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Abstract

Insulin regulation of hepatic gene transcription is a vital component of glucose homeostasis. Understanding the molecular
regulationof thisprocessaids thesearch for thedefect(s) thatpromotes insulin-resistant states, suchasdiabetesmellitus.We
havepreviouslyshown that the insulin regulationofhepatic IGF-bindingprotein-1 (IGFBP1)expression requires thesignalling
proteins phosphatidylinositol 3-kinase (PI 3-kinase) and mammalian target of rapamycin (mTOR). In this report, we
demonstrate that activation of themTORpathway, without activation of its upstream regulator PI 3-kinase, reduces IGFBP1
expression. Therefore, mTOR activation is sufficient to mimic insulin regulation of this gene. However, longer exposure
(O3 h)of cells to insulin reduces the importanceof thispathway in insulin regulationof thegene, suggestinga temporal switch
in signalling mechanisms linking insulin action to the IGFBP1 gene promoter. In contrast, the activation of PI 3-kinase is
required for insulin regulation of IGFBP1 under all conditions tested. Therefore, an mTOR-independent, PI 3-kinase-
dependent pathway becomesmore important in IGFBP1 regulation after long exposure to insulin. This is a novel concept in
insulin regulation of gene expression and demonstrates the importance of temporal analysis of signalling processes.
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Introduction

Increased serum insulin level following a meal results
in complete shutdown of hepatic glucose output
(Granner & Pilkis 1990). This is achieved by turning
off glycogen breakdown and endogenous gluconeo-
genesis (Pilkis & Granner 1992, Nordlie & Foster
1999). The latter process requires transcriptional
repression of phosphoenolpyruvate carboxykinase
(PEPCK) and glucose-6-phosphatase (G6Pase), rate-
limiting steps in gluconeogenesis and loss of this
regulation contributes to the hyperglycaemia that
characterises type 2 diabetes mellitus (Granner &
Pilkis 1990, Granner & O’Brien 1992, Kahn 1994,
Hanson & Reshef 1997, Sutherland et al. 2003). Much
work is ongoing to understand the molecules and
pathways that link the insulin receptor to these gene
promoters. Indeed, an insulin-responsive DNA
sequence, common to several gene promoters, includ-
ing PEPCK and G6Pase, termed the PEPCK-like
insulin receptor substrate (IRS) or the thymine-rich
insulin-response element (TIRE), has been identified
as the likely final target for this insulin-signalling
cascade (for review, see O’Brien & Granner 1996,
Sutherland et al. 2003). Insulin signalling includes
activation of the lipid kinase phosphatidylinositol
3-kinase (PI 3-kinase) to generate the second messen-
ger phosphoinositide 3,4,5, trisphosphate (PIP3)

(Alessi & Downes 1998, Cantley 2002), the stimulation
of the nutrient sensing mammalian target of
rapamycin (mTOR) pathway (Raught et al. 2001,
Fisher & White 2004), and a relatively weak induction
of the Ras-p42/p44 mitogen-activated protein kinase
(MAPK) pathway (Denton & Tavare 1995). We and
other researchers have demonstrated a requirement
for PI 3-kinase in the regulation of most if not all of
the TIRE-containing genes (Sutherland et al. 1995,
Dickens et al. 1998, Durham et al. 1999). Other
molecules that influence the rate of transcription of
these genes include the transcription factors, FOXO
(Guo et al. 1999, Schmoll et al. 2000, Puigserver et al.
2003), SREBP1c (Becard et al. 2001), PGC1a
(Puigserver et al. 2003), CBP (Zhou et al. 2004) and
TORC2 (Koo et al. 2005), as well as the kinases protein
kinase B (PKB) (Guo et al. 1999, Rena et al. 1999,
Schmoll et al. 2000), glycogen synthase kinase-3 (GSK3;
Lochhead et al. 2001) and mTOR (Band & Posner
1997, Patel et al. 2002). However, evidence is
accumulating that the exact sequence, context and
positioning of the TIRE in a gene promoter affects
which insulin-signalling pathways will regulate it (Hall
& Granner 1999, Patel et al. 2002, 2003, Gan et al.
2005a,b). For example, glucocorticoids and glucagon
induce, while insulin represses, PEPCK, G6Pase and
IGF-binding protein-1 (IGFBP1) gene transcription,
with the effects of insulin dominant over those of the
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other hormones (O’Brien & Granner 1990, Unterman
et al. 1991). All three of these gene promoters have
related TIRE sequences, yet the regulation of IGFBP1
gene expression by insulin is the only one of these
genes depend upon mTOR activation (Band & Posner
1997, Patel et al. 2002). Indeed, although PI 3-kinase
signalling appears critical in the regulation of most
metabolic genes by insulin, only a handful of these
(e.g. IGFBP1, HKII and insulin) are sensitive to
rapamycin (Patel et al. 2002). The activation of
mTOR stimulates phosphorylation and activation of
the p70 S6 ribosomal protein kinase (S6K; Thomas &
Hall 1997, Dufner & Thomas 1999) and eIF-4E BP1
(Hara et al. 1998, Beugnet et al. 2003). These processes
are well known to modulate insulin regulation of
protein synthesis (see, for review, Shigemitsu et al.
1999, Gingras et al. 2001), but there is less evidence
linking them to transcriptional control. We have
previously demonstrated that the overexpression of
active S6K is not sufficient to regulate the rapamycin
sensitive IGFBP1 TIRE, and that regulation of IGFBP1
gene expression in an S6K1 and S6K2 double knock
out (KO) animal appears normal (Patel et al. 2002).
This suggests that S6K activation may not link mTOR
to this gene or is not sufficient to repress it. Therefore
in this work, we assess whether activation of the
pathway upstream of S6K, without PI 3-kinase
induction, reduces IGFBP1 expression. In the process,
we identify a novel temporal switch from the
rapamycin-sensitive to a rapamycin-insensitive signal-
ling pathway connecting the insulin receptor to the
IGFBP1 gene promoter.

Materials and methods

Materials

[a32P]UTP and [g32P]ATP were obtained from
Amersham. Insulin was purchased from Novo Nordisk
(Crawley, West Sussex, UK), puromycin from Invitro-
gen, cycloheximide and dexamethasone from Sigma-
Aldrich, rapamycin and LY294002 from Calbiochem
(La Jolla, CA, USA) and the RNase Protection Assay
Kit II from AMS Biotech/Ambion (Austin, TX, USA).
All other chemicals were of the highest grade
available.

Cell culture

The rat hepatoma cell line H4IIE was maintained in
Dulbecco’s modified Eagle’s medium containing
1000 mg/l glucose, 5% (v/v) foetal calf serum, as
described previously (Forest et al. 1990). Cells were

incubated with hormones, at 37 8C, for the times and at
the concentrations indicated in the figures.

RNA isolation and mRNA measurement

H4IIE cells were serum starved overnight and treated
with hormone/inhibitor for the times and at the
concentrations indicated in the figures. Total cellular
RNA was isolated using TriReagent (Sigma) following
the manufacturer’s instructions. An RNase protection
assay was performed to determine the relative amounts
of IGFBP 1 and cyclophilin mRNA in each sample
(Patel et al. 2001). Band intensity was quantified on a
phosphorimager (Fuji), data calculated as a ratio of
IGFBP 1:cyclophilin mRNA and presented as percen-
tage of IGFBP1 expression, where the intensity of
control samples were set at 100%. Alternatively,
real-time PCR was used to quantify IGFBP1 and
cyclophilin mRNA levels. Briefly, cDNA was synthesised
using Superscript II Reverse Transciptase Kit (Invi-
trogen). PCR analysis was carried out in a model 7700
sequence detector (Applied Biosystems, Foster City, CA,
USA) with primers and probes as follows: IGFBP1
5 0-GCTGGATAGCTTCCACCTCATG-3 0 (sense), 5 0-TCC
ATTTCTTGAGGTCAGTGATCTC-3 0 (antisense) and
5 0-CCCCATCCCGTGAGGACCAGC-3 0 (probe); cyclo-
philin 5 0-TTACTAGGTCTGGCAGGAAGATTAAAG-3 0

(sense), 5 0-CTGCATCTCTTGTCTCCAATGTG-3 0 (anti-
sense) and 5 0-AGAGGACCAAGGCGTTATCGAACTCC
TTC-3 0 (probe).

Probes were synthesised with 5 0-FAM (6-carboxyfluor-
escein) and 3 0-TAMRA (6-carboxytetramethylrho-
damine) modifications. IGFBP1 mRNA abundance is
presented as a ratio to cyclophilin mRNA in the same
sample.

Preparation of cell extract

H4IIE cells were incubated in serum-free medium with
hormones and inhibitors for the times and at the
concentrations indicated in the figures. Cells were then
scraped into ice-cold lysis buffer (25 mM Tris–HCl (pH
7$4), 50 mM NaF, 100 mM NaCl, 1 mM sodium
vanadate, 5 mM EGTA, 1 mM EDTA, 1% (v/v) Triton
X-100, 10 mM sodium pyrophosphate, 1 mM benzami-
dine, 0$1 mM PMSF, 0$27 M sucrose and 0$1% (v/v)
2-mercaptoethanol). Cell debris was removed by
centrifugation at 13 000 r.p.m. for 10 min and the
protein concentration was determined by the method
of Bradford, using BSA as an internal standard.

Immunoprecipitation and assay of p70 S6 kinase

Cell extracts (0$5 mg) were incubated for 1 h on a
shaking platform with protein G-Sepharose conjugated
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to 2$5 mg anti-p70 S6K antibody (Upstate, Lake Placid,
NY, USA). The immunocomplexes were pelleted and
washed with 1 ml lysis buffer containing 0$5 M NaCl,
and twice with 1 ml assay buffer (25 mM MOPS
(pH 7$0), 0$4 mM EDTA, 0$1 M NaCl, 0$01% Brij35
and 0$1% (v/v) 2-mercaptoethanol). The immuno-
precipitated p70 S6K was incubated at 30 8C for 30 min,
in a total volume of 50 ml containing 25 mMMOPS (pH
7$0), 0$4 mM EDTA, 0$1 M NaCl, 0$01% Brij35, 0$1%
(v/v) 2-mercaptoethanol, 10 mM MgCl, 0$1 mM
[g32P]ATP (0$5!106 c.p.m./nmol) and 1 mM Cross-
tide. A unit of kinase activity is defined as the amount
which catalyses the phosphorylation of 1 nmol substrate
in 1 h.

Antibodies for western blot analysis

Antibody to b-actin was purchased from Sigma-Aldrich,
total GSK3a/b from Upstate, while the phospho-
specific Ser256 FOXO1, Ser9/Ser21 GSK3a/b,
Thr308 PKB, Ser473 PKB, Thr202/Tyr204 p42/p44
MAPK and Ser235 S6 ribosomal protein antibodies
were purchased from New England Biolabs (Hitchin,
Hertfordshire, UK). H4IIE cell lysates were prepared
following incubation with hormones as described in
figures and analysed by western blot.

Statistical analyses

Student’s t-tests were performed to establish significant
differences between two groups, and 5% confidence
limits applied.

Results and discussion

Cycloheximide activates the mTOR pathway inde-
pendent of PI 3-kinase, and reduces the expression of
IGFBP1

Cycloheximide is a protein synthesis inhibitor (Siegal &
Sisler 1963) that is known to activate the hepatic mTOR-
signalling pathway in the absence of insulin (Kozma et al.
1989, Price et al. 1989). Therefore, we decided to use this
agent toestablishwhetheractivationof themTORbranch
of the PI 3-kinase network was sufficient to repress the
IGFBP1 gene. First, we characterised the effects of
cycloheximide on the major insulin-signalling pathways
in the H4IIE cell line (Fig. 1) in order to confirm the
selective activation of this pathway. In these cells, mTOR
signalling to ribosomal S6 kinase (as measured by
phosphorylation of S6 ribosomal protein, Ser235) is
activated by cycloheximide treatment (Fig. 1A). This
occurs at concentrations similar to those that block

protein synthesis (Beugnet et al. 2003), and increases in
strength up to 35$5 mM (10 mg/ml). However, exposure
of cells to puromycin, a structurally distinct protein
synthesis inhibitor (Fig. 1A) has no effect on mTOR
activity, suggesting that the regulation of mTOR by
cycloheximide is not related to general inhibition of
protein synthesis. TheactivationofmTOR is sustained for
at least 6$5 h (Fig. 1A), while the degree of induction of
the pathway with 35$5 mM cycloheximide, whether
measured by S6 phosphorylation (Fig. 1B) or direct
assay of S6K (Fig. 1C), is similar to that observed after
insulin treatment. Importantly, cycloheximide induction
of S6 phosphorylation or S6K activity is completely lost in
thepresenceof10 nMrapamycin(Fig.1BandC), thereby
confirming the importance of mTOR to cycloheximide,
as well as insulin, regulation of this pathway. Cyclohex-
imide (35$5 mM)weakly induces phosphorylation of PKB
(Thr308/Ser473) as well as its downstream target GSK3,
after 30-min treatment (Fig. 1B). These minor effects are
insensitive to the presence of rapamycin, and are!10%
of the stimulation of this branch of the PI 3-kinase
pathway by insulin (Fig. 1B). Meanwhile, no increase in
phosphorylation of FOXO1, a transcriptional target of
PKB, is observed at any of the time points examined
(Fig. 1B) suggesting that the PI 3-kinase–PKB pathway is
probably not stimulated to a degree that initiatesmany (if
any) downstream effects. Finally, cycloheximide strongly
activates thep42/44MAPKpathway toa far greater extent
than obtained by insulin treatment, and this activation is
insensitive to rapamycin (Fig. 1B). Again, this property of
cycloheximidemust be independent of protein synthesis
inhibition since puromycin does not stimulate MAPK in
the H4IIE cells (Fig. 1B). To our knowledge, this is the
first demonstration that cycloheximide activates this
growth-inducing pathway.

Cycloheximide (35$5 mM) treatment of H4IIE cells
for 3 h represses IGFBP1 gene expression (Fig. 2).
This inhibition is seen on both basal (63$7%, Fig. 2A)
and glucocorticoid-induced (70$8%, Fig. 2B) IGFBP1
expression. This indicates that activation of mTOR,
without PI 3-kinase activation, mimics the effect of
insulin on IGFBP1 expression. However, this repres-
sion is less dramatic than observed with insulin (90%),
consistent with the fact that insulin repression of
IGFBP1 expression is not completely blocked by
rapamycin (Patel et al. 2002). It should also be noted
that we are measuring mRNA accumulation over a
given time, therefore it is influenced by both the rate
of transcription of the gene and the stability of the
mRNA species. Cycloheximide has been reported to
stabilise IGFBP1 mRNA (Ooi et al. 1993), therefore the
true extent of transcriptional repression in response to
mTOR activation by cycloheximide may be O60–70%
observed in our experiments. In contrast, insulin
represses IGFBP1 mRNA predominantly through
inhibition of transcription (Orlowski et al. 1991) and
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Figure 1 Effect of theprotein synthesis inhibitors, cycloheximideandpuromycin, on insulin signalling.H4IIE cellswere serumstarvedovernight, prior to (A) incubationwith cycloheximide
(0$1 or 35$5 mM, which equates to 10 mg/ml) or puromycin (1 or 18$4 mM, which equates to 10 mg/ml) for 1$5, 3$5 or 6$5 h, (B) preincubation for 30 min with or without cycloheximide
(10 mg/ml) or puromycin (10 mg/ml) and then incubation with insulin (10 nM), cycloheximide (10 mg/ml)Grapamycin (10 nM), or puromycin (10 mg/ml) for 0$5, 3 or 6 h as indicated or
(C) preincubation for 30 minwith or without cycloheximide (10 mg/ml) and then incubationwith insulin (10 nM), cycloheximide (10 mg/ml)Grapamycin (10 nM) for 0$5 or 6 h as indicated.
Cells were harvested and subjected to western blot analysis using primary antibodies as indicated (B) or S6K activity measured as described in Materials and methods (C).
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does not affect the stability of mRNA (Unterman et al.
1991). Following 6 h incubation with cycloheximide
basal IGFBP1 expression is still reduced compared to
control, however, the effect of this agent is lost in the
glucocorticoid-stimulated 6 h incubation (Fig. 2B). It
is possible that the effects of cycloheximide on mRNA
stability are more apparent in the longer incubations
in the presence of glucocorticoid, thereby masking any
gene repression. Equally, the loss of cycloheximide
repression at the longer time points could be due to its
effects on protein synthesis, reducing the level of a key
transcription factor.

In the studies demonstrating stabilisation of IGFBP1
mRNA by cycloheximide, it was also noted that this
agent inhibits basal transcription of the IGFBP1 gene
(Ooi et al. 1993). This was assumed to be due to

the inhibition of protein synthesis. However, we find
that an alternative protein synthesis inhibitor, pur-
omycin, which does not effect mTOR signalling
(Fig. 1B), has a much small repressive effect (32$1%)
on basal IGFBP1 gene expression (Fig. 2C). This small
effect of puromycin is not observed on dexametha-
sone-induced IGFBP1 expression levels (Fig. 2C), but
is similar to a reported slight decrease in IGFBP1
expression with a third protein synthesis inhibitor,
anisomycin (Ooi et al. 1993). Therefore, it appears that
the inhibition of protein synthesis can slightly reduce
the rate of basal IGFBP1 transcription, but that an
additional mechanism is invoked in the presence of
cycloheximide. We hypothesised that this second
mechanism requires the activation of the mTOR
pathway (Fig. 1).

Figure 2 Cycloheximide treatment inhibits IGFBP1 gene expression. H4IIE cells were serum starved overnight prior to a 30 min
preincubation with or without cycloheximide (10 mg/ml). Cells were then incubatedGcycloheximide (10 mg/ml)Grapamycin
(10 nM) in the (A) absence or (B) presence of dexamethasone (500 nM) for the times indicated. (C) Alternatively, cells were serum
starved overnight prior to a 30 min preincubation with or without puromycin (10 mg/ml) followed by incubationGpuromycin
(10 mg/ml)Grapamycin (10 nM)Gdexamethasone (500 nM) as indicated for 3 and 6 h. The cells were harvested, total RNA
isolated and an RNase protection assay (RPA) performed to determine the levels of IGFBP1mRNA. Results are presented as the
meanGS.E.M. of at least four experiments. *P!0$01; †P!0$001; n.s., not significant.
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The major repressive effect of cycloheximide requires
mTOR activity

The repression of basal or induced IGFBP1 gene
expression by cycloheximide is inhibited by rapamycin,
confirming the importance of mTOR activity in this
effect of cycloheximide (Fig. 2). Also rapamycin
completely blocks the action of cycloheximide, in
contrast to its partial effect on insulin repression.
Importantly, in a parallel analysis, cycloheximide was
found to have no repressive effect on G6Pase expression
(data not shown). This gene is repressed by insulin,
independent of mTOR activation but dependent on PI
3-kinase activation (Dickens et al. 1998, Patel et al. 2002).
As expected, the small effect of puromycin on IGFBP1
expression is not affected by rapamycin (Fig. 2C). Since
cycloheximide also activates p42/p44 MAPK in these
cells (Fig. 1), and this pathway has recently been linked
to the regulation of IGFBP1 expression (Gan et al.
2005b), it was important to rule out this pathway in the

actions of cycloheximide on the IGFBP1 gene. U0126, a
relatively specific inhibitor of p42/44 MAPK activation,
has no effect on the ability of cycloheximide to regulate
IGFBP1 expression (Fig. 3A), yet completely inhibits
cycloheximide induction of the p42/44MAPK (Fig. 3B).
Similarly, a structurally unrelated p42/44 MAPK
inhibitor, PD98059, has no effect on cycloheximide
repression of IGFBP1 gene expression (data not shown).
Therefore, the cycloheximide regulation of IGFBP1
expression requires themTOR pathway and not p42/44
MAPK activation. We have previously found that
sustained activation of S6K1 is not sufficient to repress
the IGFBP1TIRE (Patel et al. 2002).This suggests that an
alternative downstream component of mTOR signalling
links it to the IGFBP1 gene promoter. Yeast contains an
mTOR homologue (Tor), but not any S6K activity
(Raught et al. 2001). Potential yeast proteins down-
stream of Tor, include Msn2p, Msn4p, Gln3p, Tap42p,
Mks1p, Ure2p and Gat1p (Beck & Hall 1999; Chan et al.
2000, Schmelzle & Hall 2000, Shamji et al. 2000).

Figure 3 Cycloheximide inhibition of IGFBP1 gene expression does not require activation of p42/44 MAPK.
H4IIE cells were serum starved overnight prior to incubationGcycloheximide (10 mg/ml)GU0126 (10 mM) in
the presence of dexamethasone (500 nM)Ginsulin (10 nM) for the times indicated. Cells treated with
U0126 had also a 30 min preincubation with this inhibitor. The cells were harvested, and total RNA isolated
and Taqman analysis performed to determine the levels of (A) IGFBP1 mRNA or (B) western blot analysis
performed to assess MAPK activation. Results in (A) are presented as the meanGS.E.M. of three
experiments assayed in triplicate, while (B) is a representative experiment of two separate analysis.

D FINLAY and others $ mTOR and IGFBP1 expression232

Journal of Molecular Endocrinology (2006) 37, 227–237 www.endocrinology-journals.org



Whether mammalian equivalents of these proteins, or
other as yet unidentifiedmTOR targets, mediate mTOR
regulation of IGFBP1 remains to be established. Mean-
while, it is known that inhibitors ofGSK3 repress IGFBP1
gene expression (Finlay et al. 2004). There is a slight
increase in GSK3a/b phosphorylation at inhibitory
regulatory sites (Ser21/Ser9 respectively; Sutherland
et al. 1993, Sutherland & Cohen 1994) in response to
cycloheximide (Fig. 1B). However, the phosphorylation
ofGSK3was not sensitive to rapamycin (Fig. 1B), and the
relatively weak phosphorylation (in comparison to
insulin, which inhibits GSK3 approximately 50% in
these cells; Lochhead et al. 2001) dictates that inhibition
of GSK3 is!25%. Taken together with the lack of effect
of rapamycin, it seems highly unlikely that GSK3
inhibition mediates the effects of cycloheximide on
IGFBP1 expression.

Time-dependent effects of rapamycin on insulin
regulation of IGFBP1 expression

Insulin stimulation of H4IIE cells results in activation of
mTOR and downstream signalling, as judged by
increased phosphorylation at Ser235 of S6 ribosomal
protein (Fig. 4) and S6K activity (Fig. 1C). Ten
nanomolar of rapamycin is sufficient to completely
block insulin-induced mTOR signalling between 0$5
and 6 h, and actually reduces mTOR activity below basal
levels (Figs 1C and 4A). Full induction of mTOR
signalling by insulin is maintained (and remains
rapamycin sensitive) for at least 15 h following stimu-
lation (Fig. 4B). In contrast, insulin-stimulated phos-
phorylation of PKB (Thr308) or GSK3 (Ser21/9) is
insensitive to the presence of 10 nM rapamycin
(Fig. 4B). Insulin inhibition of both basal- and
dexamethasone-induced IGFBP1 expression is partially
reduced when cells are incubated with rapamycin for
3 h (Fig. 5). Surprisingly, the effect of rapamycin on the
regulation of the gene decreases substantially in cells
incubated for longer periods with insulin (Fig. 5). This
loss of rapamycin sensitivity with time is more
pronounced when the gene is first induced using
glucocorticoid (Fig. 5B vs 5A). That is, insulin
repression of IGFBP1 is blocked by w50% if measured
after 3 h incubation with rapamycin, but w30% after
6 h incubation and only w15% after 15 h incubation
(Fig. 5B, lower panel). This is despite the inhibition of
mTOR signalling by rapamycin being maintained
across the full 15 h treatment (Fig. 4). The decrease
in the rapamycin block of insulin repression of basal
expression is less pronounced but the trend is similar
(Fig. 5A, lower panel).

Insulin repression of IGFBP1 is dependent on PI
3-kinase activity (Fig. 6). Since rapamycin sensitivity of the
IGFBP1 gene promoter decreases with time (Fig. 5), we

next examined the requirement for PI 3-kinase activity
over the same incubation period. Insulin repression of
basal (Fig. 6A) and induced (Fig. 6B) IGFBP1 is
completely blocked by LY294002 (100 mM), a selective
inhibitor of PI 3-kinase (Vlahos et al. 1994), at all time
points examined. LY294002 increases IGFBP1expression
inH4IIEcells, suggesting somebasal PI3-kinaseactivity in
this immortal cell line. This agent blocks insulin action of
the mTOR pathway as well as activation of PKB (Alessi &
Downes 1998). Therefore, the requirement for PI
3-kinase signalling for insulin repression of IGFBP1
expression is maintained. This result may explain
previous reports that rapamycinhas little effect on insulin
repression of IGFBP1 expression, where mRNA levels
were examined in relatively long incubations (Cichy et al.
1998). We have previously found that insulin repression
of the isolated IGFBP1 TIRE is completely blocked in the
presence of rapamycin (Patel et al. 2002). In those
experiments, the effect of rapamycin on the isolated
TIRE was measured following transient transfection of
a TIRE-luciferase reporter construct, and the rapamycin
sensitivity of this construct is apparent even after 18 h
stimulation. This difference between isolated element
and intact promoter suggests that additional insulin-
response elements are present in the complete IGFBP1
gene promoter. The altered signalling may reflect a

Figure 4 Effect of rapamycin on insulin signalling. H4IIE cells
were starved overnight prior to incubationGinsulin (10 nM)G
rapamycin (0$5–10 nM) for (A) 0$5 and 3 h or (B) 3, 6 and
15 h (10 nM rapamycin) as indicated. Cells were harvested
and subjected to western blot analysis probing with antibodies
as indicated. Similar results were obtained for two such
experiments.
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temporal switch in the insulin-response element
mediating the repression of IGFBP1. Unterman and
colleagues have recently reported distinct transcrip-
tional complexes involved in insulin repression of this
promoter (Gan et al. 2005a), although the identity of
the novel DNA sequence is not yet elucidated. A time-
dependent difference in rapamycin sensitivity of such
complexes awaits further characterisation of these
regulatory elements.

Summary

We show for the first time that activation of the mTOR
pathway is sufficient to reduce IGFBP1 expression,
although the effect is not as complete as observed with
insulin. Therefore, this pathway acts in an additive
manner with another PI 3-kinase-dependent pathway to
completely repress this gene promoter. In addition, we

demonstrate that the signalling pathway to the IGFBP1
gene promoter alters with the duration of stimulation.
That is, the requirement for themTORcomponentof the
regulation declines with insulin exposure length (Fig. 7).
We suggest that this may be a novel paradigm in insulin
signalling and other rapamycin-sensitive actions of
insulin require further study. Insulin resistance is thought
to occur through reduced signalling capacity in one or
more signalling pathways (Shulman 2000). Indeed, both
the mTOR and PI 3-kinase pathways are implicated in
reduced insulin action in muscle, fat and liver cells
(Shulman 2000). The importance of the switch between
mTOR-dependent and -independent pathways in insulin
action is not clear. In the simplest scenario, loss ofmTOR
signalling but not PI 3-kinase signalling would delay
insulin repression of IGFBP1 expression, while reduced
PI 3-kinase signallingwouldhave amoreprolonged effect
on this gene. Therefore, IGFBP1 gene expressionmay be
abiomarker thatwould allowdelineationof the signalling
defect in an insulin-resistant subject.

Figure 5 Time-dependent mTOR regulation of IGFBP1 gene expression. H4IIE were starved overnight prior to
incubationGinsulin (10 nM), Grapamycin (10 nM) in the absence (A) or presence (B) of dexamethasone (500 nM) for 3, 6
and 15 h. Cells were harvested, total RNA isolated and an RPA performed to determine IGFBP1 mRNA concentration.
Results are presented as the meanGS.E.M. of at least four separate experiments (upper panels). The data are also
presented as line graphs illustrating the percentage of insulin inhibition of IGFBP1 expressionGrapamycin treatment
(lower panels). *P!0$05; †P!0$001; n.s., not significant.
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