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‘We use maximally localized Wannier functions to construct tight-binding (TB) parametrizations for the e, bands
of LaMnOj based on first-principles electronic structure calculations. We compare two different ways to represent
the relevant bands around the Fermi level: (i) a d-p model that includes atomic-like orbitals corresponding to
both Mn(d) and O(p) states in the TB basis, and (ii) an effective e, model that includes only two e,-like Wannier
functions per Mn site. We first establish the effect of the Jahn-Teller distortion within the d-p model, and then
compare the TB representations for both models obtained from GGA+-U calculations with different values of
the Hubbard parameter U. We find that in the case of the d-p model the TB parameters are rather independent
of the specific value of U, if compared with the mean-field approximation of an appropriate multiband Hubbard
Hamiltonian. In contrast, the U dependence of the TB parameters for the effective e, model cannot easily be
related to a corresponding mean-field Hubbard model, and therefore these parameters depend critically on the
specific value of U, and more generally on the specific exchange-correlation functional, used in the electronic

structure calculation.
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I. INTRODUCTION

The construction of realistic low-energy Hamiltonians
based on first-principles electronic structure calculations is
an important tool for the investigation of correlated electron
systems, such as cuprates, manganites, or other complex
transition-metal (TM) oxides. While much of the general
physics determining the diverse properties of these materials
can be understood in terms of simplified models,' the
corresponding model parameters are generally unknown and
have to be adjusted to fit experimental data. Alternatively,
electronic structure calculations based on density functional
theory (DFT)** or quantum-chemical methods can be used
to determine these parameters,> which in turn allows for a
quantitative evaluation of the underlying model assumptions
and the construction of realistic model Hamiltonians with all
parameters determined ab initio.'%!!

Model Hamiltonians for correlated electron systems are
typically formulated within a tight-binding (TB) picture that
involves only a small number of electronic states localized
on certain atoms (e.g., the “d states” of the TM atoms
within a TM oxide).'=> Ideally, these states give rise to an
isolated group of bands around the Fermi energy, which
then determines the low-energy behavior of the system. A
corresponding TB representation can in principle be obtained
by constructing Wannier functions from the Kohn-Sham Bloch
states calculated within DFT.!1-16

In the case of model Hamiltonians that contain an explicit
electron-electron interaction, typically in the form of a local
Hubbard term with interaction parameter U, the DFT band
structure can either be viewed as mean-field approximation
to this interacting model, or as representative for the “nonin-
teracting” case, i.e., corresponding to U = 0 in the model
Hamiltonian. While it is often convenient to consider the
electronic structure calculated within either the local density
approximation (LDA)*!” or the generalized gradient approxi-
mation (GGA)'® as essentially noninteracting, this is probably
not a good assumption if the electronic structure is calculated
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using more advanced exchange correlation functionals such as
(LDA/GGA)+U or hybrid functionals.!%2!

In this work we use maximally localized Wannier functions
(MLWPFs)?*>~%* to obtain TB parametrizations for the important
case of LaMnOs, the parent material of the colossal magne-
toresistive manganites, and a prototype system for correlated
electron physics.>? We calculate the electronic structure of
LaMnOs; using the GGA+U method and different values for
the Hubbard parameter U. We then compare two different ways
to represent the relevant bands around the Fermi level: (i) ad-p
model that includes atomic-like orbitals corresponding to both
Mn(d) and O(p) states in the TB basis, and (ii) an effective
e, model that includes only two e,-like Wannier functions
per Mn site. In particular, we analyze the U dependence of the
two different TB parametrizations and relate this to commonly
used model Hamiltonians for manganites.

We find that for the d-p parametrization, the effect of U
is mostly local, leading to U-dependent shifts of the on-site
energies and an increase in the Jahn-Teller (JT) splitting,
whereas the corresponding hopping amplitudes are only
weakly affected by the value of U. Thus, the U dependence of
the d-p parameters closely resembles the U dependence of a
corresponding multiband Hubbard Hamiltonian in mean-field
approximation. On the other hand, the change of on-site
energies and JT splitting for the effective e, MLWFs, cal-
culated for different values of U, are distinctly different from
a corresponding mean-field model Hamiltonian. In addition,
there is also a strong U dependence of the effective e, hopping
amplitudes, which is due to electronic degrees of freedom that
are excluded from the TB basis. This indicates that while the
TB parametrization for the d-p model is fairly robust with
respect to a variation of U, for the case of the effective e,
basis an appropriate choice of U in the GGA+U calculation
is crucial. Our results demonstrate the simple fact that the
transferability of a specific TB parametrization is generally
increased if more electronic degrees of freedom are included
in the model description.
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This paper is organized as follows. In the next section
we first summarize the most important aspects of typical
model Hamiltonians for manganites, emphasizing in particular
the role of the JT distortion (Sec. I A), before introducing
MLWFs (Sec. I1 B) and describing the technical details of our
calculations (Sec. II C). In Secs. III A and III B we first present
the main features of the d-p model based on the MLWFs
calculated for U = 0 eV, and then clarify the effect of the
JT distortion on the corresponding TB parameterization. An
analogous analysis for the effective e, model parametrization
has recently been presented in Ref. 11. The effect of varying
the Hubbard U in the GGA+U calculation on the MLWF
parameters of the two different models is presented in
Sec. III C for the d-p model and in Sec. III D for the effective
e, model. Finally, Sec. IV summarizes our main conclusions,
while further details about the d-p TB parametrization can be
found in the Appendix.

II. METHOD AND THEORETICAL BACKGROUND
A. Jahn-Teller distortion in LaMnO;

LaMnO; crystallizes in an orthorhombically distorted
perovskite structure with Pbnm space group symmetry.2® The
distortion relative to the cubic perovskite structure can be
decomposed into three components:'? a staggered JT distortion
of the MnOg octahedra, alternating tilts and rotations of
these octahedra around the cubic axes (GdFeOs; distortion),
and an orthorhombic strain of the unit cell. The electronic
structure of LaMnOj3 around the Fermi energy is dominated
by Mn 3d states, which are split by the octahedral crystal
field into lower lying #,, and higher lying e, states.”’~%° The
formal d* occupation of the Mn** cation leads to a high-spin
configuration with filled majority spin #,, states, half-filled
majority spin e, states, and empty minority spin states. The
low-energy behavior of LaMnOjs is therefore governed by
the partially filled majority spin bands with predominant e,
character.

Motivated by this, the complex phenomenology observed
in manganites is often modeled within an effective TB model
that involves only two e, orbitals per Mn site. Electrons can
then hop between the two e, levels on neighboring sites,
and can interact with each other through a Hubbard-type
electron-electron interaction, with the f,, “core spins” through
a Hund’s rule interaction, and with the local JT distortion
through a crystal-field splitting (see, e.g., Ref. 3). It is usually
understood that the corresponding “e, orbitals” are spatially
extended Wannier orbitals that result from hybridization
between atomic-like Mn(e,) orbitals and the p orbitals of the
surrounding oxygen ligands.

The effect of the JT distortion on this e, manifold is
typically expressed via a local crystal-field splitting of the
form

Hip=—-% Y Chro ORTirtomo. (1)
R,o,a,b,i

Here, A is the JT coupling strength, 7, are the usual Pauli
matrices, Cpro 1S the annihilation operator corresponding to
orbital » with spin o at site R, and the JT distortion of the
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FIG. 1. (Color online) Left: Ideal cubic perovskite structure
viewed along the z axis. Right: Staggered Q*-type JT distortion
within the x-y plane. Oxygen anions are shown as small (red) spheres,
the La cation as a large (green) sphere. Mn cations (not shown) are
situated in the middle of each oxygen octahedron.

oxygen octahedron surrounding site R is described by specific
modes Q% (i = x,2).°

In the following we only consider a staggered JT distortion
of the form Q = —Qy,, where Rand R’ correspond to nearest
neighbor sites within the x-y plane (see Fig. 1). Thereby,

Ok = —=(dk — ).

V2
with di and di being the Mn-O distances along the x
and y directions, respectively, corresponding to the oxygen
octahedron surrounding the Mn at site R. We note that it has
been shown in Ref. 10 that this component of the JT distortion
has the most pronounced effect on the electronic structure of
LaMnOj;. Furthermore, in Ref. 11 we showed that the effect
of the various structural distortions on the calculated model
parameters can be analyzed separately, since they are to a
great extent independent of each other.

@)

B. Maximally localized Wannier functions

A set of N localized Wannier functions |w, ) correspond-
ing to a group of N bands that are described by delocalized
Bloch states |,,k) is defined by the following transformation:

lwar) = (27”%/ |:Z UM i) ] *To Q)

Thereby, T is the lattice vector of the unit cell associated with
the Wannier function, m is a band index, Kk is the wave vector
of the Bloch function, and the integration is performed over
the first Brillouin zone (BZ) of the lattice. Different choices
for the unitary matrix U® lead to different Wannier functions,
which are thus not uniquely defined by Eq. (3). A unique
set of maximally localized Wannier functions (MLWFs) can
be generated by minimizing the total quadratic spread of the
Wannier orbitals.??

Once the transformation matrices U® are determined, a
TB representation of the Hamiltonian in the MLWF basis is

obtained:
A= hyt
T,AT

nTJrATC"lT +H.c., 4

with

= Gy [, [Z Un')’ f,i?} o)
BZ

l
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Here, ¢ is the eigenvalue corresponding to Bloch function
|¥x). For cases where the bands of interest do not form an
isolated set of bands but are entangled with other bands, a
two-step procedure for obtaining the unitary transformation
matrices (which in this case are typically rectangular) is
employed.”

We note that T and AT in Eqgs. (3)—(5) indicate lattice
translations, whereas for crystal structures with more than one
atom per unit cell n and m represent a combined orbital and
site index, specifying the various orbitals at all sites within the
primitive unit cell.

C. Computational details

All results presented in this work are obtained from spin-
polarized first-principles DFT calculations using the QUANTUM
ESPRESSO program package,’® the GGA exchange-correlation
functional of Perdew, Burke, and Ernzerhof,'® and Vanderbilt
ultrasoft pseudopotentials.’’ La (5s,5p) and Mn (3s,3p)
semicore states are included in the valence. The Hubbard + U
correction is applied using the simplified approach according
to Dudarev et al.,”® which corresponds to the case J = 0 in the
more elaborate expression by Lichtenstein et al.'® Projections
on orthogonalized atomic Mn(d) orbitals are used to evaluate
the U-dependent contributions to potential and energy.

To analyze the effect of the JT distortion on the electronic
structure of LaMnOs, we perform GGA calculations with
different degrees of distortion. Starting from the ideal cubic
perovskite structure, we gradually increase the amplitude of
the JT distortion |Qy| from 0 to Qf = 0.151 A. The latter
value corresponds to the amount of distortion found in the
experimentally observed crystal structure of LaMnOs.>> For
the undistorted case we use a cubic perovskite structure
with lattice constant ay = 3.9345 A, which results in the
same volume V = 60.91 A3 per formula unit as in the
experimentally observed Pbnm structure.*

After obtaining the DFT Bloch bands, we construct MLWFs
using the WANNIER90 program integrated into the QUANTUM
ESPRESSO package.”* Starting from an initial projection of
atomic d and p basis functions centered on the Mn and O sites
onto the Bloch bands within an appropriately chosen energy
window, we obtain sets of either 14 atomic-like (d- p model) or
2 more extended e,-like (effective e, model) MLWFs per spin
channel and unit cell. In both cases we will in the following
refer to the MLWF Hamiltonian matrix elements 4, between
the two different e,-like MLWFs located on the same Mn site as
on-site off-diagonal element g, to any matrix element between
the same orbital at a particular site as on-site energy €, and
to matrix elements connecting two different sites as hopping
amplitudes t. To assess the effect of the “4-U” correction on the
two different MLWF parametrizations we then construct the
corresponding MLWFs for the fully JT distorted structure from
GGA+U calculations with different values for the Hubbard U.

Convergence of the DFT total energy and total magnetiza-
tion has been tested for the ideal cubic perovskite structure and
ferromagnetic (FM) order. We find the total energy converged
to an accuracy better than 1 mRy and the total magnetization
converged to an accuracy of 0.05 ug for a plane-wave energy
cutoff of 35 Ry and a I'-centered 10 x 10 x 10 k-point grid
using a Gaussian broadening of 0.01 Ry. These values for
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FIG. 2. (Color online) Projected DOS and band structure along
high-symmetry lines within the BZ for cubic FM LaMnOs;. In
the projected DOS plots, the filled (red) areas and solid (green)
lines correspond to Mn(e,) and Mn(#,,) states, respectively, while
dotted (blue) and dashed (orange) lines correspond to the O(p,) and
O(p,) states, respectively. In the band structure plots, the dispersion
calculated from the MLWFs is represented by thick (red) lines. The
Fermi level is indicated by the horizontal dashed lines.

plane-wave cutoff and Gaussian broadening are used through-
out this work, whereas an appropriately reduced k-point grid of
7 x 7 x 10 is used for the JT distorted structure with doubled
unit cell in the x-y plane. The MLWFs are considered to be
converged if the fractional change of the quadratic spread (both
gauge-invariant and non-gauge-invariant part) between two
successive iterations is smaller than 10710,

III. RESULTS AND DISCUSSION

A. d-p TB parametrization for cubic LaMnO;

In this section we establish the general features of the
extended d-p TB description of LaMnO; within the ideal
cubic perovskite structure, before we analyze the effect of
the JT distortion in the next section. We are considering a
FM arrangement of magnetic moments, but we have verified
that the corresponding results for A-type antiferromagnetic
(A-AFM) order do not exhibit any significant differences.

Figure 2 shows the projected densities of states (DOS) and
band dispersion for both majority and minority spin channels.
In agreement with previous calculations it can be seen that
the majority spin DOS around the Fermi energy exhibit
predominant Mn(e,) orbital character, with Mn(#,,) and O(p)
bands located at slightly lower energies.'®!"?”-28 For minority
spin, states with predominant Mn(e,) and Mn(#,, ) character are
located above the Fermi level. Strong hybridization between
O(p) and Mn(d) orbitals is apparent from the various peaks in
the DOS around 8 eV.

We construct 14 MLWFs per spin channel from the Kohn-
Sham states located within an energy window of 3—17 eV and
3-20 eV for majority and minority spin, respectively. This
corresponds to a TB representation of LaMnOj3 containing
5 Mn(d) orbitals and 9 O(p) orbitals per unit cell (three
p orbitals corresponding to each of the three oxygen atoms
within the simple cubic perovskite unit cell). The resulting
MLWFs are depicted in Fig. 3. Three of the O(p) orbitals
(one on each O atom) are pointing toward the Mn atom

075118-3



ROMAN KOVACIK AND CLAUDE EDERER

FIG. 3. (Color online) Real-space representation of the MLWFs
corresponding to the d-p parametrization (FM, majority spin).
Depicted are Mn(3z> — r2), Mn(x? — y?), and Mn(xy) MLWFs (top
row from left to right), as well as two examples of O(p, ) and O(p,)
orbitals (bottom row). The isosurface shown corresponds to a value
of +1/+/V where V is the unit cell volume. Picture generated using
XCRYSDEN.

and hybridize with the Mn(e,) orbitals. We call them O(p,)
orbitals. The remaining 6 O(p) orbitals (two on each O atom)
are oriented perpendicular to the Mn-O bond and hybridize
with the Mn(t,,) orbitals. These will be called O(p,) orbitals
in the following.

The MLWEF bands [shown as thick (red) lines in Fig. 2] are
identical to the corresponding DFT bands for majority spin,
whereas for minority spin the MLWF and DFT bands above
the Fermi energy exhibit certain differences which are due to
the strong entanglement with other bands in that energy region.

From the real-space Hamiltonian matrix elements in the
MLWF basis, Eq. (5), we find that the most dominant
hopping corresponds to the shortest Mn-O and O-O bonds (see
Fig. 10), but that a variety of other hopping amplitudes are also
nonnegligible. In the following we will focus on the nearest
neighbor Mn-O hopping amplitudes (¢, s and 2, ,7) and
analyze how they are affected by the JT distortion and the
inclusion of a Hubbard U in the DFT calculations. A more
detailed discussion of the d-p TB parameterization for cubic
LaMnOj; can be found in the Appendix.

B. Effect of JT distortion on the d-p TB parametrization

We now analyze the effect of the JT distortion on the on-site
energies and nearest neighbor hopping parameters of the d-p
model. As in the previous section, we will discuss only results
for FM order as we do not find significant differences for the
case of A-AFM order.

Figure 4 shows the diagonal on-site energies & correspond-
ing to Mn(e,), Mn(t2,), O(p:), and O(p,) MLWFs, as well
as the on-site off-diagonal matrix elements g between the
two Mn(e,) orbitals on the same site as a function of the
JT amplitude Q*/Qj. It can be seen that the on-site energies
for the various orbitals are essentially unaffected by the JT
distortion. The corresponding changes, which lead to small
differences between formerly symmetry-equivalent orbitals
(see below for the case of the two eg-like MLWFs), are of the
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FIG. 4. On-site MLWF matrix elements of the d-p model as
function of the JT distortion. (a) and (b) On-site energies for
majority/minority spin. (c) On-site off-diagonal element g. (d)
Splitting Ae between on-site energies of the two e,-like MLWFs.

order of a few tens of meV, and are thus negligible compared
to the e,-1, splitting or the d-p energy separation.

A more distinct effect of the JT distortion can be seen in
the on-site off-diagonal matrix element g between the two
majority spin Mn(e,) orbitals on the same site. This matrix
element is zero for the undistorted structure, but exhibits a
linear increase to a value of about 0.25 eV for full JT distortion.
This is consistent with the usual crystal-field picture of e,
orbitals in an octahedral environment [see also Eq. (D3
Within a {|3z% — r2),|x> — y?)} orbital basis, the Q*-type JT
distortion gives rise to a nonzero off-diagonal matrix element
that increases linearly with the JT distortion, while the diagonal
elements of the Hamiltonian remain constant.

However, the effect of the JT distortion observed for the
minority spin g is significantly weaker than for the majority
spin case. In fact, itis of similar magnitude as the small splitting
between the corresponding diagonal matrix elements (on-site
energies) Ae = ¢[Mn(3z> — r?)] — e[Mn(x? — y?)]. We thus
define a total JT-induced orbital splitting within the “e,” orbital
subspace as the difference in eigenvalues of the correspond-
ing 2 x 2 on-site Hamiltonian matrix, which is given by
8 = \/A&? 4+ 44%. From the results presented in Fig. 4 for
full JT distortion, i.e., Q*/Qp = 1, we obtain 64 = 0.50 eV
for majority spin and §, = 0.07 eV for minority spin.

To understand this large difference between majority and
minority spin, we note that in a partially covalent system
like LaMnOs, the JT-induced orbital splitting is caused by
a superposition of two effects: (i) the true (electrostatic)
crystal-field effect, and (ii) a “ligand-field” effect due to
changes in hybridization with the surrounding ligand orbitals.
While the pure electrostatic crystal-field effect is identical for
both spin projections, the hybridization with the surrounding
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ligand orbitals is different for majority and minority spin
orbitals, due to their large energy difference of about 3—4 eV.

In order to verify whether the large difference between
majority and minority spin JT splitting is indeed due to a strong
ligand-field contribution, we have constructed an alternative
set of 20 MLWFs per formula unit and spin channel, where we
explicitly included also the bands corresponding to O(s) and
semicore La(5p) states. These states are energetically lower
than the Mn(d) and O(p) bands shown in Fig. 2, and are
centered around E &~ —3 eV [La(5p)]and E ~ —5eV [O(s)].
The inclusion of these states in the MLWF basis reduces
the “tails” in the e,-like MLWFs located at surrounding O
and La atoms, and should therefore decrease the ligand-field
contribution to the local JT splitting. Indeed, we obtain §;,, =
0.36/0.12 eV in this case; i.e., the spin-dependent ligand-field
contribution to the JT splitting is indeed significantly reduced
compared to the d-p MLWFs. The remaining difference can
be ascribed to further contributions of orbitals that are not
included in the MLWF basis and to the remaining small O(s),
O(p), and La(p) contributions on the surrounding sites, which
are required to ensure orthogonality between the MLWFs.

We also note that the JT splitting corresponding to the
rather localized e, MLWFs of the d-p TB model (0.50 eV for
majority spin) is a factor of two smaller than the corresponding
splitting for the more spatially extended MLWFs of the
effective e, model which was reported in Ref. 11 (0.97
eV for majority spin). This demonstrates the much stronger
ligand-field effect in the less localized effective e, MLWFs.

Next, we analyze the effect of the JT distortion on the
nearest neighbor hopping between Mn(d) and O(p) orbitals.
Figure 5 shows the corresponding changes in the majority spin
hopping amplitudes (the results for minority spin do not exhibit
any qualitative differences).

We first discuss hopping between Mn(fy,) and O(py)
orbitals [Fig. 5(a)]. It can be seen that the hopping amplitude
Iiog, pr SPlits essentially according to the different Mn-O bond
lengths in the JT distorted structure. The hopping amplitudes
along the short (long) Mn-O bonds within the x-y plane

(a) (b)
T ‘ T ‘ T ‘ T ‘ T
12— —
S 16 0068888 :4; S
=08 TP
S [|— cubic 1 < [ — cubic 1
< 0.6H @ xz/yzout-of-plane| —{ < 0.6H ® 32272 out-of-plane —
H O xz/yzin-plane 1 H O 3z%2in-plane .
04H © xyin-plane — 04H ¢© x2)?in-plane -
T T T T ) S S B S S — — ——
0 02 04 06 08 1 0 02 04 06 08 1
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FIG. 5. Effect of increasing JT distortion on the hopping am-
plitudes #, ,» (a) and 7., s (b) between Mn(d) and O(p) nearest
neighbor orbitals (symbols). The different hopping amplitudes are
denoted via the corresponding Mn(d) orbital and the direction of the
hopping (“in-plane” corresponds to x-y directions, “out-of-plane” to
the z direction). The solid lines correspond to the hopping ampli-
tudes for a perfect cubic perovskite structure with lattice constant
a = ay+ Aa, where Aa = +/2Q*. Upper/lower branches corre-
spond to short/long Mn-O bonds.
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increase (decrease) with increasing JT distortion, while the
hopping along the z direction, i.e., corresponding to constant
Mn-O bond distance, is only weakly affected.

In order to assess to what extent the d- p hoppings in the JT
distorted structure are simply determined by the corresponding
Mn-O distances, we also calculate MLWFs for LaMnOj;
in the undistorted simple cubic perovskite structure (i.e.,
with all three distortions discussed in Sec. I A deactivated)
with different lattice constants a. The Mn-O distances in
the cubic structures with @ = ay == Aa are identical to the
long/short Mn-O bond length in the JT distorted structure with
Q" = Aa/~/2. The corresponding results for the nearest
neighbor hopping amplitudes between Mn(d) and O(p) or-
bitals are also shown in Fig. 5.

It is apparent that the #,5, ,~-type hopping amplitudes in the
JT distorted structures are nearly identical to the corresponding
hopping amplitude in the undistorted cubic structure with the
same Mn-O distance. The small deviations between these two
cases as well as the weak effect of the JT distortion on the
ti2g,p= hopping along z are due to changes in the orbital
character of the MLWFs with increasing JT distortion. Thus,
the magnitudes of the various hopping amplitudes are indeed
determined mostly by the corresponding Mn-O bond lengths.

The case of the ., ,, hopping is only slightly differ-
ent. The hopping (both in-plane and along z) between the
Mn(3z> — r?)-type orbital and the surrounding O( p,,) orbitals
compares well with the hopping amplitude in the undistorted
structure with the same Mn-O distance (even though the
agreement for the short Mn-O distance is not as good as for
ti2¢,pr)- On the other hand, the JT-induced splitting of the
in-plane hopping between the Mn(x? — y?)-type orbital and
the surrounding O(p) orbitals is significantly weaker than the
corresponding bond-length dependence in the cubic structure.
This indicates a strong change of the |x> — y?)-type orbital
with increasing JT distortion. This change is due to different
admixture of other orbitals that are not explicitly included
in the MLWF construction, i.e., O(s) and La(p), which lead
to a reduction/expansion of the lobes directed along the
shorter/longer Mn-O bonds with increasing JT distortion. This
partially compensates the effect of changing Mn-O distance
and leads to the observed JT dependence of the hopping.

C. Effect of U within the d-p model

In order to investigate the influence of the Hubbard U
parameter on the TB parametrization obtained from the
MLWFs, we now perform GGA+U calculations for the fully
JT distorted structure and FM order using different values for
U. Figure 6 shows the resulting U dependence of the on-site
MLWF matrix elements. It can be seen that the diagonal
elements (on-site energies ¢) corresponding to O(p)-type
MLWFs are virtually unaffected by the value of U, while
the corresponding matrix elements for Mn(#,) and Mn(e,)
orbitals exhibit a more or less linear dependence on U'.

This linear dependence is a direct consequence of the
U -dependent potential shift applied to the TM d states within
the DFT “+U” approach:?°

(Smm’
AVS  =U ( o n;m,) : (6)
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FIG. 6. (Color online) On-site energies corresponding to the d-p
model as a function of Hubbard U for majority spin (a) and minority
spin (b). (¢) U dependence of the on-site off-diagonal elements g. The
small open (red) symbols represent the GGA+U potential shifts added
to the corresponding MLWF on-site matrix elements for U = 0.

Here, nj,, , is the occupation matrix element between atomic
orbitals m and m’ for spin projection o, which is calculated
from the projection of the occupied Bloch states on fixed
atomic orbitals.

In order to quantify whether the U dependence of the
on-sitt MLWF matrix elements does indeed correspond to
this potential shift, we explicitly evaluate Eq. (6) for each
U, using the atomic occupation matrix elements obtained
from the corresponding GGA+U calculation, and add the
so-obtained shifts to the on-sitt MLWF matrix elements for
U =0 eV. The resulting data is shown as small open (red)
symbols in Fig. 6 and are nearly identical to the MLWF matrix
elements calculated for the corresponding values of U. Thus,
the GGA+-U potential shifts are directly reflected in the on-site
matrix elements of the MLWFs.

The reason for this good correspondence between the
GGA+U potential shifts and the U dependence of the on-site
MLWF matrix elements is the fact that the MLWFs of the
extended d-p model are rather similar to the atomic orbitals
used as projector functions within the GGA+U approach.
To further demonstrate this similarity, we also compare the
occupation matrix elements used to evaluate the GGA+U
potential shifts with the occupation of the corresponding
MLWFs:#

Ef
nﬁyF=/’de/<m§:@ﬁ5%@—ama$, U
—o0 BZ ]

where Er is the Fermi energy. The corresponding values
for U =0 eV are listed in Table I. It is apparent that the
occupations of the MLWFs are very similar to the occupations
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TABLE 1. Average occupations n{, —corresponding to Mn(t,,)
and Mn(e,) orbitals calculated for U = 0 in the fully JT distorted
structure. Rows denoted “Atomic” correspond to the fixed atomic
orbitals used to evaluate the GGA+U functional; rows denoted
“MLWEF” contain the occupation of the MLWFs calculated according
to Eq. (7); rows denoted “Formal” correspond to the ionic limit based
on a high-spin d* configuration of the Mn cation. The last column
contains the off-diagonal occupation matrix element n; . between
the two different e, orbitals. The first/last three rows correspond to
majority/minority spin.

o lhe e, e, off diagonal
Atomic 0 0.99 0.72 —0.11
MLWF 0 1.00 0.68 —0.13
Formal 0 1.0 0.5
Atomic l 0.11 0.22 0.03
MLWF l 0.11 0.15 0.02
Formal 3 0.0 0.0

of the atomic orbitals used as GGA+U projector functions.
Furthermore, we note that due to the strong hybridization
between the Mn(d) and O(p) states, the occupation of
the atomic-like d orbitals are quite different from a naive
expectation based on the formal ionic configuration of the
Mn3* cation.

The U dependence of the on-site off-diagonal matrix
element ¢ can be understood in the same way and is related
to the off-diagonal occupation matrix element n{, ., where
m=13z%> — r?) and m’ = |x? — y?). The nonlinearities that can
be observed for large U are due to changes in the corresponding
n, .- Note that since ¢ is directly related to the JT splitting,
increasing U effectively amounts to increasing the strength
of the JT coupling. This is consistent with the fact that
the (LDA/GGA)+U approach stabilizes the JT distortion
compared to pure LDA/GGA. >3

The U dependence of the hopping amplitudes between
O(p)- and Mn(d)-like MLWFs for majority spin and FM order
is shown in Fig. 7. All depicted hopping amplitudes exhibit
a similar small increase in magnitude. The effect of U on
the hopping amplitudes for minority spin (not shown) is even
weaker than for the majority spin orbitals. These small changes
in the hopping amplitudes for both majority and minority

(a) LI e é T é (b) 2T * ‘ P )
88889 868 ¢o000 00 4
1 lLeb-© © O © Y gi
$3338888 00000000
0.8
S ce0888 o 12 -
<06 608 % 900000000
504 EO'Sfooooooooi
® xz/yzout-of-plane 04: ® 3z2-2 out-of-plane ;
02H o xz/yzin-plane [l © 32272 in-plane
& xy in-plane 1 © x?-)? in-plane 7
0 T T T T T T T 1 0 T T T T T T T 1
0 3 6 9 0 3 6 9

U(eV) U(eV)

FIG. 7. Magnitude of hopping amplitudes between Mn(d) and
O(p) nearest neighbor orbitals as function of the Hubbard U. (a)
, — pr hoppings. (b) e, — p, hoppings. Notation is the same as
in Fig. 5.
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q (V)

U (eV) U(eV)

FIG. 8. On-site energies ¢ (a) and on-site off-diagonal matrix
element g (b) of the effective e, MLWF parametrization as function
of the Hubbard U. Majority spin and minority spin are denoted by up
and down triangles, respectively.

spin can be attributed to changes in orbital character of the
corresponding MLWFs. These changes in orbital character
arise from a different admixture (hybridization) of orbitals
centered at the surrounding ions, which results from the
U -dependent shifts of the on-site energies of the Mn(d) states
relative to all other orbitals.

D. Effect of U within the effective e, model

We now contrast the U dependence of the TB parameters
for the extended d-p model presented in the previous section
with the case of an effective e, model with only two e,-like
Wannier orbitals on each Mn site. This is probably the most
common model used to describe the physics of manganites
(see, e.g., Ref. 3), and a detailed analysis of the effect of
various distortions and different magnetic arrangements on the
corresponding MLWF matrix elements for U = 0 eV has been
presented in Ref. 11. Here we focus on changes in the MLWF
parametrization due to the Hubbard U correction for the
purely JT distorted structure and FM order. The corresponding
Wannier functions are constructed from the Kohn-Sham states
located within an energy window of 12.0-17.0 eV and
15.9-20.0 eV for majority and minority spin, respectively.
For further details see Ref. 11.

Figure 8 shows the U dependence of the on-sitte MLWF
Hamiltonian matrix elements for the effective e, model. It can
be seen that in particular the on-site energies exhibit a very
similar trend to the on-site energies of the eg-like MLWFs
in the d-p model, but that the U dependence is weaker than
in the latter case. The slope de/dU for both majority and
minority spin is only about 66% compared to the d-p model.
This indicates that the U dependence of the on-site energies
for the effective e, MLWFs is still determined by the GGA+U
potential shifts, Eq. (6), but is renormalized by the extent of
overlap between the extended MLWF and the corresponding
e, atomic orbital. In other words, the U -dependent energy shift
experienced by the MLWF is determined by the projection of
the MLWF on atomic orbitals and the occupation of these
atomic orbitals.

In particular, this shows that the effect of U on the on-site
energies of the effective e, MLWFs is not determined by
the occupation of the MLWFs themselves via a relation
similar to Eq. (6). The occupation of the effective e, MLWFs
is essentially identical to the “formal” occupations listed

PHYSICAL REVIEW B 84, 075118 (2011)

@—@ out-of-plane
B— in-plane
9—@ in-plane mixed

; (eV)

@—@ out-of-plane
B—. in-plane
@—@ in-plane mixed

U (eV)

FIG. 9. Effect of U on the nearest neighbor hopping amplitudes
of the effective e, MLWFs for majority spin (a) and minority spin (b).
“In-plane” and “out-of-plane” correspond to hopping between similar
orbitals within the x-y plane and along z, respectively, while “in-plane
mixed” denotes the hopping between two different ¢, MLWFs at
neighboring sites within the x-y plane.

in Table I, corresponding to the formal 3+ charge state
of the Mn cation in LaMnO3 (0.5 for majority spin and
0.0 for minority spin). Therefore, the occupation-dependent
potential shift following from a mean-field approximation
to the Hubbard interaction similar to Eq. (6) would be zero
for the majority spin e, states.’’ The U dependence of the
corresponding on-site energies is thus notably different from
a mean-field treatment of the electron-electron interaction in a
two-orbital Hubbard-like model derived from the effective e,
TB parametrization.

We point out that in addition to the different dependence on
orbital occupation, the magnitude of the screened Hubbard
U acting on the extended e,-like Wannier orbitals will of
course be significantly reduced compared to the magnitude
of U corresponding to more localized atomic-type orbitals. A
comparison of the value of U for “atomic-like” and “effective”
Wannier orbitals in an Fe-pnictide system based on calcula-
tions using the constrained random phase approximation has
been presented recently in Ref. 38.

Similar to the case of the on-site energies, the U dependence
of the off-diagonal on-site matrix elements g, shown in
Fig. 8(b), resembles the U dependence of the corresponding
atomic-like MLWFs shown in Fig. 6(c). The decrease of g for
majority spin observed for U > 6 eV can then be ascribed
to changes in orbital character of the extended MLWFs,
which lead to different projections between MLWFs and the
corresponding atomic orbitals.

Finally, Fig. 9 shows the U dependence of the nearest
neighbor hopping parameters for the effective e, MLWFs.
For majority spin, there is an overall increase in the magnitude
of the hopping, whereas for minority spin there is an overall
decrease. Compared to the d- p model discussed in the previous
section, the effect of U on the hopping amplitudes of the
effective e, model is strongly enhanced, with typical changes
between 30% and 60% over the considered range of U
values. For the in-plane hopping between |3z> — r2)- and
|x2 — y?)-type orbitals the change can be even more than
100%.

This strong effect of U on the hopping amplitudes of the
effective e, MLWFs can be explained by the changes in the
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underlying d- p model. The effective e, MLWFs are essentially
linear combinations of an atomic-like Mn(e,) orbital and
O(p,) orbitals on the surrounding anions. As demonstrated
in the previous section, the on-site energies of the atomic
d orbitals are strongly shifted relative to the oxygen p orbitals
as a function of U. This shift affects the hybridization between
the atomic orbitals and thus changes the admixture of O(p,)
orbitals in the effective e, MLWEF. For majority spin, increasing
U decreases the energy difference between atomic O(p) and
Mn(d) orbitals and thus increases the hybridization, i.e., the
admixture of O(p) in the effective e, MLWF. This leads to an
increase of the hopping amplitude due to the larger overlap
between effective e, orbitals at neighboring Mn sites. For
minority spin the trend is opposite to this, resulting in the
decrease in magnitude seen in Fig. 9(b).

Considering a simple d-p nearest neighbor TB model for
the cubic perovskite structure, one can show that in the limit
of large energy separation between the d and p orbitals, the
“antibonding” bands that result from the d- p hybridization are
formally equivalent to an effective “d-only” TB model with
direct hopping between d orbitals on adjacent TM sites. The
amplitude of this “effective” d-d hopping is thereby given as

2

t
ff dp
15, = . (8)
Ed —&p

Obviously, the overall trends discussed in the previous para-
graph are consistent with this simple picture, but the limit
for which Eq. (8) is valid is not fulfilled in the case of
LaMnOs. This is apparent from the on-site energies shown
in Fig. 6(a), where it can be seen that for values of U larger
than 5-6 eV the Mn(e,) states become essentially degenerate
with the O(p) states. We also verified that Eq. (8) is not
fulfilled quantitatively by the hoppings calculated from both
sets of MLWFs (d-p and effective e,). Thus, even though it
is possible to obtain a reasonable MLWF parametrization of
the effective e, bands for all values of U, it is not obvious
whether a low-energy description of LaMnOj based only on
effective e, states is always physically reasonable. We note that
valuesof U & 9eVand U — J = 4.5eV have been calculated
for LaMnOs3 in Refs. 39 and 40, respectively, using different
methods. Furthermore, an optimal value of U = 5.5 eV has
been suggested in Ref. 41.

The partial “breakdown” of the effective e, description of
LaMnOs; for values of U larger than 5-6 eV also leads to
a strong dependence of some MLWF parameters on subtle
differences in the underlying Kohn-Sham band structure.
For example the “crossing” of the mixed in-plane hopping
amplitudes, i.e. corresponding to the in-plane hopping between
|3z2 — r?)-and |x> — y?)-type orbitals, that can be seen around
U = 5 eV in Fig. 9(a), appears only if orthogonalized atomic
orbitals are used to evaluate the “4-U” correction to the GGA
energy functional. If instead a projection on nonorthogonal
atomic orbitals is used (option “atomic” instead of “ortho-
atomic” within QUANTUM ESPRESSO), the resulting MLWF
matrix elements do not exhibit this feature.

IV. SUMMARY AND CONCLUSIONS

In summary, we have discussed differences in the MLWF-
derived TB parametrization of LaMnOs that result from
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different values of the Hubbard U used in the GGA+U
calculation from which the MLWFs are obtained. Thereby, we
have compared two different ways to represent the important
bands around the Fermi energy. First, a d-p TB model based on
atomic-like Mn(d) and O(p) MLWFs, and second, an effective
e, TB model involving only two e,-like Wannier orbitals
per Mn.

We have shown that the hopping amplitudes of the d-p
model are only weakly affected by a variation of U, and
that the resulting changes in the on-site Hamiltonian matrix
elements are consistent with a mean-field approximation to
the electron-electron interaction for the corresponding TB
Hubbard Hamiltonian. As a result, the TB parameters for the
d-p model of LaMnOj are fairly insensitive to variations of U
and can therefore be determined accurately without detailed
knowledge about the precise value of U for the corresponding
d orbitals.

In contrast, the hopping amplitudes for the effective e, TB
parametrization depend strongly on the value of U used in
the GGA+U calculation. This is due to pronounced changes
in the amount of admixture of O(p) ligand orbital character
in the effective e, MLWFs, which in turn is due to the large
U -dependent shifts of the on-site energies of the corresponding
atomic orbitals. Furthermore, the U dependence within a
mean-field Hubbard Hamiltonian derived from the effective
e, MLWF parameters is distinctly different from the U
dependence of the MLWF parameters themselves. The former
is determined by the occupations of the effective e, orbitals
and the value of the screened Hubbard interaction in that
basis, whereas the latter is determined by the occupations and
the value of the screened Hubbard interaction corresponding
to atomic-like d states. A determination of suitable TB
parameters for an effective e, model of LaMnO; therefore
requires an accurate knowledge of U in both basis sets. This is
particularly important for the determination of the JT coupling
strength, which is determined from the on-site splitting within
the e, orbital manifold. This splitting on the other hand is
critically affected by the value of U in both the GGA+U
calculation and the mean-field Hubbard Hamiltonian.

In addition to the U dependence, we have also analyzed
the effect of the staggered JT distortion (“Q*-type”) on the
TB parametrization of the d-p model. We have found that the
JT distortion manifests itself both as a local ligand-/crystal-
field splitting within the e, orbital manifold, as well as via a
pronounced bond-length dependence of the nearest neighbor
d-p hopping amplitudes. Our results demonstrate that even
for the rather localized atomic-like d-p MLWFs, the ligand-
field effect dominates over the purely electrostatic crystal-field
effect. Furthermore, we have verified that the changes in the
nearest neighbor hopping amplitudes due to the JT distortion
are almost fully determined by the resulting change in Mn-O
bond length.

A number of more general conclusions can be drawn from
the results obtained in this work. It is reasonable to assume
that the sensitivity/insensitivity of certain MLWF parameters
from the specific value of U used in the GGA+U calculation
can be generalized to a general sensitivity/insensitivity from
the choice of exchange-correlation functional used in the
electronic structure calculation. In the present study, we made
use of the similarity between the “+U” correction to the GGA
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functional and the mean-field approximation to the electron-
electron interaction in the corresponding model Hamiltonian
(assuming of course that the latter is described via a local
Hubbard interaction). Using this similarity, the observed trends
in the MLWF TB parameters and the difference between
the two different TB models can be explained. The same
similarity between DFT and mean-field Hubbard model is
not present if the electronic structure is calculated using
other “beyond LDA/GGA” methods such as for example
self-interaction corrected methods,'” hybrid functionals,?! or
the GW approach.*? In these cases the electronic band structure
should also be compared with the mean-field approximation
of an appropriate TB Hamiltonian. To extract the “bare”
or “noninteracting” on-site energies and off-diagonal on-site
matrix elements, one has to then subtract a U-dependent
shift similar to Eq. (6). The corresponding value of U has
to be calculated by other means, for example via the recently
proposed approach based on the constrained random phase
approximation.*344

While the so-obtained TB models will always give an
essentially perfect representation of the Kohn-Sham bands
for the given reference, it is still important to test whether
the corresponding parametrization is also transferable to
slightly different configurations, i.e., with different structural
distortions and/or magnetic/orbital order. Of course, as shown
through the comparison between the effective e, and the more
elaborate d-p model for LaMnOs, transferability can always
be improved by including more orbitals in the TB basis set.

Finally, we note that in the present work we have focused on
how to obtain TB parameters using the DFT Kohn-Sham band
structure as (mean-field) reference. An entirely different, albeit
at least equally important, question is whether these bands,
calculated using a suitable exchange-correlation functional for
a particular system, are indeed a good representation of the
real material. However, this question is beyond the scope of
the present study and will most likely be the topic of future
research for a number of years to come.
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FIG. 10. (Color online) Schematic depiction of all closest neigh-
bor Mn-O and O-O hopping amplitudes within the extended d-p
model of LaMnOs.
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FIG. 11. (Color online) Band dispersion calculated from the
MLWEFs (thick line) and from the truncated TB model described
in the main text (dots and line). (a) Majority spin. (b) Minority spin.

APPENDIX: FURTHER DETAILS ON THE d-p
TB PARAMETRIZATION FOR CUBIC LaMnO;

In this appendix we give a more quantitative account of the
d-p TB parametrization obtained from the MLWFs for simple
cubic LaMnO3 and FM order.

There are 2 different hopping parameters between nearest
neighbor Mn(d) and O(p) states (%, o, t12¢, p= ) and 4 indepen-
dent hopping parameters between closest neighbor O(p) states
(tpo, pos tpo, pr» tplm oo t,'l,,, p=) that are allowed by the symmetry
of the system. All of these hopping parameters are illustrated
in Fig. 10. The corresponding values together with the various
on-site energies are summarized in Table II. It can be seen that
the minority spin hopping amplitudes corresponding to nearest
neighbor d- p hopping are slightly larger than for majority spin,
whereas the opposite is the case for the closest neighbor p-p
hoppings (except for tﬂm pr)-

Within the two-center approximation to the linear combi-
nation of atomic orbitals (LCAO) method all closest neighbor
O(p)-O(p) hoppings can be expressed as a linear combination
of purely o- and m-type hopping parameters, t(ppo) and
1(pp).*5 Thereby, t(ppr) corresponds directly to 7z 7 in
our notation. Calculating an estimate for #(ppo) from each
of the remaining MLWF hopping parameters as (t,‘l,,, pr—

2t popr)s (thpr — 2tk 1), OF (—thr pr + 2 pre ), We Obtain

TABLE II. On-site energies and nearest neighbor Mn-O and
0-0 hopping amplitudes obtained for the d-p MLWFs in the cubic
structure with FM order. In addition, the hopping between #,, orbitals
along the shortest Mn-Mn distance is also listed. All values are given
ineV.

Majority spin Minority spin
¢[Mn(e,)] 12.459 16.074
£[Mn(t,)] 11.031 15.104
e[O(p,)] 9.400 9.603
e[O(px)] 9.888 10.432
leg,po 1.768 1.861
lt2g,pn —0.852 —0.982
tpo,po —0.444 —0.409
tpo.pr 0.306 0.265
Lo o —0.337 —0.304
tﬁﬂ.pﬂ —0.014 —0.092
lizg.12g —0.069 ~0.105
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values of 0.873/0.725 eV, 0.660/0.516 eV, or 0.627/0.622 eV,
for majority/minority spin, respectively. The spread in these
values shows to what extent the approximation of rigid atomic
orbitals is not fulfilled within the d-p set of MLWFs.

In a previous study, LCAO parameters for manganites were
deduced based on a cluster-model analysis of photoemission
spectra,* leading to the following values for the hopping inte-
grals: t(pdo) = 1.8 eV, t(pdm) = 0.9 eV, t(ppo) = 0.60 eV,
t(ppm) = —0.15 eV. These values are in reasonable agree-
ment with the values obtained from the MLWFs listed in
Table II.

In Fig. 10 we show a comparison of the dispersion between
the MLWF bands and a 14-band TB model calculated using
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the parameters given in Table II, i.e., by neglecting all other
further neighbor hoppings. The overall band dispersion is
rather well reproduced in the truncated TB model. However,
due to a rather slow decay of hopping amplitudes with
further neighbor distance, certain features are not reproduced.
In addition, neglecting further-neighbor hoppings also leads
to a slight underestimation of the total bandwidth in the
truncated TB model. We find that there are overall 14 different
further neighbor hoppings with magnitudes in the range of
(0.020-0.113) eV. Out of these only the direct hopping between
neighboring 1, orbitals (last line in Table II) leads to a
significant improvement of the TB bands and is therefore
included in Table II.
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