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On Missing Data Treatment for Degraded
Video and Film Archives: A Survey and
a New Bayesian Approach

Anil C. Kokaram, Member, IEEE

Abstract—Image sequence restoration has been steadily gaining
in importance with the increasing prevalence of visual digital
media. The demand for content increases the pressure on archives
to automate their restoration activities for preservation of the
cultural heritage that they hold. There are many defects that
affect archived visual material and one central issue is that of
Dirt and Sparkle, or “Blotches.” Research in archive restoration
has been conducted for more than a decade and this paper places
that material in context to highlight the advances made during
that time. The paper also presents a new and simpler Bayesian
framework that achieves joint processing of noise, missing data,
and occlusion.

Index Terms—Autoregressive models, Bayesian inference, com-
position sampling, factored sampling, film and video post produc-
tion, Gibbs sampling, image processing, marginalization, Markov
chain Monte Carlo, missing data reconstruction, motion estima-
tion, noise reduction, video processing, video restoration.

1. INTRODUCTION

ITHIN the last five years, there has been an explosion in

the exploitation and availability of digital visual media.
Digital television has been widely available in Europe for the
last three years, and Internet usage continues to grow as does the
availability of MPEG(1, 2, 4), AVI audio/video clips through the
increasing use of streaming media. DVD (Digital Video/Versa-
tile Disk) usage is growing faster than CD-audio usage did when
it was first introduced. There is now growing interest in Digital
Cinema implying that the whole chain from “film” shooting to
distribution/projection will be digital.

With all these available digital video “channels,” it is amusing
to note that the main concern for broadcasters is the relative un-
availability of content. Holders of large video, film, and photo-
graph archives for instance the BBC (U.K.), Institut National
de L’ Audiovisuel (INA France), Radio Televisdo Portuguesa
(RTP Portugal) find that archive material is in increasing de-
mand. However, the material is typically degraded due to phys-
ical problems in repeated projection or playback or simply the
chemical decomposition of the original material. Typical prob-
lems with much of the archived film material have been in-
creased level of noise, and Dirt and Sparkle due to the depo-
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sition of dust or the abrasion of the material. Of course, there
are many more problems specific to the media, e.g., Two Inch
Tape Scratches affecting two inch video tape and Vinegar Syn-
drome, a Moire affecting film and the film scanning process.

In order to preserve and exploit this material, these defects
must be removed so that the picture quality can be restored. Be-
cause of the large amount of data, manual retouching is imprac-
tical. Therefore, automated techniques have become important.
Furthermore, it has been recognized that the reduction of noise
in particular before MPEG compression allows a more efficient
usage of the available digital bandwidth [1]-[3].

Hence, the area of automated restoration of image sequences
has moved from being principally a Signal Processing research
topic to one of more widespread significance. As an example of
increased industrial significance, at the International Broadcast
Convention! held in Amsterdam, September 2002, there were
no less than nine companies presenting solutions for automated
digital restoration: Philips, Thomson, Diamant [4], DaVinci,
Silicon Graphics, Apple, Discreet, Snell and Wilcox [5], and
MTI. Projects such as AURORA (Automated Restoration of
Original Film and Video Archives) and BRAVA (Broadcast
Restoration of Archives by Video Analysis) funded by the EU
are further examples of this increased relevance.

This paper provides both a review of the research work that
has in part given rise to these new systems, and also considers a
unifying framework for missing data treatment. Before moving
on to the central artefact addressed this paper, it is educational
to briefly consider the wide range of problems that exist.

A. A Brief Taxonomy of Defects

There has been some effort by the BRAVA consortium
(http://brava.ina.fr) during 2000-2002 to attempt to standardize
or rather educate the community about the names and types of
defects that can occur in archived video and film. An exhaustive
description is given at http://brava.ina.fr/brava_public_impair-
ments_list.en.htm. This was compiled by the project leader,
J.-H. Chenot with input from the various archives in the project,
e.g., BBC, INA, and RTP. This kind of taxonomy is notably
missing from the recent literature. Figs. 1-10 present part of
this taxonomy of defects in an attempt to educate the IEEE
readership as to the names given to the defects as they are
used in the archive industry. The methods considered in this
paper address the problems illustrated by Figs. 1, 2, 4, and
6. Massive loss of data as in Figs. 3 and 7 are better treated

10ne of the two major television technology conferences in the world.
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INA-BBC

Fig. 1. Dirt and Sparkle occurs when material adheres to the film due to
electrostatic effects (for instance) and when the film is abraded as it passes
through the transport mechanism. It is also referred to as a Blotch in the
literature. The visual effect is that of bright and dark flashes at localized
instances in the frame. The image indicates where a piece of Dirt is visible.

INA-BBC

Fig. 2.  Film Grain Noise is a common effect and is due to the mechanism for
the creation of images on film. It manifests slightly differently depending on
the different film stocks. The image shows clearly the textured visible effect of
noise in the blue sky at the top left. Blotches and noise typically occur together
and are the main form of degradation found on archived film and video. A piece
of Dirt is indicated on the image.

INA-BEC

Fig. 3. Betacam Dropoput manifests due to errors on Betacam tape. It is a
missing data effect and several field lines are repeated for a portion of the frame.
The repeating field lines are the machine’s mechanism for interpolating the
missing data.

through temporal frame interpolation and the reader may see
[6] and [7] for some treatment of this issue. A possible solution
for Kinescope Moire illustrated in Fig. 5 can be found in [8]
and [9]. Two Inch scratches (caused by scratching of old two
inch video tape) are an example of a specialized missing data
problem and a treatment can be found in [10] and [11].

Two major defects are missing from the visual description:
Shake and Flicker. Those are best viewed as video clips. Shake
simply refers to unwanted global motion of the picture caused

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 3, MARCH 2004

Fig. 4. Digital Drop Out occurs because of errors on digital video tape. This
example is drop out from D1 tape.

INA-BBC

Fig. 5. Kinescope Moire is caused by aliasing during Telecine conversion and
manifests as rings of degradation that move slightly from frame to frame.

Fig. 6.  Film Tear is simply the physical tearing of a film frame sometimes due
to a dirty splice nearby.

Fig.7. Vinegar Syndrome often results in a catastrophic breakdown of the film
emulsion. This example shows long strands of missing data over the frame.

either by camera movement or problems during scanning. Algo-
rithms for removing shake abound [12]-[17]. This is principally
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Fig. 8.  Echoes and Overshoots manifest as image shadows slightly displaced
from each object in the frame. When the effect is severe it is called Echo and
when it is just limited to edges it is called Overshoot, as in this case.

INA-8BC

Fig. 9. Color Fading implies that the picture color is not saturated enough,
giving the image a washed out look.

because it is related to the global motion estimation problem that
is also important for video compression issues [18]-[23].

Flicker manifests as a fluctuation in picture brightness from
frame to frame. In stills the effect is very difficult to observe in-
deed, but as a sequence the effect is often very disturbing. Two
different types of degradations result in a perceivable flicker
artefact. The first realistic de-flicker algorithm was developed
by Roosmalen [24], [25] and a real-time hardware version was
developed by Snell and Wilcox in the late 1990s. Both changing
film exposure (in old silent movies for instance) and varying
lighting conditions result in luminance fluctuations. However,
a misalignment in the two optical paths in a telecine machine
also yield the same visible artefact, called Twin Lens Flicker.
In that case, the two fields of each interlaced TV frame are in-
correctly aligned with respect to the original film frame, and
the observed fluctuations are due more to the shake between the
fields than any real luminance changes. Vlachos et al. consid-
ered this problem in [26] and a real-time implementation was
also developed by Snell and Wilcox in the late 1990s.

Video clips showing serious degradation by shake,
flicker, lines, grain and blotches can be seen at
http://www.mee.tcd.ie/~sigmedia/ifc/ifc.html. The book by
Read and Meyer [27] gives an excellent coverage of the
physical nature of archive material, and the practices in the
film preservation industry.

B. Missing Data Treatment in General

This paper concentrates on a central issue in automated
archive restoration, Missing Data. It manifests as Dirt and
Sparkle (Fig. 1), Dropout (Figs. 3 and 4), Film Tear (Fig. 6),

and Dirty Splices, Vinegar Syndrome (Fig. 7) some examples
of which have been illustrated in the previous section. Line
scratches can sometimes represent missing data, but quite often
there is still data in the defect region. Line scratch work can be
found in [6] and [28]-[32] and is not considered further here.
Assuming that the missing data does not occur in the same
location in consecutive frames, it seems sensible that a repair
of the damaged region can be achieved by copying the relevant
information from previous or next frames. This relies on the
heavy temporal redundancy present in the image sequence.
Because this redundancy is prevalent only along motion tra-
jectories, motion estimation has become a key component of
missing data treatment systems.

Historically, the approach has been to develop a method to
detect the defect [33], then to correct it by some kind of spatio-
temporal interpolation activity [34]-[37]. The traditional con-
cept in detection is to assume that any set of pixels that cannot
be located in next and previous frames, must represent some
kind of impulsive defect and should be removed. This requires
some kind of matching criterion and could be dealt with via a
model-based approach [6], [31] or several clever heuristics [6],
[38], [39], [31]. Recently, the interaction between the motion es-
timation and missing data detection/correction stages has been
receiving more attention [40], [41]. A key difference between
missing data as it appears in real footage and speckle degrada-
tion is that blotches are almost never limited to a single isolated
pixel.

The review of missing data treatment therefore begins with a
consideration of heuristics for treating this problem, then moves
on to review and extend the model based approaches. Finally,
consideration is given to a major practical shortcoming in the
work to date, that of coping with pathological motion.

Note that in all the work done in this area thus far, the model
of the clean original image sequence has always been adopted
in the form as follows:

L(7) = L1 (% + dn,n—l(f)) + e(Z) (H
where the luminance at pixel site £ = [¢, j] in frame n is I, (Z),
and the two-component motion vector mapping site & in frame
n into frame n — 1 is d,, ,,—1(&). The model error follows a
Gaussian distribution e( - ) ~ N(0, 02). The model is therefore
consistent with luminance conserving, translational motion in
the sequence.

II. HEURISTICS FOR DETECTION

Perhaps the earliest work on designing an automatic system
to “electronically” detect Dirt and Sparkle was undertaken by
Storey at the BBC [38], [42] as early as 1983. The design was in-
corporated directly into hardware which was subsequently used
in-house for video restoration before broadcast. The idea was to
flag a pixel as missing if the forward and backward pixel differ-
ence was high. This idea was, of course, beset with problems in
parts of the image where motion occurred. The natural exten-
sion of this idea was presented by Kokaram around 1993 [6],
[33] which allowed for motion compensated differences. That
type of detector was called a “Spike Detection Index” (SDI) and
the most useful are defined as follows.
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Fig. 10. Line Scratches manifest in much archived footage. They also occurs due to accidents in film developing. The color of the scratch depends on which side
of the film layer it occurs. It is often the case that not all the image information inside the scratch is lost. They are a challenge to remove because they persist in
the same location from frame to frame.

A. SDIx ps = L1 (& + dpnia (7) + [0 1])
The forward and backward motion compensated pixel differ- P6 = Lny1 (T + dp i1 (Z) + [0 — 1))
ences E¢, By, of the observed, corrupted image sequence G, (&) I. = I,(%) 5)

are defined as follows.
where 1. is the pixel to be tested, the algorithm may be enumer-

Ey = Gn(¥) = In-1(T + dp n-1(7)) ated as follows.
Ey = Gu(7) — In+1(Z + dnnta (7). () 1) Sort p; to pg into the list [rq,r9,73,...,76] Where 7y is
minimum. The median of these pixels is then calculated
Note that the previous and next frames are assumed to be uncor- as M = (13 +14)/2.
rupted at the required motion compensated sites, hence G,y = 2) Three motion compensated difference values are calcu-
I,,—1, etc. Two detectors can then be proposed [6] as follows: lated as follows:
o [ 1, for (|Ey| > E;) AND (|Ef| > E;) If1. > M
bSDIa(x) = . (3)
0, otherwise L= T — 1
1, for (|Eb| > Et) AND (|Ef| > Et) ey = IC o
bsprp (7) = AND sign(Ey) = sign(E,) (4) m
i 3 — 1c T4
0, otherwise

)

. . . . Ifl. <M
where b( - ) is a detection field variabe set to 1 at sites that are -

corrupted by missing data. F; is a user defined threshold for e1
detection of discontinuity. The SDIa is based on thresholding
E¢, By only. SDIp additionally applies the constraint that if
corruption does not occur in identical locations in consecutive

:Tl_Ic
eg =19 — I,
ez =13 — I,

frames and the model in (1).h01ds, I"il ~ In1,and one should 3) Three thresholds are selected ¢1, ¢, 3. If any of the dif-
expect that the sign of the difference signals should be the same.

! ; . ferences exceeds these thresholds, then a blotch is flagged
It is now accepted that SDIp is the better detector in almost all

L. ) .. . as follows:
situations because of this additional constraint.
brop ()
B. ROD _[1, if(ex > 1) OR (€2 > t2) OR (e3 > t3)
In 1996, Nadenau and Mitra [39] presented another scheme " 10, otherwise

which used a spatio-temporal window for inference: the Rank
Order Detector (ROD). It is generally more robust to motion es-
timation errors than any of the SDI detectors although it requires
the setting of three thresholds. It uses some spatial information
in making its decision. The essence of the detector is the premise
that blotched pixels are outliers in the local distribution of inten-
sity.
Defining a list of pixels as

where t3 > to > t1. The choice of £, is the most im-
portant. The detector works by measuring the “outlier-
ness” of the current pixel when compared to a set of others
chosen from other frames. The choice of the shape of the
region from which the other pixels were chosen is arbi-
trary.

C. Image Histograms

p1=In 1(Z+ Jn7n_1 (#) +[00)) Many authors have used the image histogram to detect abrupt
p2 = In_1(Z+ Jn,n—l(f) +01]) changes in image sequences. Thls. idea can be exter'lded to detect

R . very large areas of missing data in degraded archive frames. It
ps = Ina (T + Cﬂ"’”—l(x ) +10-1]) is totally unsuitable for detection of all but the largest defects
Pa = Int1(Z+ dpnt1(Z) +[00]) since otherwise the changes in consecutive histograms are not
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noticeable. In [43] and [44] Kokaram ef al. present a mechanism
for isolating the image quadrant that contains the defect. The
attractive aspect of this proposal is that no motion estimation is
necessary, hence the computational cost is extremely low.
Define 5 quadrants in each frame, having a size of
(N/2) x (M/2) columns and rows?, respectively. The top
left hand corner of each quadrant (0, 1, 2, 3, 4) is located at
positions [0, 0], [N/2, 0], [0, M/2], [N/2, M/2], [N /4, M/4]
in the image. Denote the kth bin of the histogram of the
qth quadrant of the nth frame as HZ(k). Two differences,
Al 1 = Y lHIk — HY (k)| and similarly for AT .,
can be calculated for each quadrant. When both forward and
backward differences are larger than a chosen threshold, that
quadrant can be marked as heavily damaged. This is a very
coarse detection process indeed and is not evaluated further
here. Such a coarse detection process can be used by restoration
operators to browse a video sequence for the most severely

damaged frames.

D. Morphological/Median Filter Approaches

In the one-dimensional (1-D) case, Paisan and Crise [45]
were the first to spot that one could use a median filtered signal
as a rough estimate of the original signal before corruption
by impulsive noise. The difference between the observed,
degraded signal and this rough estimate would be high at
sites corrupted by impulsive defects. This is because the rank
order filter removes all outliers, but leaves lower scale trends
untouched. This idea can be extended to treat small missing
data artifacts in archived video and film, known as Dust. These
are generally just a few pixels in area (3 x 3 pixels), and
hence only a small median or morphological window need be
used. Using a larger window to detect larger artifacts causes
problems since more true image detail would then be removed
causing an increased number of false alarms. Joyeux, Buisson,
Decenciere, Harvey, Tenze, Saito, Boukir et al. have been
implementing these types of techniques for film restoration
since the mid-1990s [31], [46]-[54]. Joyeux [31] points out
that these techniques are particularly attractive because of their
low computational cost. They perform well when the artefact is
small, and surrounded by a relatively low-activity homogenous
region. The high resolution of film scans is therefore suitable
for these tools.

III. MISSING DATA RECONSTRUCTION

Having detected an area of missing data, it is necessary to
synthesize material to fill the gap. Storey [42], [38] in 1983
used a three tap median operation to interpolate the missing
pixel. This was implemented without motion information. In
1993, Kokaram extended the idea to motion compensated fil-
tering, but recognizing that motion estimation errors resulted in
very poor performance, introduced a three-dimensional (3-D)
median filtering operation on a 3 X 3 x 3 motion compensated
pixel volume around each missing pixel [34]. A model based
scheme that used 3-D AR models to synthesize texture in the gap
was also presented in [34]. Model based pixel cut and paste op-
erations from previous or next frames then followed that allowed

2Where there are N columns and M rows in an image frame.

for occlusion and uncovering. Deterministic frameworks were
proposed circa 1996 [55], [56], while a Bayesian cut-and-paste
method was proposed by Roosmalen et al. [36] in 1999. The
essence of all these ideas was to ensure that interpolated pixel
data was smooth both in time and space.

Since 2000, there has been an increasing interest in the con-
cept of spatial filling in of gaps in images. The term, inpainting
was used to describe this idea by Ballester and Bertalmio ef al.
[571, [58]. In 2002, similar ideas emerged based on 2-D AR
interpolation [59], [60]. The remarkable results of Efros and
Freeman [61], [62] have also received considerable attention.
One could consider that these techniques can be used to recon-
struct small missing data regions in a degraded image. Bornard
[63], [64], in his thesis of 2002, has considered using these tech-
niques as an alternative to volumetric image data reconstruction,
because of the problems associated with motion estimation in
difficult situations. Remarkable results have been achieved on
relatively small corruption without the need for motion interpo-
lation.

Spatial morphological operators as well as deterministic
spatial interpolation can be used to good effect to reconstruct
missing data for small Blotches (called “dust”). However, these
methods tend to work best when the region to be reconstructed
is relatively homogenous [31]. For high-resolution film appli-
cations in particular, these methods are quite appropriate for
handling many of the smaller defects.

In the interest of brevity, an exhaustive comparison of spatial
versus spatio-temporal interpolation is not undertaken here. It
is important to note though that for large missing regions, e.g.,
half of a frame, spatial interpolation is unable to cope, while for
small regions especially in homogenous areas, spatial interpo-
lation is ideal.

IV. BAYESIAN APPROACH

One problem with the above approaches to missing data treat-
ment is that they each address single issues separately and do
not acknowledge the interaction between their operation. For
instance, all of the detectors above cause high-rate false alarms
in the presence of poor motion estimation. Yet, the presence of
missing data can cause poor motion estimation performance. In
addition, reconstruction using any of the volumetric techniques,
especially for large pieces of missing data, is poor when motion
estimation is poor. Poor detection generally leads to poor re-
construction since the detector is probably flagging areas which
cannot be properly reconstructed. To give good performance,
therefore, the motion estimate must be robust to the presence of
missing data, and the detector should work in tandem with the
interpolator in some way to evaluate whether more damage is
being introduced than removed.

Another problem is that none of the above approaches incor-
porate all that is known about the nature of the defects in ques-
tion. For instance, missing regions would generally be smooth
areas that are spatially coherent in some sense. They also usually
do not occur in the same place in two consecutive frames. There
are indeed many post-processing schemes that can achieve this
information insertion via clever filtering operations or morpho-
logical dilation/erosion pairs [6], [35], but it is useful to consider
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how this information could be incorporated in the problem def-
inition itself.

Model-based schemes could provide one solution to this
issue, and schemes for missing data detection and interpolation
were reviewed and compared with deterministic approaches in
[6], [33], and [34]. Morris [65] was the first (1994) to propose
using Bayesian approach to resolve this data fusion aspect of
combining different sorts of prior information about Blotches.
The Bayesian approach has since been evolving [6], [36], [41],
[59], [66], [67] into a unifying framework that treats motion,
missing data and noise jointly. The book [6] contains an
exhaustive discussion of a joint detection/interpolation scheme
for Blotches.

The main problems with the previous approaches presented
in [6] and [41] are computational complexity and the failure in
cases of motion discontinuity. This can be solved by unifying
the problems of motion estimation, picture reconstruction with
occlusion estimation. The next sections in the paper present this
new formulation of the Bayesian framework for missing data
treatment. This new formulation is of lower complexity than that
presented in [41] because it is based on pixelwise models instead
of a volumetric stochastic processes.

A. Quantifying the Problem

There are two effects to be modeled as far as missing data in
archives is concerned.

Replacement noise completely obliterates the underlying
image pixels at certain pixel positions in the image sequence.
The replacement process typically occurs in contiguous patches
within a single video frame, and will thus be referred to as
the “Blotch” process (Figs. 1, 2, and 15, show good examples
of blotches in a video sequence). The Blotch process at pixel
location # in a particular frame is fully specified by random
variables b(Z) € {0,1} and ¢(Z) € R. The first of these, b(Z),
is a switching process that determines whether replacement
noise is present at ¥ (set b(Z) = 1) or absent (set b(Z£) = 0).
The second, ¢(Z), gives the pixel intensity of the replacement
noise at .

Random additive noise. Also present in a typical frame
of video is random additive noise u(Z), modeled here as a
Gaussian i.i.d. process with (- ) ~ N(0,07).

The model for degradation is a Replacement process with ad-
ditive noise. A binary field b(Z) is introduced that is 1 at a site
of missing data and zero, otherwise. The degradation model can
then be written as follows:

Gn(7) = (1 = b(@)) [n(7) + b(Z)c(Z) + (T)  (6)

where (-) ~ N(0,0}) is the additive noise, and ¢(Z) is a
field of random variables that cause the corruption at sites where
b(#) = 1. This formulation models the degradation of the clean
images, and therefore y is not the same as e in (1). The noise in
(1) attempts to quantify the uncertainty in the image sequence
model that relates clean frames to each other. Unfortunately, it
is extremely difficult to keep these two effects separate in any
solution to this problem.

Three distinct (but interdependent) tasks can now be iden-
tified in the restoration problem. The ultimate goal is image
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estimation, i.e., revealing I,,(-) given the observed missing
and noisy data. The missing data detection problem is that of
estimating b(Z) at each pixel site. The noise reduction problem
is that of reducing p(Z) without affecting image details. The
replacement model was employed within a nonprobabilistic
framework by Kokaram et al. in [68] for image sequences, and
implicitly employed in a two stage Bayesian framework for
missing data detection and interpolation by Morris er al. [33],
[69].

B. Image Sequence Model: Pixel States and Occlusion

To incorporate occlusion into the image sequence model in
(1), a hidden field of binary variables Oy (Z) and Of(Z) is in-
troduced between frames n,n — 1 and n,n + 1, respectively.
When Oy (#) = 1, this implies that the data at site Z in frame
n does not exist in the frame n — 1. This represents Occlusion
in the backward temporal direction. A similar situation exists in
the forward direction with O ¢(Z).

Degradation information can be included in the pixel site in-
formation by defining a pixel as occupying one of six states.
Each of these states s(Z) € [S1...56] is defined as a combina-
tion of three binary variables [b(Z), Oy (Z), O (Z)] as follows.

001 The pixel is not “missing” and there is occlusion in the
forward direction only.
010 The pixel is not “missing” and there is occlusion in the
backward direction only.
000 The pixel is not “missing” and there is no occlusion
backward or forward.
100 The pixel is corrupted by a Blotch and there is no
occlusion backward or forward.
101 The pixel is corrupted by a Blotch and there is occlu-
sion in the forward direction only.
110 The pixel is corrupted by a Blotch and there is occlu-
sion in the backward direction only.
Note that in this framework the [1 1 1] state is not allowed since
it would imply that the data is missing and yet there is no tem-
poral information for reconstruction. This is an interesting prac-
tical ommission, and some comments are made at the end of the

paper.

C. Bayesian Framework

From the degradation model of (6) the principal unknown
quantities in frame 7 are 1,, (%), s(Z), ¢(&), the motion d,, ,, 1,
and the model error o2 (Z). These variables are lumped together
into a single vector (%) at each pixel site Z. The Bayesian ap-
proach presented here infers these unknowns conditional upon
the corrupted data intensities from the current and surrounding
frames G,—1(Z), G,(Z) and Gp41(Z). For the purposes of
missing data treatment, it is assumed that corruption does not
occur at the same location in consecutive frames, thus, in effect
Gn—l == In—17Gn+1 == In+1.

Proceeding in a Bayesian fashion, the conditional may be
written in terms of a product of a likelihood and a prior as fol-
lows:

p(o | In—17 Gn> In+1) X p(Gn | 07 In—l; In+1)
xp(@|In—1,Int1)-
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This posterior may be expanded at the single pixel scale, ex-
ploiting conditional independence in the model, to yield

n(f) e(f)ln 1vln+1) (e(f)|ln—llln+10(_f))
(

N

where §(—Z) denotes the collection of ¢ values in frame n
with 6(Z) omitted and B,C, D,0% O and I denote local
dependence neighborhoods around & (in frame n) for variables
b,c,d, Oy, 0 and I,,, respectively. See the sections on prior
distributions for details of these neighborhoods. To proceed,
precise functional forms for the likelihoods must be assigned.

D. Corruption Likelihood

Considering (6), p(G, |-) has different forms depending
on the state of b(Z), as follows (dropping the argument Z for
clarity):

e (@) 1=

(Gn 75)2

(G |1y, ¢, b) o
€xp — ( 202

E. Original (Clean) Data Likelihood

This expression is derived directly from the image sequence
model and also involves interaction with the occlusion variables

p(In(f) |In—1>In+1) .
~ exp— ((1 — Oy(®)) (I () — Ln_a (¥ + dnm_l))?)

2
202

X exp —
P 202

[

((1 — O(2)In(&) = Lnsa (F + Jn,n+1))2>

x exp(—aO0y(Z)) exp(—aOf(T)). )

The likelihood is therefore proportional to the Displaced Frame
Difference (DFD) = I,(Z) — I,—1(Z + Jn,n—l) between the
image frames in both temporal directions. This expression en-
courages smoothness in intensities along a motion trajectory.
However, when occlusion occurs (e.g., Oy(Z) = 1), the DFD
is turned off because there is no valid data in the preceding (or
next) frame.

This expression alone would yield the degenerate solution of
Op = Oy = 1.0 everywhere in the image because that would
maximize the impact of this likelihood on the posterior. There-
fore, it becomes necessary to introduce a penalty for setting oc-
clusion to the ON state. This is represented by aOp(¥) where
« = 2.762/2.0. This value is chosen to represent roughly the
90% confidence limit for a Gaussian distribution. See [6] for
further justification.

It is now necessary to specify priors for the variables 6.

F. Priors

The remaining distributions encode the prior belief about the
values of the various unknowns. The variance o2 is assigned a
noninformative prior p(c2) o 1/02, following [70]. This an-
ticipates “small” rather than “large” variance in the DFD. The
other priors are discussed next.

1) Motion: The prior adopted for motion smoothness is a
Gibbs Energy prior, for instance as introduced by Konrad and
Dubois [71]. To reduce the complexity of the final solution
the motion field is block based, with one motion vector being
employed for each specified block in the image. The prior for
d,,. n—1(Z), the motion vector mapping the pixel at Z in frame
n into frame n — 1, is as follows:

pd(d'n,n—l(f) | Jn,n—l(_f)v V(7))

S AE s (@) - A7)

T, EV(T)

X exp — (10)

where Z,, is one site in the 8-connected block neighborhood rep-
resented by V (&), and A(Z, ) is the weight associated with each
clique. The same prior is used for dy, n+1(Z). In order to dis-
courage “smoothness” over too large a distance, A(Z,) is de-
fined with A(Z,) = A/| X (Z,) — #5| where X (Z,) is the loca-
tion of the block (in “block” units) providing the neighborhood
vector J(fv); and Z'p is the central block location. A = 2.0 in
the experiments presented later.

2) Priors for Corruption, Detection and Occlusion: Since
Blotches tend to be “convex” clumps of degradation, the prior
for b(Z) should encourage contiguous areas of b = 1 to form.
In practice, blotches tend to have fairly constant intensity (see
Figs. 1 and 14). If a texture exists, it is certainly smoother than
that in the original image. Thus, the prior for ¢(#) should en-
courage smoothness of intensity, in much the same way that the
prior for b( -) encourages smoothness in its binary configura-
tion. Therefore, it is reasonable to place a similar energy prior
on both the binary field b(Z) and the blotch value field ¢(Z).
A Gaussian Markov Random Field (GMREF) prior is used for
¢(Z). The prior for b(Z) is similar but operates on a binary vari-
able only; thus, it is related to the Ising model.

The priors are therefore defined as follows:

pe(c(7) | C)

k=1
(12)
where the eight offset vectors @ define the eight
connected  pixel neighborhood of #, and C,B
represent sets of these values from the respective

fields (as previously). A typical set for ) is therefore
[07 _1]7 [_17 _1]7 [07 _1]7 [17 _1]7 [170]7 [17 1]7 [07 1]7 [_170]'
w(Z, & + ¥y) is set to 1 if there is a significant zero crossing
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between the location Z in the image and # + ¥} from which
a neighborhood pixel is extracted. Thus, the smoothness
constraint is turned off across significant edges in the image.
Note that these priors are defined on the pixel resolution image
grid, whereas the motion prior discussed previously is defined
on a block grid. In the results shown later u( - ) (the edge field)
was configured using an edge detector employing Difference
of Gaussians with the gradient threshold set at 5.0, the variance
of the Gaussian filters was 1.0, 1.6 and the filter window
sizes were 11 x 11.

For both these priors, Af, )\’,’C are assigned values such that
X¢ = A°/|#|, AL = A’/|#x|. This makes the hyperparam-
eter weighting circularly symmetric. Typical values are A. =
0.15, Ay = 4.0. These are found from experiment to yield good
results over a wide cross section of degraded sequences.

The occlusion priors p,(Oy | Op), po(Of | O ) are identical
to the prior for the Blotch indicators b, with A° = 2.0. It encour-
ages organization (clumpiness) in the occlusion surfaces. This is
sensible given that the moving objects tend to cause contiguous
regions of occlusion and uncovering.

G. Solving for the Unknowns

The  solution is  generated by  manipulating
p(0|In-1,Gn, Int1). For instance the MAP estimate is
generated by maximizing the distribution with respect to the
unknowns. Unfortunately, due to the nonlinear nature of the
expression, a closed form solution to the optimization problem
is not available. To yield a practical solution, a number of
simplifying manipulations will be made.

It is expedient at this stage to note that in fact the vari-
ables of this problem can be grouped into a pixel state,
s(Z) = [b(Z),0u(Z),04(&)] (defined previously), and its
associated “clean” image value I,,(Z), at each pixel site, and a
motion and error variable [Jn7n_1, Jn7n+1, 2] for each block
in the image. In other words, the variables can be grouped
into a pixelwise group [s,I,,c| (including the corruption
value c), that varies on a pixel grid, and a blockwise group
[cfnm_l, d_'n,n+1, 2], that varies on a coarser grid.

To solve for these unknowns, the ICM algorithm [72] is used.
At each site, the variable set that maximizes the local condi-
tional distribution given the state of the variables around, is
chosen as a suboptimal estimate. Each site is visited with vari-
ables being replaced with ICM estimates. By treating each group
of variables jointly an efficient solution results. Thus, first the
group [s, I,, ¢] is estimated given the current estimate for mo-
tion, then the blockwise motion information is estimated given
the current reconstructed image estimate /. This process is then
iterated.

1) Factoring: It transpires that s, I,(#) and o2, d can be
Jjointly manipulated by factoring the posterior. To illustrate, the
p.d.f. for s, I),(Z) can be factored by the decomposition

p(S/I(f) |In—17In+17d7Uz)
=D (I(f) |37In—17In+17d703)p (S |In—17In+17d703) .
(13)

The algorithm therefore proceeds by first solving for s with
p(s|In_1,In41,d,02) then using that estimate in the gener-
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ation of the clean image data. The various factor terms can
be derived by successively integrating out I,(Z) and ¢(Z)
from the posterior distribution. See Appendix A for details.
Thus, the state s that maximizes p(s|In—1,In+1,d,02) is
chosen first then that value is used in estimating I(Z) from
p(I(%) |8, Ln_1,Ini1,d,0?).

Although suboptimal, the approximation is helped by the
observation that there is no spatial dependence in the condi-
tional for the clean image data p(I,,(Z) | -) and the conditional
p(02(Z) | -). Maximizing the local conditional distribution for
s can be performed very efficiently by evaluating the posterior
for the six possible state options and simply choosing that
which maximizes the posterior. The derivation of the state
conditionals is tedious and is left to the Appendix.

2) Manipulating Motion: Recall that in this implementa-
tion, motion is handled on a block basis. Integration of the
posterior yields the following factorization of p(c2,d | -), using
the backward motion d,, ,—1 and backward frame pair

p (02| dnne1,i) = IG(N/2, E(i,dpn-1)/2)

p(dn,n—l | i7 D) X E(i/ dn,n—l)iN/Zpd(dn,n—l | D) (14)

where IG denotes the Inverted Gamma distribution, N is the
number of pixels in the image block, D (shorthand for S,, (%))
represents a neighborhood of vectors surrounding the current lo-
cation, and E(i, d,, ,,—1) is the sum of the square of the DFD’s
in a block (allowing for occlusion), given the vector d. The ex-
pressions for the forward frame pair are similar except for the
use of d,, ,+1 instead. Note that the distinction between for-
ward and backward temporal directions means that the forward
and backward DFD variance is allowed to vary. The derivation
of these expressions can be found in [6]. See Appendix B for a
concise summary.

Again the local conditional is maximized in parts; first d from
p(d|i, D), then o2 from maximizing the IG distribution above.
The maximum of the IG distribution can be calculated analyt-
ically and is simply the usual estimate for variance given d as
follows:

N 1 -
2= %[DFD@) — DFD(Z,d)]?

5)

where DFD(Z) is the mean of the DFD in that block of pixels.

The maximization of the motion conditional has no straight-
forward analytic solution. However, a simple and practical so-
lution is to use fast determinstic motion estimation schemes
to yield candidates for motion, for example block matching or
optic flow schemes. The marginal conditional probability of
these candidates are then evaluated using (14). This idea has not
been fully explored in the literature but does yield much prac-
tical benefit.

3) Final Algorithm: The algorithm begins with the initial-
ization of the fields using deterministic estimates. Motion is ini-
tialized using some standard block based motion estimator. The
detection field b is initialized using any one of the deterministic
schemes, e.g., SDIp, ROD, or Morphological Operations [31].
A conservative initial estimate for ¢(Z) is G, (Z). It then pro-
ceeds on the basis of two major iterations as follows.
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1) Given the current estimates for d o2, the image is swept
on a pixel basis, using a checkerboard scan, generating an
estimate for s and I () at each site.

2) Given the current estimates for s and I(Z), the image is
scanned on a block basis. Within each block, the solution
for motion is generated by selecting eight candidate mo-
tion vectors from surrounding spatial blocks and choosing
the one which minimizes the following “energy” [arising
from (14)]

gloge 3 (La(@) — Luca (@ + d)(1 — 04())?

7eB
+ log.(pa(d|-)) (16)

o2 is then measured as the variance of the prediction error
in the block after the motion is selected. Note that as
the occlusion variables are taken into account (removing
pixel pairs that are occluded), the normalizing term (N /2)
changes accordingly. In cases where there is no valid tem-
poral data, log, (pa(d|-)) dominates and the smoothest
motion field will be selected regardless of DFD.
These two processes are iterated until reasonable pictures are
built. It is found that typicaly no more than ten such iterations
are needed, for good pictures to be built. The algorithm for the
selection of the best state s at each pixel is as follows.

4) Maximizing With Respect to S: At each pixel site there
are just six possibilities for states. Each of these states defines
a value for all the pixelwise variables under consideration. By
integrating out ¢ and then I,,(#) from the posterior (see [6]),
the maximization process manifests as the minimization of six
possible energies (log likelihoods) depending on the values of
state. Four of these are shown below. Details are in Appendix A.
Note that g,,, 7,, is shorthand for a single pixel observation of
the degraded and clean image respectively, i.e., G,,(Z), i,. In
the expressions that follow, it is assumed that any data required
from frames n — 1,7 + 1 are compensated for motion.

£(S1) = log, [2r0%02] +a+ | U=
’ o 203
(Z'n—l - %b)Z
- 202
+ loge[Pb(b =0 | B)po(Ob -0 | Ob)
X po(Of = 1]0¢)]
+log. [pc(c = ¢ | O)]
Lo 3 4 2 (gn — )2
5(53)::510geﬁw-g 2] + S
(infl - 2)2
* 202
(tnt1 — 2)2
* 202

+1og,[ps(b = 0| B)po(Or = 0| Op)
X po(Of = 0| Oy)]
+log.[pe(c = ¢ | C)]

1 n =€)
E(S4) = 3 log, [2m07] + [%]
m

+log.[py(b = 1| B)p,(Op = 0| Op)
X po(Of = 0] Ox)]
— )2
20 2

+log.[pe(c = 1 [ C)]
£(56) = %loge[%ro |+a+ [(

+log.[py(b = 1| B)po(Oy = 1]Op)
X po(Of = 0]Or)]

+log, [pe(c = c1 | C)]

where 7,,_1 denotes a motlon compensated pixel in frame n — 1.
The various constants zb, i £, %, C are the least squares estimates
of the unknowns I,,(Z), ¢(#) given various temporal situations
defined by the state variable. For instance

(Ug.Qn + Uzin—l)/ (O'z + O'z)
(U?gn + Ji(in—l + ’in+1))/ (03 + 202) .

The Energies £(52, S5) are the same as £(.S1, .56) except cal-
culated using the forward motion compensated frame direction;
see (28).

5) Estimating i,,c: Once the state configuration is estab-
lished at a pixel site, estimates for I(Z), ¢(Z) can be generated.
This is done directly from (18) and (21). If (%) = 1 then I(Z)
is interpolated from the previous and/or next frames (depending
on s(Z), and c is set to a noise reduced version of the observed
image. When b(Z) = 0, the image estimate is a temporal av-
erage (two or three frames) depending on occlusion, and ¢(Z) is
interpolated spatially. Further computational savings can be had
by exploiting the fact that all the energies involving g,,, I,, can
be pre-computed.

b
7

H. Results

It is difficult to compare this system with previous work in
noise reduction or blotch removal since this system treats the
two problems jointly. Therefore it makes compromises that
sometimes give worse performance in one of the two domains,
but overall the output pictures show good improvement. In
some attempt to place this algorithm in context, a 256 x 256
subsection of the Mobile and Calendar sequence was corrupted
with Blotches that follow the prior for ¢(Z) and Gaussian
noise of 0,3 = 100 was added. This is in keeping with the
degradation model discussed here. A number of experiments
were performed to evaluate the behavior as a blotch detector
and as a noise reducer. The algorithm introduced here is called
Joint Noise Reduction, Detection and Interpolation: JONDI.

1) Blotch Detection Performance: As discussed previously,
many of the currently available simple/fast Blotch detection pro-
cesses are based on the model in (1), and all employ temporal
motion compensated frame differences, e.g., SDIa (Spike De-
tection Index a), SDIp, ROD (Rank Order Detector). JONDI is
using precisely, the same information, but in a unique way.

Fig. 11 shows a Receiver Operating Characteristic (ROC)
that compares the performance of JONDI with several detec-
tors with respect to their blotch detection performance. Good
performance is indicated by curves that are close to the top left
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corner of the graph. To create the characteristics the processes
were run with a range of parameter settings. In the case of SDIp,
T = 5:5: 55 (Matlab notation) and the performance degrades
as the threshold increases. For ROD ¢ was varied 5 : 5 : 45,
with the other thresholds held at nominal values of {5 = 39.0
and t3 = 55.0.

The situation is more complicated with JONDI, Morris
[33], [65] and JOMBANDI [6], [41], [73] since there are
two parameters to be set in each case. However, from
top right to bottom left, the points on the JONDI curve
shown correspond to the following values for (A, A%) :
(0.001,1.0),(0.1,1.0),(0.1,4.0),(0.1,8.0), (.15, 15). For
JOMBANDI (see [73], [41]) the parameters (having the same
meaning) were (0.15,1.0),(0.1,1.0),(0.15,4.0), (0.1,4.0).
The lower curve (dashed) corresponds to these parameters
with a 1-tap AR model (identical to the (1) except with a gain
parameter in the prediction), while the upper curve (solid)
corresponds to a 5-tap 3DAR process. Ten iterations were used
for JONDI, JOMBANDI, and Morris on each frame.

The Morris detector has two parameters, A, for Occlusion
smoothness (as with JONDI), and «, the Occlusion penalty
(again the same as JONDI). The points on the ROC for this
detector from top right to bottom left correspond to settings
(Aoy ) = (4,1),(1,5), (4,5), (4,8), (4, 10), (8, 10), (8, 20).

A multiresolution gradient based block motion estimator was
used to generate candidates for motion [6]. A block size of 9 x 9
pixels was employed with a 2-pixel overlap between blocks. The
SDIp detector was used to intialise the b(Z) field for JONDI,
using a threshold of 25 grey levels. The algorithm was run re-
cursively, i.e., restored frames were used in the processing of
the following frames.

The correct detection rate is measured as the fraction of pixels
(out of the total number of missing sites) correctly set to 1
in b(F). The false alarm rate is measured as the fraction of
pixels incorrectly flagged as missing out of all the possible un-
corrupted sites. Fig. 11 shows clearly that JONDI outperforms
SDIp, ROD, Morris, JOMBANDI across a wide range of pa-
rameters. It is interesting to note that ROD and JOMBANDI
(with a 1 tap AR process) perform almost the same at high false
alarm rates. The Morris detector and JONDI have the same basic
image sequence model in common, yet JONDI is able to con-
tinue giving reasonable performance at low false alarm rates
(<.001) while the Morris performance drops off sharply. This
is because JONDI also incorporates priors on the blotches, and
also seeks to improve the motion estimate as its iterations pro-
ceed. The 5-tap JOMBANDI gets close to the JONDI perfor-
mance but does not reach it. JONDI is therefore gaining much
improvement from the incorporation of the Occlusion fields.

Fig. 13 shows the result of JONDI on three frames from the
corrupted sequence. The bottom row shows (I(Z)—G(Z))+128
and so illustrates more clearly what has been removed from the
dirty image. The combined blotch rejection and noise reduction
features are clear. Also important is that the rotating ball is not
damaged. Note as well that the corruption level in the test se-
quence is very high, and in fact corruption at the same site in
consecutive frames does occur.

2) Noise Reduction Performance: Fig. 12 shows the dB im-
provement in SNR after processing with JONDI, the Temporal
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Fig. 12.  Noise reduction performance for U'i = 100.JONDI (o—), Temporal
Wiener (x — —) and Recursive Filtering (o — —). Algorithm settings are A® =
0.15, A®* = 4.0(0o—). Noisy sequence is represented by the bottom line.

Wiener Filter [74] (discussed above) and Temporal Recursive
Frame Averaging [75]. To separate out the noise reduction com-
ponent of JONDI from the missing data treatment component,
the measurement of SNR was made only in those regions not
corrupted by missing data. This does not however, totally sep-
arate the two components since Blotches can have an effect on
processing for some distance outside their area.

The lowest curve shows the SNR of the degraded sequence
at about 22 dB, and the top curve shows that JONDI at
A° = 0.15,A® = 4.0 performs best. Changing A’ to 1.0
makes JONDI perform somewhere between the two temporal
filters as far as noise reduction goes. This is sensible since a
reduction in A implies that it is expected that Blotches are less
“convex,” which is not the case. Note that as a noise reducer,
JONDI acts as a kind of automatically controlled recursive
process. It should therefore be similar in performance to [75].
The main difference for noise reduction is that JONDI incor-
porates a motion refinement step. Thus initially, when there is
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Fig. 13.  Section of Mobile and Calendar sequence frames 6, 7, 8. Top: Corrupted with blotches and O'Z = 100. Second Row: Blotch detection (b(Z) superimposed
in bright white. Third Row: Algorithm result A = 0.15, A® = 4.0. Bottom: Difference between images in top and third row offset by 128.

little pathological motion in the sequence, JONDI does well.
However as the mobile in the scene starts to move rapidly, even
the motion processes in JONDI begin to fail and performance
degrades to the normal recursive noise reducer level.

3) Real Pictures: The top row of Fig. 14 shows a zoom on
part (300 x 300 pixels) of a typical real degraded sequence

showing damage with both missing data and noise. The motion
is roughly upwards. The damage in this case is caused by a
tear at two parts in the frame. The next row shows a corre-
sponding restoration for the last two frames with the algorithm
described in this paper. The restoration is good, and the noise
reduction is effective despite the fact that there is no spatial
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Fig. 14. Top row: Degraded frames 1, 2, 3 of real sequence. Second Row: Frame 2,3 restored with algorithm described in this paper. Third Row: b(Z) for frames
2, 3 superimposed on darkened original frames. Bottom Row: Initial motion estimate (left) superimposed on ¢(¥) for frame 2; Motion field after 5 iterations of

algorithm together with O, (‘0”), O (‘X’).

constraint on the image data. Five iterations were used, and
AP = 4.0,A° = 2.0; A° = 0.15. The same multiscale gradient
based motion estimator [6] as was used for the artificial case
above, was employed to initialize the motion field and the
block size was 17 x 17 pixels. o, = 20.0 for these results.
This is a user defined parameter since noise reduction is highly
subjective. The next rows show the final configured detection,
corruption, motion, and occlusion fields.

The fourth row shows that the motion is initially severely af-
fected by the tear (in the region of the tear), but the algorithm
corrects this as shown on the right. The estimated corruption
field is seen to be roughly equal to the degraded image where
a blotch is detected, and is very “flat” otherwise. This is sen-
sible given the GMREF used as a prior. The occlusion fields are

seen to be able to prevent distortion in one frame from affecting
the next, since the forward occlusion field is correctly set in
frame 2 in the region that is damaged by the tear in frame 3. Pre-
vious work did not account for occlusion; and distortion there-
fore tended to “leak” between frames. Note however, that the
occlusion indicators are only linked to intensity and not to mo-
tion. This implies that they do not infer occlusion correctly, but
only to the extent that it helps the restoration.

What is interesting is that even though the estimated pictures
(second row) show a definite reduction in artefacts, especially
noise, not all the damaged pixels appear to have been detected.
See the top right corner of Fig. 3. This is because the system is
accounting for some of the low contrast missing data through
the noise process and not through the blotch corruption process.
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Fig. 15. Color restoration. Top two rows show, respectively, three frames from a real archived sequence, and the corresponding restoration. Bottom two rows

show more images from the same sequence.

This kind of interaction is interesting and is under current inves-
tigation. The same observation could be made about the pictures
in Fig. 13.

4) Color: Fig. 15 shows a series of images from a color
sequence that have been processed with JONDI. The YUV
color space was used. The motion manipulation, blotch detec-
tion and noise reduction is performed only on the image Lu-
minance component, while the blotch reconstruction process
was performed on all three color planes. Noise reduction and
blotch detection is restricted to Luminance only because most
of the signal energy lies in that component. It is true that

sometimes blotches can occur in the color planes only (es-
pecially in the case of digital dropout) but this can be dealt
with by performing the detection across all three planes. In
this case limiting detection and noise reduction to the lumi-
nance component, adds the benefit of keeping computation
low while still doing an effective job across the majority of
degraded material. The identical parameter settings as for the
previous example were used here. The reduction in noise in
particular is remarkable. Note also that a large dark blotch on
the left of the first image is correctly removed. There is gen-
erally a lower level of corruption by Blotches in real pictures
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as compared with the Mobile/Calendar experiment discussed
above.

L. Relationships

This new pixelwise relaxation approach that incorporates
occlusion, shows some interesting links with previous works.
These are considered next in chronological order.

Morris [33], [34], [65] considered that detection of
blotches could be articulated by the detection of sites at
which both forward and backward discontinuities occur.
In the framework just presented, the Morris problem is
then one of detecting when Of = 1 and O, = 1. To
allow this in JONDI, the pixel states would have to be al-
tered to consider only occlusion, such that each pixel state
s’ = [Oy,Oyf] instead of [b, Oy, Oy]. b is then no longer a
variable of interest. The clean data likelihood in (9) can then
be changed such that I,, = G,,, I,,_1 = Gp—1, In41 = Gry1.
Then, the problem would be to estimate s’ by maximizing
p(S" | Grn—1,Gn, Gnt1). The motion, detection, and corruption
priors are then superfluous, since b, I are no longer variables
of interest, and the same algorithm results. In essence, the
Morris detector is detecting temporal discontinuities based on
Displaced Frame Difference just like the SDI detectors; but
also including a prior to encourage spatial smoothness in the
discontinuity output. This process relies heavily on reasonable
motion estimation, and is poor at motion edges. In ~ 1997,
[76] improved upon this idea by suppressing the flagging of
occlusion at motion edges. A pre-process was required to
configure a rough guess motion edge field, and this was used to
configure the prior.

Kokaram [6], [34], [41] et al. (1995-2002) proposed that the
image sequence can be locally modeled by a 3-D spatiotemporal
Autoregressive process, or 3-D linear predictor. This replaces
the pixel difference image model in (1) with a linear prediction
error based on a spatio-temporal volume. There was no direction
associated with this prediction, and this causes difficulties in
occluded areas. Deleting the occlusion variable from JONDI,
incorporating a linear prediction likelihood, and relinquishing
the notion of a pixel state that is other than just luminance, yields
JOMBANDI as presented in [41].

Woi Boon et al. solved the 3DAR direction problem in a de-
terministic framework by choosing the direction that gave the
lowest prediction error. Roosmalen [35], [36] incorporated a di-
rection indicator into a 3DAR reconstruction framework. This is
identical to the use of occlusion in the JONDI framework, if the
likelihood is altered, and it is assumed that the detection field
b(Z), and motion was given.

J. Why Can JONDI Work?

The unique aspect about JONDI, aside from the obvious joint
treatment of several variables, is that it is connecting the picture
building process with the discontinuity detection and motion
estimation process. The energies that are being used to select
pixel states are trading off the luminance deviation from a linear
estimate of the current pixel, i , 'Z;,, i f against the smoothness in
the local variable field. In other words, if the local luminance
is very far away from the luminance in nearby frames, and this

behavior also occurs in nearby sites, then there must be some
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problem. Viewed in this light, detection using the ROD, and
filtering approaches in general, can be seen to be providing an
alternative estimate for the current pixel. The ROD is using the
idea that a rank-order filter on the local region is a reasonable
estimate of the local true pixel intensity. Hence, deviations from
that could flag a problem. It would be interesting to generalize
this concept within JONDI, by expressing the likelihood in a
more general nonlinear fashion, but that is left for future work.

Furthermore, what JONDI explicitly makes clear, is that the
need for fully volumentric processing in image sequences is un-
necessary if motion can be handled properly. In other words,
most of the time, each frame in the sequence can be synthesized
by rearranging frames in the past or in the future. Therefore,
if that rearrangement could be estimated in some robust way, a
cut and paste operation is sufficient to synthesise picture mate-
rial. The need for a 3-D Autoregressive process (for instance) is
therefore restricted to cases where the sequence behavior is of a
higher order, for instance a video texture like flowing water or
light reflecting off the ocean. In general perhaps, the need for
spatiotemporal reconstruction is motivated more by an attempt
to recover from errors in motion estimation itself rather then se-
quence modeling.

Finally, it is interesting to note that the estimates for 7 in
JONDI are all the optimal Wiener estimates given Gaussian
noise. In fact 7 is very similar indeed to the temporal noise re-
duction filter first presented by Katsagellos ez al. [74] in 1989.

K. Computational Comments

The main advantage of this algorithm is that by adopting
simple temporal models, the computation for the state estima-
tion is very low per pixel site. Large parts of the energy expres-
sions can be pre-computed. This is in contrast to previous work
that incorporated 3DAR processes [6], that did give better ro-
bustness to small motion errors, but at considerably more com-
putational cost. In that process, the solution for the AR param-
eters alone required the inversion of at least a 5 x 5 matrix, for
every block of pixels. In JONDI, there is no such estimation
step. Without the need for estimating the parameters of a sto-
chastic process, the motion estimation load becomes dominant
in JONDI and accounts for 80% of the time spent on one iter-
ation. A single iteration (for both state and motion estimation)
takes about 15 s per 720 x 576 frame on a PIII 300 MHz PC
(using nonoptimized code) and about 2 s of this is due to the
state estimation step. The surprising aspect about JONDI, as far
as the ROC tests are concerned however, is that it is able to per-
form better than other Bayesian detectors at a reasonable com-
putational cost.

V. FAILURE IN THE MOTION MODEL

Much of work reviewed and presented thus far considers that
it is possible to write an image sequence model of the kind in
(1). More correctly, it is expected that the use of the Gaussian
error term e(Z) is good enough to account for deviations from
the model. This is hardly always the case. Fast motion of objects
causes blurring and many interesting objects, e.g., clothing, are
not rigid. This means that in some parts of any sequence it will
be impossible to model the behavior. In this situation, most of
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the current missing data techniques fail. Damage to fast-moving
material is typically annoying to most viewers and no processing
in those regions is often preferred.

In recent efforts, Bornard [63], [64] and Rares ef al. [77]-[80]
considered these problems from the practical standpoint of
processing hours as opposed to seconds of video material.
They have acted upon a well-known observation by the users
of restoration tools. Whenever motion estimators fail, they tend
to cause a high degree of false alarms in roughly the same
location in consecutive frames. Recalling that blotches should
not occur in the same place in consecutive frames, implies that
this behavior is indicating a problem with the image material.
Detection of this phenomenon allows the blotch treatment
process to be turned off before any damage can be done. By
building a five-frame version of the Morris [65] detector,
Bornard [63] is able to detect areas where discontinuities are
being flagged regularly over the five-frame aperture. Although
the process is conservative in what it treats, initial results
from Bornard’s work [64] are very encouraging indeed. A
classification approach to this problem has been taken by Rares
et al. [77], [80]. Rares presents a taxonomy of pathological
motion in [77] and attempts to classify the regions showing
discontinuities as pathological or not. This is a more long term
approach as there are implications for video processing in
general.

VI. FINAL COMMENTS AND POSSIBLE FUTURES

Missing data treatement in video and film archives has
matured to the point that simple algorithms are currently
appearing in industry standard hardware. Although the more
complex Bayesian approaches have yet to be implemented in
such systems, recent developments have shown that low cost
Bayesian inference is possible.

Coping with pathological motion remains an issue. While
Rares and Bornard have set the groundwork for considering this
issue, the integration of “model failure” into restoration tasks in
general is still an open question. It may be thought that allowing
the state Oy = 1, Oy = 1 in the Bayesian framework presented
here, could be one solution to the integration issue. However
this is not clear since that Occlusion state and the state b = 1
would then be heavily correlated, at least in the context of the
discussion given in this paper. Further work in this direction is
currently being undertaken.
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The reader may also notice that most of the work in missing
data for degraded video and film has not considered the use
of color information. The examples in Figs. 1 and 2 illustrate
that in color sequences, black and white dirt against colored
backgrounds is common. The reason for ignoring this powerful
information is simply that the search is for generic tools that
would operate equally well for Black and White movies as well
as different types of missing data problems, e.g., emulsion or
water damage. In the latter case, color content is not necessarily
as heavily contrasted. Nevertheless, it should be interesting to
consider how color information could best be incorporated when
it is advantageous.

It is important to note that not only archived footage suffers
from Dirt for instance. Recent footage always contains some
level of defects, and the availability of relatively low cost soft-
ware tools for assisting the clean up process is increasingly in
demand. As restoration systems continue to be deployed, either
for real time video broadcast [5], or film scanning and post pro-
duction [81] for digital cinema or DVD, users will increasingly
have more say in the requirements for good systems. That will
ensure the need for further research and development in this
area. It is encouraging that this area of signal and image pro-
cessing, which for so long had been on the periphery of main-
stream applications, is slowly but surely growing in prominence.

APPENDIX 1
FACTORING THE CONDITIONAL FOR PIXEL STATES, IMAGE AND
CORRUPTION DATA

To simplify the algebra, express the priors for s = [b, O, O]
as ps(s|9), defined as follows:

ps(s = [b,op,04]| S = [B, Oy, Oy])

= po(0| B)po(Of [O5)po(Op [ Op) - (17)

where s = [b, Oy, O] refers to the state at a single pixel site; and
S = [B, Oy, Oy] refers to the states in the local eight connected
neighborhood in the same frame. 4,, refers to a single clean pixel
value at that same site.

In the remainder of the Appendix, it is assumed that all image
pixel data required in frames n — 1 and n + 1 has already been
compensated for motion. The expression for the conditional for
$,1n,c GIVEN motion and noise variance is then (see (18) at
the bottom of the page).

p(S,in7C | 17 57 C)

(exp — ((g”g;i”) ) exp — ((Z 22;:2’1)2)])5(8 =10,0,1]| S)pe(c|C)exp —a s =1[0,0,1]
exp — (58 ) exp — (E252520 ) (s = [0,1,0] | S)pec| C)exp—a s =10,1,0]
exp — (40 ) exp — (Unmtem St iemtoe) ) g (5 = 0,0,0 S)pe(c| €) 5 = [0,0,0]
x (g,-0)" (it )4 i)’ (1%
exp — (U570 ) exp — (it HEn® ) (5 = [1,0,0] | )pe(c] ©) s = [1,0,0]
exp— (G2 ) exp — (522 ) pats = [1,0,1) [ S)pele| CYexp—a 5= [1,0,1]
I e
—c)? G —ing1)
[ exp— (5752 ) exp — (520 ) puls = [1,1,0] [ S)pe(e | C)exp—a 5 =[1,1,0]
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Given two Normal distributions for the random variable
z,N(z|z1,0%) and N (z | z2,03); with means and variances
T1,0%; T2, 03, respectively, it can be shown that

/./\/(:1: |21, 01)N (2| 22,03) dx
1 e (53 —$1)2
= —  _exp—
2m\/o?03 P

where 7 = (031 + 0213) /(02 + o). See [70] for some back-
ground material on integrating Gaussians.

Integrating out ¢,, and using the above where necessary,
yields the following expression for p(s,c|I, S, C) (see (20)
and (21) at the bottom of the page). The various ( - ) terms have
values as follows:

(f’ — ."I)z)z
20%

203 (19)

2 2,
» Oedn + O—I_LG—l

W= @
e T oL
~ 02gn + iy
~_ Teln wln
e N @)
e n
’z _ Uzgn'i'oﬁ(in—l +in+1) (24)
o2+ 202
f = lnol Tl ;”"“. 25)

Finally integrating out ¢ from the above expression yields the
required conditional for s,p(s|S,-) as shown in (27) and (28)
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at the bottom of the page. The various ¢ terms have values as
follows:

G = S Ap(— (7, 3?4: zc))cgi”r U ) 29)
i MC( u(i, T+ O))
02¢y+ oy,
s (30)
o2 = 1 . (31)

250y A (L — ul@, T + 7))

The terms 4., ¢ are in fact the least squares estimates of
the marginalized variables [70]. Note that the constants of
proportionality are derived from the normalizing factors for the
Gaussian distributions for the corruption likelihood and clean
data likelihood (where it exists) in each state case. None of the
other normalizing factors are important since all the priors exist
in each state option.

A. Solution

To maximize the conditional p(s,i,,c|I, S, C) each factor
is maximized recursively. Thus the first maximization is over
the six possible states of s using (28). The second maximization
uses this value of s, § in choosing ¢ by maximizing the (21).

Because the value of § immediately selects one of the options
in the set of six, and the prior for ¢ is GMREF, the maximization
with respect to c is analytic. Thus when § is such that b = 0,

/ (8,1, c|1,S,C) =ps(s,c|I,S,C) (20)
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there is only one p.d.f. involving ¢ and therefore the estimate
that maximizes the log posterior is ¢y. Otherwise the estimate
is ¢1. This is sensible since it implies that in regions that there
is no corruption the corrupting data field is hidden and so must
be interpolated from nearby values. When there is corruption, ¢
is directly observed in the image and so the estimate is a noise
reduced version of the observed image.

In a similar manner, with (18), the estimate for ¢ is generated
using § and the estimate for c. When there is no corruption, the
estimate is a noise reduced version of the observed sequence
allowing for occlusion, 7. When the image is corrupted the es-
timate uses image data either in the previous or next frames or
both previous and next frames i.e., i £ LA;, or 21

APPENDIX II
FACTORING THE CONDITIONAL FOR MOTION

Consider now operating on a blockwise basis. Within
each block, the motion parameters dnyn,hdn,nH?ag are
constant. The occlusion parameters are considered alongside
the blotch detection indices and are not estimated with the
motion information. It is required therefore, to manipulate
p(dnn_1,dn nt1, 02| Iy, In_1,I41). Recall from Section G
that the idea is to group together the pixelwise parameters
[s,1,c] and the motion parameters [d, o2] and iterate between
the two processes. This is possible because it is possible to
handle each group jointly. The motion is handled by using the
factorization as follows (considering backward motion only)

p(dn,n—lvag | In7In—l7 Ob7D)
o8 p(oz |dn,n—1:In7In—1-, Ob7D)

p(dn,n—l | In;In—17Ob7D) (33)

Note that the current estimate of the clean image I,, is being
used here. The first term in the factorization is

p(agadn,nfl | )
p(dn,n—l | )
2

This requires integrating out o from the posterior
p(02,dnn-1|") Given I, the posterior is written as fol-
lows, using (1) and incorporating priors for d and o2 shown in
(35) at the bottom of the page where the sum is over N pixels
in a block. To simplify matters define E(i,d) as follows:

p (02| dun1,In,In 1,04, D) = a

E(i,dy 1) = Z(In(f) — Iy (F+dpnq)?

x (1 — Oy(E)) + Op(F)a.  (36)

The posterior can now be written

E(i,d)
202

(02 s | x foo =[BT wonptal Dy 2.

(37)
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There are just two terms involving o2 and given p(c?) = 1/0?
the posterior can now be written

11 E(,d)
p(o?,dnpn 1) x pw exp — [ 552 } . (38)
(S 71-0.6 e

To proceed with integration, the expression can be rearranged to
expose a relationship with the Inverted Gamma (IG) distribution

as follows:
— ﬁ+1 ]. E(i., d)
) " )—N P [ 202 |

V2r

p(agvdn-,nfl |-) o (03
(39

For some random variable, r, the IG distribution with parame-
ters (1, 32 is as follows [70]:

B9 5 oy {&}
F(ﬁl)r exp— | ==
Letting 5 = N/2 and 3 = E(d)/2 and r = 02

1 T(B) By
Vo Byt T(B)

p(r| B, B2) = (40)

P2 dnn-t|) o (r) D) exp — {%} .
(41

Thus, the required conditional p.d.f. p(a? | ) is in fact an In-
verted Gamma distribution and since [ IG(r|f1,B2)dr = 1
the required conditional for d is as follows:

p(d]) = / p(0?,d | )do?

1 T B1
:/ - ({il)rﬂz (O_z)*(ﬂl‘Fl) exp — [5_;} dUz
Ver Byt T(B) o?
1 T
= — (gll)/IG(Hﬂl,ﬂz)dr
Vor o By
_ 1 TR
Noralcs
x B(i,d)™2, 42)
Hence, the two results are obtained as follows:
N E(i,d)
2|d, ) =IG (o2 | = ’
plo?ld,) =1G (o | 5, =5
p(d|i, D) = E(i,d)"?py(d | D). (43)
This allows the factorization
p(az,d]|-) = p(o?|d,D,-)p(d|D,-) to be
used.
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