have led to a paradigm
shift in our conception of the genetic architecture of common
neurodevelopmental disease, highlighting the importance of
individual, rare mutations and overlapping genetic aetiology
of various disorders. They have also converged on specific
neurodevelopmental pathways, providing insights into
pathogenic mechanisms.
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Introduction
A lot can go wrong in the development of a human brain.
The staggeringly complex circuitry that constitutes the
substrate of the mind requires an equally complex net-
work of genes to orchestrate its self-assembly. Mutations
a�ecting any of a wide range of cellular processes can lead
to altered neurodevelopment and result in neurological or
psychiatric disease. In some cases, the e�ects are quite
specific, as in the link between mutations in genes con-
trolling asymmetric cell division and microcephaly [ 1], in
genes a�ecting the guidance of specific axonal tracts
which lead to very distinctive neurological syndromes
[2] or in genes controlling cell migration which underlie
various cortical malformations [3].

Many neurodevelopmental mutations, however, result in
a di�use and variable presentation of psychiatric or
neurological symptoms, which by themselves are not
sufficiently specific to recognise a distinct aetiology.
Individual disorders are often diagnosed instead on the
basis of additional characteristic phenotypes, such as
typical facial morphology (e.g. Down syndrome or Wil-
liams syndrome), somatic markers (e.g. neurofibromatosis
and tuberous sclerosis) or diagnostic magnetic resonance
imaging findings (e.g. for cortical malformations). More
and more commonly, however, karyotypic or molecular
genetic tests, such as those for Fragile X or Rett syn-
drome, are being used to directly determine the under-
lying cause and diagnose patients with a specific genetic
syndrome. Depending on one’s definition of neurodeve-
lopmental, there are hundreds to thousands of such
Mendelian syndromes, each very rare.

The term neurodevelopmental disorder is also used to
refer to disorders that are really quite common in the
population, however, including schizophrenia (SZ, 1%),
autism spectrum disorders (ASD, nearly 1%), epilepsy
( 0.85%) and mental retardation (or intellectual disabil-
ity, 2%). After decades o� rustration, the past couple of
years have suddenly seen tremendous progress in unra-
velling the genetics of these disorders. This review will
focus on these recent findings and their implications for
the genetic architecture and pathogenic mechanisms of
common neurodevelopmental disorders.

The genetic architecture of common
neurodevelopmental disorders
Although research into epilepsy and mental retardation
has mainly proceeded on the model of genetic hetero-
geneity and has been very successful in defining rare
genetic syndromes, research into psychiatric disorders
largely took a di�erent route. Despite seminal findings
of very rare mutations predisposing individually to SZ
(e.g. DISC1 [ 4]) or ASD (e.g. NLGNs [ 5]), these fields
largely turned to a common disease/common variant (CD/
CV) model where disease is thought to be caused by the
inheritance in any individual of a combination of a large
number of common variants. The reasons for the rejection
of heterogeneous Mendelian inheritance in the case of SZ
have been discussed elsewhere and can now be seen to
have been based on unfounded assumptions ([6 ], but see
[7] for a conflicting analysis).

The CD/CV hypothesis was the foundation of genome-
wide association studies (GWAS), the idea being that if
common variants predispose to illness, even only in
combination with other alleles, this should be detectable
as an increase in allele frequency in disease cases versus
controls, i� arge enough numbers are compared. Such
studies have now been completed, with many thousands



of subjects, and the primary conclusion is stark: there are
no common variants that confer even a modest (> 1.2-
fold) statistical increase in risk of SZ [ 8,9 ,10,11], ASD
[12,13] or epilepsy [14 ].

On the other hand, a wealth o� ndividual, rare mutations
have recently been identified that predispose to ASD, SZ,
epilepsy, mental retardation and other disorders. This has
been made possible by the development of array-based
technologies for comparative genomic hybridisation [15]
that can detect deletions and duplications of chromoso-
mal segments, or copy number variants (CNVs). Two
seminal papers by Jonathan Sebat and colleagues found
that CNVs, especially those a�ecting genes involved in
neurodevelopment, are enriched among patients with
ASD [ 16] or SZ [ 17 ]. The realization that CNVs could
also be detected through the analysis of genome-wide
SNP data quickly led to the mining of GWAS datasets
for this kind of mutation, providing additional support
for the involvement of such mutations in common neu-
rodevelopmental disorders [18,19,20 ,21,22], including
ADHD [ 23 ], mental retardation [24 ,25 ] and epilepsy
[26 ,27 ].

These findings demonstrate that common disorders can
be caused by rare and recent (oftende novo) mutations of
large e�ect, which are likely rapidly selected against
[28 ]. CNVs of course are just themost readily detectable
class of mutation and analyses in other Mendelian dis-
orders show that they typically constitute only 10 15% of
pathogenic mutations. Consistent with this, sequencing
o� ndividual genes has also revealed a large number of
rare or private point mutations likely to be causal or
strongly contributing to disease [29,30,31 ,32 ,33]. It
should also be emphasized that while the association
of de novoCNVs with disease implies dominant e�ects,
recessive causes of these disorders are also common
they have, however, with some exceptions (e.g. [ 34 ]),
been less amenable to the discovery of specific loci.

Overlapping genetic aetiology
One of the surprises from this research has been the
finding that many of the more common, recurrent CNVs
and a number of single-gene mutations predispose not to
one specific ‘disorder’ or diagnostic category, but to many
[35,36 ,37 ,38]. This suggests a fundamental aetiological
overlap between what have largely been defined clinically
as distinct disorders. This conclusion is in agreement with
the recognized fluidity of diagnoses in individual patients
over time and is also supported by large-scale epi-
demiological studies which have shown individual and
familial comorbidity between SZ, ASD, epilepsy, bipolar
disorder, major depression, ADHD and other psychiatric
diagnoses (e.g. [39,40,41 ]). Thus, while an individual’s
risk of SZ is increased 10-fold if they have a sibling with
SZ, their risk of bipolar disorder or autism or epilepsy is

characterised by incomplete penetrance for particular
disorders and variable expressivity.

From genotype to phenotype
The sources of phenotypic variability include both
additional genetic and non-genetic factors. Non-genetic
factors must play important roles in the ultimate expres-
sion of many phenotypes, as demonstrated by the fact that
concordance rates for monozygotic twins for any of these
disorders are substantially below one hundred percent.
Phenotypic expression may be strongly a�ected by var-
ious environmental factors, second ‘hits’, such as head
injuries or febrile seizures in the development of epi-
lepsy, psychosocial stressors or other experiential factors.
However, there is also likely a crucial contribution from
intrinsic, stochastic developmental variation, which is
evident in normal development and increased when
the system is perturbed by mutation. Distinct phenotypic
states may thus result as the end-points of divergent
developmental trajectories [42].

Genetic context is also expected to have a large influence
on the expression of phenotypes associated with a

Figure 1

Genetic heterogeneity in neurodevelopmental disorders. Several types
of mutation are shown. Mutation 1 is of high penetrance and
predisposes strongly to a particular pro�le of symptoms (e.g. trisomy
21). Such mutations will tend to arise de novo in sporadic cases, due to
their serious e�ects on reproductive �tness. Mutation 2 is o� ower
penetrance and variable expressivity and its e�ects are modi�ed by the
presence of additional variants in the genetic background. Mutation 2
could still be considered the primary causative mutation, in the sense
that without it, the patient would not be expected to show psychiatric or
neurological symptoms (e.g. DISC1 translocation). The modi�er loci,
which could include common variants (most obviously the Y
chromosome), would not cause disease in the absence of some such
primary mutation. In the third case, Mutation 2 and Mutation 3 are
present in the same individual and show strong epistatic interactions.
Either mutation may be capable of causing some set of symptoms alone
but the combined e�ect may be more severe or qualitatively di�erent
(e.g. multiple recurrent CNVs). This situation would lead to a more



Table 1

Synaptic genes recently implicated in common neurodevelopmental disorders. Genes are included if their products are localized to the synapse, if mutations have been seen in
multiple cases, either within or across disorders, or mutations have been seen in multiple members of a gene family or in genes encoded interacting proteins, and if the gene is not
already associated with a de�ned syndrome. Mutations in many additional genes with other functions are not included nor are CNVs where the e�ect has not been localized to a
speci�c gene. ADHD, attention de�cit hyperactivity disorder; ASD, autism spectrum disorder; BD, bipolar disorder; DD, developmental delay; E, epilepsy; MD, major depression; MR,
mental retardation; OCD, obsessive compulsive disorder; SZ, schizophrenia; TS, Gilles de la Tourette’s syndrome

Gene Location Associated phenotypes Nature of mutation(s) Protein Aliases Protein function Protein interactions References

APBA2 15q13.1 ASD, SZ CNVs Mint2 Synaptic adaptor protein NRXNs [9 ,18,37 ,56 ]
ASTN2 9q33.1 ASD, SZ CNVs Neural recognition molecule [9 ,57 ]a

CNTN3 3p12.3 ASD Homozygous deletion BIG 1 Axon guidance, synapse formation CNTNAPs, PTPRG [ 34 ]
CNTN4 3p26.3 ASD, DD CNVs, translocation BIG 2 Axon guidance, synapse formation CNTNAPs [57]a

CNTN5 11q22.1 SZ CNVs NB 2 Axon guidance, synapse formation CNTNAPs [51]
CNTNAP2 7q35 ADHD, ASD, E,

OCD, SZ, TS
CNVs, point mutations Caspr2, Nrxn4 NRXN family member CNTNs, ADAM22,

synaptic sca�olding
proteins

[18,23 ,27 ,30,35 ]a

CNTNAP4 16q23.1 E CNV Caspr4 NRXN family member CNTNs [27 ]
CNTNAP5 2q14.3 ASD CNV Caspr5 NRXN family member CNTNs [58]
CYFIP1 15q11.2 ASD, E, SZ, CNVs, small deletions Activity dependent translation FMR1 [9 ,18,19,21,27 ]a

DISC1 1q42.2 ASD, BD, MD, SZ Translocation,
point mutations, CNVs

Multiple, including synapse
development

NDE1, PDE4B,
many others

[4,29 ]

DLG1 3q29 ASD, MR, SZ CNVs PSD93 Synaptic sca�olding Many synaptic proteins [ 17 ,18 ]a

DLG2 11q14.1 ASD, SZ CNVs PSD95 Synaptic sca�olding Many synaptic proteins [ 17 ,18,22 ]a

DLGAP2 8p23.3 ASD, MR, SZ CNVs Synaptic organisation DLG proteins [20 ,37 ,49 ]
ERBB4 2q34 SZ CNVs Cell migration, inhibitory

synapse formation
NRG1 [17 ], unpublished

data
LRFN5 14q21.1 ASD, DD, SZ CNVs, translocation SALM5 Synapse formation PSD95, RTN3 [47]a

NDE1 16p13.11 ASD, E, MR, SZ CNVs, small deletions Cell migration, synaptically localised DISC1, LIS1 [9 ,18,21,25 ,27 ]a

NLGN1 3p26.31 ASD CNVs Excitatory synapse formation NRXNs, SHANKs [ 57]
NLGN3 Xq13.1 ASD Point mutations Inhibitory synapse formation NRXNs, SHANKs [ 5]
NLGN4X Xp22.31 ASD, MR, TS CNVs, Point mutations Synapse formation NRXNs, SHANKs [ 5,20 ]a

NRXN1 2p16.3 ASD, SZ, TS CNVs, point mutations Synapse formation NLGNs, LRRTMs [ 18,36 ,37 ,56,57 ]a

PCDH9 13q21.32 ASD CNV Synapse formation [20 ]
PCDH10 4q28.3 ASD Homozygous deletion Synapse formation [34 ]
PCDH19 Xq22.1 E, MR, ASD, SZ CNVs, point mutations Synapse formation [49 ]a

SHANK2 11q13.4 ASD, MR CNVs, point mutations Synaptic sca�olding NLGNs, Homer [32 ,49 ]
SHANK3 22q13.3 ASD, SZ CNVs, point mutations Synaptic sca�olding NLGNs, Homer [20 ,31 ,37 ]a

SLITRK1 13q31.1 OCD, TS Inversion, point mutations Synapse formation 14 3 3 proteins [59]a

SLITRK2 Xq27.3 SZ Point mutations Synapse formation [33]
SLITRK6 13q31.1 E CNVs Synapse formation [27 ]
SYNGAP1 6p21.3 ASD, MR CNVs, point mutations Synaptic RasGAP [49 ]a

TSPAN7 Xp11.4 ASD, MR, SZ CNVs, point mutations Synapse formation Integrins [20 ,33,37 ]a

UBE3A 15q11.2 ASD, E, SZ,
Angelman syndrome

CNVs, point mutations Ubiquitination, activity dependent
synapse development

Arc, many others [ 18,19,21,46,57 ]

a Not all supporting references could be included.



particular mutation. It is certainly the norm for all phe-
notypes in animalmodels to show largemodifying e�ects
of genetic background and epistatic interactions which
can be complex and unpredictable [43 ]. Such e�ects are
also typical of even the most classically defined ‘Men-
delian’ disorders, such as cystic fibrosis and retinitis
pigmentosa [44]. Figure 1 illustrates a number of
scenarios for how such genetic interactions may be man-
ifested and how they will a�ect patterns o� amilial
inheritance.

Segregation within families may often be imperfect, even
in cases where there is strong statistical support from
population studies that an individual recurrent mutation
is associated with risk of a disorder. First, not all carriers of
the mutation will have a particular disorder (this is
expected under incomplete penetrance/variable expres-
sivity). Second, and quite unexpectedly, the presumed
pathogenic variant may be absent from some a�ected
individuals in the family [ 37 ,45 ,46,47]. This suggests
that there are at least two independently segregating
mutations in some families and raises the possibility that
they may interact.

One recent study directly illustrates this kind of e�ect.
Evan Eichler and colleagues found numerous instances of
a microdeletion at 16p12.1 in a large cohort of patients
with developmental delay/intellectual disability with
congenital malformation [48 ]. They also found a strong
enrichment for the presence of some second-site CNV
among 16p12.1-carriers in this cohort. Those individuals
with a second ‘hit’ showed a more severe phenotype and
in cases where the second CNV was associated with a
known syndrome, these patients showed distinct phe-
notypic features. In cases where the 16p12.1 deletion
was inherited, retrospective analysis of the carrier parent
identified high rates o� earning disabilities, psychiatric
diagnoses and seizures, demonstrating a wider range of
phenotypic expression than in the screening cohort.
Patients carrying other recurrent, inherited CNVs also
showed enrichment for a second hit. Similar obser-
vations have been made in autism [49 ] and epilepsy
[27 ]. Thus in many cases, inheritance of these dis-
orders, like most Mendelian disorders, may be e�ec-
tively oligogenic.

Convergence on neurodevelopmental
pathways
Perhaps the most striking finding from recent genetic
studies has been the convergence on genes involved
in neurodevelopment [17 ,23 ,27 ,33,37 ,49 ,50,51],
particularly in aspects of synaptogenesis. A partial list
of such ‘synaptic’ genes with mutations found in disease
cases is given in Table 1 . These include a greater-than-
expected number of mutations a�ecting multiple mem-
bers of particular gene families (e.g. CNTN, CNTNAP,
DLG, NLGN, SHANK, and SLITRK ), or genes whose

protein products directly interact or perform related func-
tions (NRXN1 NLGNs SHANKs ; DISC1 NDE1 ; NRG1
ERBB4 ). Deep sequencing of several of these genes in
cases (including CNTNAP2 , DISC1 , SHANK2 and
SHANK3 ) has identified additional point mutations,
further strengthening the case for their pathogenicity
[29,30,31 ,32 ].

This is not to imply by any means that all the genes
identified have roles in synaptic processes mutations
in a huge number of other genes with diverse cellular
functions can cause neurodevelopmental disease. Nor is
altered synaptic development the only cause of patho-
genic disruptions in neuronal networks epilepsy can,
for example, also arise due to defects in ion channels or in
cell migration during cortical or hippocampal morpho-
genesis. Nevertheless, disruptions in synaptic processes
certainly seem to be one common route by which neu-
rodevelopment can be compromised in a way that can
lead to psychiatric disturbances.

We are now in the remarkable position of having gone,
in the space o� ust two or three years, from having
identified only a handful o� oci with causative
mutations for these common conditions to a list that
is too long to usefully publish in toto. Modelling these
mutations in animals is beginning to provide insights
into pathogenic mechanisms (e.g. [52,53 ,54 ]) and to
suggest points of phenotypic convergence across di�er-
ent mutations.

The future is now
The arrival of a�ordable whole-genome sequencing
now promises to reveal the full spectrum of mutations
associated with these diseases and to further delineate
the relevant molecular pathways. As well as a ‘forward
genetic’ approach based on sequencing cases, it will be
equally important to do ‘reverse genetics’ to define
the range of possible phenotypes that can arise when
gene X is mutated. This will be most readily achieved
in family studies where all mutation-carriers can be
identified and phenotyped, regardless of clinical status.
Obtaining evidence that any particular mutation is
causative will thus depend on careful phenotyping
and the definition of what it is one thinks it is causing.

Many traditional diagnostic categories evidently
represent umbrella terms for collections of genetically
heterogenous syndromes, which will likely be increas-
ingly defined by genetic lesion (e.g. [ 24 ,55 ]). For clinical
geneticists, knowledge of the genetic aetiology in each
case may provide meaningful distinctions in genetic risk
of great importance to individuals and their families. The
ultimate hope is to use genetic discoveries to learn
enough about the underlying neurobiology to generate
novel and patient-specific therapeutic approaches for
these common and devastating disorders.
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