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Abstract. The three-state majority-vote model with noise on Erdös–Rényi
random graphs has been studied. Using Monte Carlo simulations we obtain
the phase diagram, along with the critical exponents. Exact results for limiting
cases are presented, and shown to be in agreement with numerical values. We
find that the critical noise qc is an increasing function of the mean connectivity z
of the graph. The critical exponents β/ν̄, γ/ν̄ and 1/ν̄ are calculated for several
values of the connectivity. We also study the globally connected network, which
corresponds to the mean-field limit z = N − 1 → ∞. Our numerical results
indicate that the correlation length scales with the number of nodes in the graph,
which is consistent with an effective dimensionality equal to unity.
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1. Introduction

The majority-vote model with noise defined on a regular lattice is a system of spins where
each one is allowed to be in two states only [1]–[7]. In this two-state model, each spin
assumes the state of the majority of its neighboring spins with probability (1− q) and the
opposite state with probability q. The system presents an order–disorder phase transition
as the noise parameter q reaches a critical value qc. Studies on the regular square lattice
found qc = 0.075 ± 0.005 [3], and critical exponents equal to those for the equilibrium
Ising model in accordance with the conjecture by Grinstein et al [8].

The two-state majority-vote model (MV2) was also studied on a variety of complex
networks [9]–[15], such as undirected and directed random graphs [16], small-world
networks [17], and Barabási–Albert scale-free networks [18]. On undirected and directed
random graphs, it was shown that qc is an increasing function of the connectivity of the
graphs [10, 12, 14]. On small-world networks, the critical noise is an increasing function
of the rewiring probability [9, 13]. More generally, these studies have shown that MV2
models defined on different complex networks belong to different universality classes and
the calculated critical exponents depend on the topology of the complex network [19]–
[21]. The generalization to a three-state majority-vote model (MV3) on a regular square
lattice was considered by [22, 23], where the authors found qc = 0.117 ± 0.001. The
resulting critical exponents for this non-equilibrium MV3 model are in agreement with
the ones for the equilibrium three-state Potts model [24], again supporting the conjecture
of [8].

In this paper we present an extensive study of the critical behavior of the three-
state majority-vote model on Erdös–Rényi’s random graphs [16]. Monte Carlo (MC)
simulations and standard finite-size scaling techniques are used to determine the critical
noise parameter qc, as well as the exponents β/ν̄, γ/ν̄ and 1/ν̄ for several values of the
mean connectivity z of the graph. We also study the globally connected network case.
The phase diagram of the system is presented, and compared to our previously obtained
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diagram for the two-state model [10]. Exact results for quantities of interest are obtained
for the limiting cases q → 0, and q → 2/3, which agree with the simulation results.

This work is organized in the following way. In section 2 we describe the non-
equilibrium three-state majority-vote model with noise, and introduce the relevant
quantities used in our simulations. Sections 3 and 4 contain our results along with a
discussion. Finally, in section 5 we present our conclusions.

2. The model and formalism

The three-state majority-vote model with noise is defined by a set of spin variables {σi},
where each spin is associated with one vertex of an Erdös–Rényi random graph and can
have the values 1–3. The connectivity of a vertex is defined as the total number of bonds
connected to it, that is ki =

∑
j cij, where cij = 1 if there is a link between the sites i

and j and cij = 0 otherwise. A random graph is completely characterized by the mean
number of connections per site, i.e. the average connectivity z, and the total number of
sites N .

The system evolves in time according to the following rules. For each spin we
determine the state of the majority of its neighboring spins, that is, all the spins that
are linked to it. With probability (1 − q) the new state of the spin agrees with the
majority state of its neighbors and it disagrees with probability q, which is known as
the noise parameter. In the case of a tie between the three possible states, each state is
chosen with equal probability 1/3. In the case of a tie between two majority states, the
spin assumes each one of these states with equal probability (1 − q)/2, and the minority
state with probability q. Finally, in the case of a single majority state, the two minority
states occur with equal probability q/2, and the majority state with probability (1 − q).
It is clear that the rules just described present the C3ν symmetry with respect to the
simultaneous change of all states σ.

Let k
(α)
i be the number of neighbors of site i in state α = 1–3; therefore k

(1)
i + k

(2)
i +

k
(3)
i = ki. According to the above rules we can write the following probabilities for a given

spin to assume the state 1:

P (1|k(1)
i = k

(2)
i = k

(3)
i ) = 1/3 P (1|k(1)

i = k
(2)
i > k

(3)
i ) = (1 − q)/2

P (1|k(1)
i < k

(2)
i = k

(3)
i ) = q P (1|k(1)

i > k
(2)
i , k

(3)
i ) = 1 − q

P (1|k(1)
i , k

(2)
i < k

(3)
i ) = q/2.

(1)

The probabilities for the other two states are obtained by the symmetry operations of
the C3ν group. For example, let us consider a neighborhood corresponding to the fourth
and fifth rules, where we have a single majority state. In this case, the two minority
states (say, states 2 and 3) occur with equal probability q/2, and the majority state
with probability (1 − q). We can write P (1|k(1) > k(2), k(3)) = 1 − q from the fourth
rule, and P (2|k(2), k(3) < k(1)) = P (3|k(3), k(2) < k(1)) = q/2, from the fifth rule.
It is worth mentioning that the condition 1 − q (=probability of choosing the majority
state 1) > q/2 (=probability of choosing a minority state, either 2 or 3) is valid for
q < 2/3, and we conclude that q = 2/3 is the limit value for the noise parameter in
the present three-state MV model. Moreover, the probabilities defined by equations (1)
satisfy P (1| · · ·) + P (2| · · ·) + P (3| · · ·) = 1.
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To study the critical behavior of the model we consider the magnetization MN , the
susceptibility χN , and Binder’s fourth-order cumulant UN . These quantities are defined
by

MN (q) = 〈〈m〉t〉c (2)

χN(q) = N [〈〈m2〉t〉c − 〈〈m〉t〉2c] (3)

UN (q) = 1 − 〈〈m4〉t〉c
3〈〈m2〉t〉2c

, (4)

where N is the number of vertices of the random graph with fixed z, 〈· · ·〉t denotes time
averages taken in the stationary regime, and 〈· · ·〉c stands for configurational averages. In
equations (2)–(4) m is defined in analogy to the magnetization in the three-state Potts
model as the modulus of the magnetization vector, that is m = (m2

1 +m2
2 +m2

3)
1/2, whose

components are given by

mα =

√
3

2

[
1

N

∑

i

δ(α, σi) − 1

3

]

, (5)

where the sum is over all sites in the graph, δ(α, σi) is the Kronecker delta function, and

we introduce the factor
√

3/2 in order to normalize the magnetization vector.
In the critical region we assume the following finite-size scaling (FSS) relations [25]:

MN (q) = N−β/ν̄M̃(εN1/ν̄) (6)

χN(q) = Nγ/ν̄ χ̃(εN1/ν̄) (7)

UN (q) = Ũ(εN1/ν̄) (8)

where ε = q − qc, and the universal scaling functions M̃ , χ̃ and Ũ only depend on the
scaled variable x = εN1/ν̄ . The above FSS relations follow from the ansatz that the
correlation length scales with the number of nodes in the graph, that is ξ ∼ N , which is
consistent with an effective dimensionality equal to unity.

From the size dependence of MN and χN we can obtain the exponents β/ν̄ and γ/ν̄,
respectively. The correlation length exponent ν̄ is calculated from the size dependence
of the derivative of Binder’s fourth-order cumulant with respect to the noise parameter,
U ′

N (q = qc). Furthermore, we use the hyperscaling relation

2β/ν̄ + γ/ν̄ = Deff , (9)

to estimate the effective dimensionality of the system Deff in order to check the FSS
prediction for an effective dimensionality equal to unity.

3. Results

3.1. Exact results

First we notice that there are only two independent components of the magnetization
vector mα, since they obey the relation

m1 + m2 + m3 = 0. (10)
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Moreover, the norm of the magnetization is invariant with respect to any C3ν group
symmetry operation.

Let us consider the limit q → 0, where the probability of agreeing with the majority
state equals unity. In this situation, after a transient period the system reaches the ordered
steady state. Without loss of generality we can assume that σi = 1 for all sites. In this
case m1 =

√
2/3 and m2 = m3 = −1/

√
6; thus MN (0) = 1. It is also straightforward to

check that χN(0) = 0, and UN(0) = 2/3.
In the opposite limit (q → 2/3) the system reaches a disordered steady state, where

the average of each component of the magnetization vanishes. In fact, in this limit
the probability of a given spin agreeing with the majority of its neighbors equals the
probability of it agreeing with any of the other two minority states, i.e. (1 − q) = q/2.
It is possible to write the probability distribution for the order parameter as a Gaussian
distribution in the form [22]

P (m) =
a

π
e−am2

, (11)

where a = 1/〈m2〉. From this distribution we obtain that MN (q → 2/3) =
√

π/2〈m2〉1/2,
χN (q → 2/3) = N(4/π − 1)M2

N , and UN(q → 2/3) = 1/3. Moreover, it follows that
〈m2〉 ∼ N−1, MN (q → 2/3) ∼ N−1/2, and χN (q → 2/3) ∼ N0. These exact results as
well as the predicted dependence on the size N of the relevant quantities are in agreement
with numerical results from simulations for all networks considered.

3.2. Simulation

We begin our simulations generating a random graph of size N and mean connectivity
z in a disordered configuration where the state of each spin is 1, 2 or 3 with the same
probability. We used systems of size N = 1000, 2000,4000, 6000, 10 000, 50 000, and varied
z from 1 to 50. To perform the dynamics we choose a site at random and, for a given fixed
value of the noise parameter, we update its state in accordance with the dynamics rules
given by equations (1). A Monte Carlo step (MCS) is defined as N updates. We waited
the Nr MCS needed for the system to reach the steady state, and the time averages, 〈· · ·〉t,
were estimated from the next Ns MCS. The values of MCS used vary with N , z and q;
typically we used Nr > Ns > 5000 MCS. For all sets of parameters, we have generated
at least 100 distinct random networks in order to calculate the configurational averages
〈· · ·〉C .

Figure 1 shows the magnetization MN and the susceptibility χN as functions of
the noise parameter. The data were obtained from simulations on random graphs with
N = 4000 sites and several values of the average connectivity z. In part (a) each curve for
MN , for a given value of z, clearly indicates that there exists a phase transition from an
ordered state to a disordered state where the magnetization vanishes. We also notice that
the transition occurs at a value of the critical noise parameter, qc, which is an increasing
function of the mean connectivity z of the random graph. In part (b) we show the
corresponding behavior of the susceptibility χN . The value of q where χN has a maximum
is here identified as qc(N).

We also perform simulations for globally connected networks, that is, for random
graphs with N nodes and connectivity z = N − 1. In the thermodynamical limit
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Figure 1. Dependence of the magnetization (a) and the susceptibility (b) on the
noise parameter q, for N = 4000 nodes. From left to right we have z = 2, 4, 6,
8, 10, 20, 30, and 50. In (a) the dashed line corresponds to the mean-field result
m = −3

2(q − 2
3), in the thermodynamical limit z = N − 1 → ∞. In part (c)

we plot the size dependence of the magnetization at qc = 2/3 for the case of
z = N − 1, the globally connected network.

z = N − 1 → ∞, the magnetization is given by m = −3
2
(q − 2

3
) (the dashed line in

figure 1(a)), from which we obtain the mean-field values q
(MF)
c = 2

3
and β = 1. Figure 1(c)

shows the dependence of the mean-field magnetization at q
(MF)
c on the system size. The

straight line confirms the scaling relation given by MN (q = 2/3) ∼ N−1/2. The slope
of the resulting straight line yields the exponent β/ν̄ = 1/2. A similar analysis for

the susceptibility at q
(MF)
c yields χN(q = 2/3) ∼ N0, that is, γ/ν̄ = 0. Note that the

critical behavior for the globally connected network is in agreement with the exact results
discussed above in the limit case of q = 2/3. The mean-field results for the critical noise
parameter and critical exponents are given in table 1.

In figure 2 we plot Binder’s fourth-order cumulant UN for different system sizes N
and four distinct values of z. The critical noise parameter qc, for a given value of z, is
estimated as the point where the curves for different values of N intercept each other.
We also obtained U� = 0.42(2) for the critical value of the cumulant at qc, which is
independent of the connectivity z of the graph. The dependence of qc on z yields the
phase diagram for the MV3 model shown in figure 3.

The phase diagram of the MV3 model on random graphs shows that for a given graph
(fixed z) the system becomes ordered for q < qc, whereas it has zero magnetization for
q ≥ qc. We notice that the increase of qc is more pronounced for small values of z. The
error bars in qc (see table 1) are much smaller than the symbols. In the figure, there is
also included the corresponding phase diagram for the MV2 model obtained from Monte

doi:10.1088/1742-5468/2010/11/P11032 6
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Figure 2. Binder’s fourth-order cumulant as a function of q, for system sizes
N = 1000, 2000, 4000. From left to right we have z = 8, 10, 20, and 30. The
horizontal line indicates the critical value U� = 0.42. The mean-field value is
U� = 1/3.

Figure 3. The phase diagram for the three-state majority-vote model (this
work), showing the dependence of the critical noise parameter qc on the average
connectivity z of the random graph. The phase diagram for the two-state
model [10] is also included for comparison.
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Figure 4. (a) Plot of ln(U ′(qc)) + z versus ln N . The exponent 1/ν̄, for a given
z, corresponds to the slope of the straight line obtained from a linear fit to the
data. From bottom to top, z = 2, 4, 6, 8, 10, 20, 30.

Table 1. The critical noise qc, the critical exponents, and the effective
dimensionality Deff , for the MV3 model on random networks with mean
connectivity z. The mean-field (MF) results are shown in the last line.

z qc β/ν̄ γ/ν̄ 1/ν̄ Deff

2 0.084(5) 0.15(3) 0.75(2) 0.81(6) 1.05(8)
4 0.228(1) 0.20(1) 0.65(1) 0.94(5) 1.05(3)
6 0.3015(5) 0.198(5) 0.66(5) 0.89(7) 1.06(6)
8 0.3458(2) 0.2105(5) 0.62(5) 0.895(5) 1.04(9)

10 0.3785(2) 0.22(2) 0.68(2) 0.90(2) 1.12(6)
20 0.4586(5) 0.205(5) 0.67(2) 0.95(1) 1.07(3)
30 0.4957(1) 0.22(1) 0.66(2) 0.95(2) 1.1(3)
50 0.533(1) 0.22(2) 0.64(7) 0.92(2) 1.08(6)
MF 2/3 1/2 0 1/2 1

Carlo simulation in our previous work [10]. For both models the system exhibits an
ordered state for all values of the mean connectivity greater than 1. This is in agreement
with the limiting value of z = 1 for the existence of a percolating cluster and, therefore,
the onset of long-range order in the system. However, when z → ∞ we obtain the upper
limits qc = 0.5 and qc = 2/3, for the MV2 and MV3 models respectively.

Figure 4 shows the dependence of the derivative of Binder’s fourth-order cumulant
at q = qc on the system size. For clarity we have added on each curve the respective
value of z. The straight lines, obtained from simulations with different values of the mean
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Figure 5. The functions Φ and Ψ for the case of mean connectivity z = 8,
and five different pairs of N1 and N2. The intersection points give independent
estimations for β/ν̄, γ/ν̄, and qc. The curves are obtained by cubic polynomial
fitting to the data.

connectivity z, confirm the scaling relation given by equation (8). For fixed z, the slope
of the resulting straight line equals the exponent 1/ν̄. The results displayed in table 1
indicate a weak dependence of the correlation length exponent on z.

In order to obtain independent estimations for the critical noise parameter qc(z), as
well as the exponent ratios β/ν̄ and γ/ν̄, for different values of the mean connectivity z,
we consider the functions Φ and Ψ defined as

ΦN1,N2 = −b−1 ln
MN2

MN1

(12)

ΨN1,N2 = b−1 ln
χN2

χN1

(13)

where b = ln(N2/N1). The above functions relate the magnetizations and susceptibilities
calculated with two different system sizes, N1 and N2. In fact, substituting the finite-size
relation (6) into equation (12), we obtain

ΦN1,N2 = β/ν̄ − b−1 ln
M̃(εN

1/ν̄
2 )

M̃(εN
1/ν̄
1 )

. (14)

At the critical value qc(z), the last term vanishes and we obtain Φ(qc) = β/ν̄. Analogously,
substituting the finite-size relation (7) into equation (13), we have Ψ(qc) = γ/ν̄.

doi:10.1088/1742-5468/2010/11/P11032 9
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Figure 6. The universal scaling function M̃ versus the scaled variable x = εN1/ν̄ ;
data collapsing for five different values of N , with z = 8.

In figure 5 we show the dependence on noise of the functions Φ and Ψ, for z = 8
and several values of N1 and N2. From the intersection points in figures 5(a) and (b) we
obtain independent estimations for the critical noise parameter qc(z). For all networks
considered in the simulations, we have obtained a quite satisfactory agreement between the
two values of qc(z) determined in this way and the corresponding ones that follow from the
analysis of Binder’s cumulant (figure 2). Moreover, we used the relations Φ(qc) = β/ν̄ and
Ψ(qc) = γ/ν̄ to calculate the exponent ratios for different values of the mean connectivity
z. Table 1 shows the results for different values of the mean connectivity z. We call the
readers’ attention to the difference between the calculated values of the exponents in the
case of z = 2 and the corresponding results with z > 2. This might be an indication that,
for z = 2, we need to take into account logarithmic corrections to the finite-size scaling
relations [26].

Figure 6 shows the data-collapse plot for M̃(x) = MN (q)Nβ/ν̄ , which is a universal
function of the combined variable x = N1/ν̄(q − qc). We have also obtained quite a good
data collapse for χ̃(x) = χN(q)N−γ/ν̄ . The collapsing of curves for five different system
sizes corroborates the quoted values for qc, β/ν̄, γ/ν̄ and 1/ν̄.

In figure 7 we present two different ways to obtain the data collapsing for the universal
scaling function Ũ(x). Part (a) shows the standard data collapse that follows from
simulations with different values of system size N , for the case of mean connectivity z = 8
fixed. In part (b) we have fixed N = 4000 and used the data from simulations for varying
connectivity. It is worth mentioning that in the last case the collapse for different values
of z was obtained by using the values for the critical parameter qc and the exponent 1/ν̄
for the corresponding value of z (see table 1). In general, the universal scaling functions
only depend on the scaled variable x = εN1/ν̄ for a given system. However, the two
data-collapsing cases in figure 7 indicate that Ũ does not depend on the specific value of
z, contrary to what is observed for M̃ and χ̃.

doi:10.1088/1742-5468/2010/11/P11032 10
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Figure 7. Data collapsing of Binder’s cumulant. In (a) we show the collapse for
five different values of N , with z = 8 fixed. In (b) the collapse is obtained for
seven different values of z, with N = 4000 fixed.

4. Discussion

Table 1 summarizes the values (along with errors) of the critical noise parameter qc, the
critical exponents β/ν̄, γ/ν̄ and 1/ν̄, and the effective dimensionality of the system. For
all values of z considered, including the mean-field limit z = N − 1 → ∞, the value
Deff 	 1 follows from the hyperscaling relation (equation (9)), in agreement with the
scaling ansatz for the magnetization and susceptibility equations (6) and (7). In fact,
since our original work [10] several authors have studied different spin models on varied
complex networks, always finding an effective dimensionality equal to 1 [11]–[15]. Even
though this result seemed surprising at first, it is a direct consequence of the scaling for
the correlation length ξ ∼ N1/Deff , with Deff = 1.

There are no previous works studying the three-state majority-vote model on Erdös–
Rényi graphs, to allow a direct comparison of the present results. Yet, for completeness,
it would be of interest to mention earlier simulations of the majority-vote model on other
kinds of networks. The only works on the MV3 model to this date considered the model
on a regular square lattice [22, 23]. They find the universal value of Binder’s fourth-order
cumulant to be U� 	 0.61, and the exponents β/ν̄ = 0.134(5) and γ/ν̄ = 1.74(2), all of
which are in agreement with the results for the equilibrium three-state Potts model [24].
The present simulations of the MV3 model on globally connected networks yielded
U� = 1/3, and the following mean-field exponents: β/ν̄ = 1/2, γ/ν̄ = 0, β = 1, ν̄ = 2,
and γ = 0. From our simulation results we can conclude that the MV3 model defined on
a regular square lattice, on the Erdös–Rényi random graphs, and on the corresponding
globally connected network (the mean-field limit) belong to different universality classes.

Comparing the current results with the ones previously obtained for the two-state
model on random graphs [10], we first notice that the ordered region (q < qc) in the
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phase diagram of figure 3 is larger for MV3 than for MV2. This is expected since now we
might obtain three possible majority states. It should also be clear from the calculated
exponents that these models do not belong to the same universality class. In particular,
U� 	 0.30 for MV2, and U� 	 0.42 for MV3.

5. Conclusion

We have obtained the phase diagram and critical exponents of the three-state majority-
vote model with noise on random graphs. The second-order phase transition which occurs
in the model with mean connectivity z > 1 has exponents that show a slight variation
along the critical line. Nevertheless, our Monte Carlo simulations provide an effective
dimensionality Deff equal to 1 for all values of z. This result, which is in agreement
with several previous studies on spin models defined on complex networks, was shown
to be a consequence of the ansatz that the correlation length scales with the number of
nodes. Future work on the two- and three-state Potts model on random graphs would
be of interest in order to provide a direct comparison with our results in light of the
conjecture by Grinstein et al , which states that reversible and irreversible models with
same symmetry belong to the same universality class.
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[2] Tomé T, de Oliveira M J and Santos M A, 1991 J. Phys. A: Math. Gen. 24 3677
[3] de Oliveira M J, 1992 J. Stat. Phys. 66 273
[4] Santos M A and Teixeira S, 1995 J. Stat. Phys. 78 963
[5] Mendes J F F and Santos M A, 1998 Phys. Rev. E 57 108
[6] Kwak W, Yang J-S, Sohn J-I and Kim I-M, 2007 Phys. Rev. E 75 061110
[7] Yang J-S, Kim I-M and Kwak W, 2008 Phys. Rev. E 77 051122
[8] Grinstein G, Jayaprakash C and He Y, 1985 Phys. Rev. Lett. 55 2527
[9] Campos P R A, de Oliveira V M and Moreira F G B, 2003 Phys. Rev. E 67 026104

[10] Pereira L F C and Moreira F G B, 2005 Phys. Rev. E 71 016123
[11] Lima F W S, Fulco U L and Costa Filho R N, 2005 Phys. Rev. E 71 036105
[12] Lima F W S, 2006 Int. J. Mod. Phys. C 17 1257
[13] Luz E M S and Lima F W S, 2007 Int. J. Mod. Phys. C 18 1251
[14] Lima F W S, Sousa A O and Sumuor M A, 2008 Physica A 387 3503
[15] Wu Z-X and Holme P, 2010 Phys. Rev. E 81 011133
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