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Cantilever array-based sensor devices widely utilise the laser-based optical deflection method for measuring static cantilever
deflections mostly with home-built devices with individual geometries. In contrast to scanning probe microscopes, cantilever
array devices have no additional positioning device like a piezo stage. As the cantilevers are used in more and more sensitive
measurements, it is important to have a simple, rapid, and reliable calibration relating the deflection of the cantilever to the
change in position measured by the position-sensitive detector. We present here a simple method for calibrating such systems
utilising commercially available AFM cantilevers and the equipartition theorem.

1. Introduction

Cantilever-based sensor devices have extensively developed
from the atomic force microscope (AFM) operating in the
static mode [1–3] (surface stress based; qualitative method)
and the dynamic mode [4–6] (frequency based; quantitative
method) depending on the application. The most frequently
used method of signal transduction where cantilevers are
employed is change in surface stress being converted into
mechanical signal through cantilever bending [7]. This
deflection is an indication of the chemical [8], physical [9],
or biophysical [10] process that occurs on the cantilever
interface.

The laser beam-based deflection system [11] has been
used most widely to measure the cantilever bending in the
static mode because of the ease of use, robustness of the read-
out technique, and availability of high-sensitivity position-
sensitive detectors (PSDs) which allow subangstrom resolu-
tion [12, 13]. Subsequently, several studies have been made
to determine the limitations of this technique along with its
resolution and sensitivity [14–17]. One also comes across
various techniques for determining the relation between the
cantilever bending and the change in spot position observed
by the PSD [18–21]. The simple geometric calculation of
this factor safely presumes that the bending of the cantilever

is very small such that it can be assumed to be half that
of the deflection angle of the laser beam [20]. Most other
methods are tedious and require specialised methods [18] for
determining this factor and may additionally require precise
measurement of the angles [22] (azimuthal and incidence),
distance between the cantilever surface and the PSD, and
so forth, which gets more complicated for beam directing
methods with complex geometries using mirrors. We present
here a simple plug and measure system for determining
this deflection factor (G) using commercially available AFM
cantilevers and applying the equipartition theorem for small
cantilever deflections.

The displacement of the laser spot on the PSD (∆d) can
be related to the cantilever bending (∆x) (Figure 1) using
geometrical methods as [20]

∆x = ∆dL
4s

, (1)

where s is the distance from cantilever to the PSD, and
L is the length of the cantilever. Hence, the value of ∆x
can be calculated based on the geometry of the setup. The
absolute relationship used for relating ∆x (nm) using a PSD,
however, needs to include the geometrical factor needed
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Figure 1: Schematic representation of the geometry of the laser
deflection setup. The bending of the cantilever represented by ∆x
is measured by the PSD as ∆d. The active length of the PSD is lpsd.

for a particular setup which when incorporated gives the
relationship as below:

∆x = G
I1 − I2

I1 + I2

lpsd

2
, (2)

where I1 − I2 is the difference signal, and I1 + I2 is the sum
signal obtained from the PSD, and lpsd is the active PSD
length in mm. It is important to note that ∆d (nm) for a PSD
is generally defined as (when lpsd is defined in mm)

∆d = I1 − I2

I1 + I2

l psd

2
106. (3)

Equation (1) gives purely a geometrically calculated value
with the aforesaid assumption that if the deflection angle
of the laser is Θ, the cantilever bending angle is Θ/2; it
includes errors arising from differences in design and actual
geometry such as the position and angle of the laser, the angle
of the cantilever holder and the reflecting mirror, and the
placement of the PSD. A more rigorous approach is needed
to take into account not just the theoretical factors but also
practical constraints of the setup.

The equipartition theorem relates the thermal energy
of a system to its temperature in classical thermodynamics.
Thermal noise of a cantilever can be quantified using this
theorem [23, 24]. The equipartition theorem states that
if a system is in thermal equilibrium, every independent
quadratic term in its total energy has a mean value equal
to 1/2kBT , where kB is the Boltzmann constant and T is the
absolute temperature. The equipartition theorem relates this
total energy to the potential energy of a rectangular cantilever
with a mean square deflection of the cantilever caused by
thermal vibrations as follows [25]:

1
2
κ
〈
x2〉 = 1

2
kBT ,

∴ 〈x2〉 = kBT/κ,
(4)

where κ is the spring constant of a rectangular cantilever
with finite thickness and length provided that the bending is

small. From (4), one can determine the thermal displacement
of a cantilever provided that the spring constant is known.
The deflection factor can hence be calculated if this thermal
displacement can be related to the deflection obtained on a
PSD.

Combining (2) and (4),
[
G
I1 − I2

I1 + I2

lpsd

2

]2

= kBT
κ

. (5)

Hence, deflection factor

G = 2
lpsd

√√√√√√
kBT

κ
(
I1 − I2

I1 + I2

)2 . (6)

The term ((I1 − I2)/(I1 + I2))2 in the above equation is
obtained from the PSD signals, using a power spectral
analysis program (Virtual instrument, Labview, National
Instruments) normalized to the sum signal of the PSD and
is the area under the first resonance peak of a cantilever
beam of known spring constant. The program essentially
obtains the power spectrum which is a computation of the
single-sided, scaled spectrum of the time domain signal from
the PSD into the frequency domain. For a signal x(t), the
complex spectrum is obtained by a fast Fourier transform
(FFT) defined as (in the frequency domain)

X
(
f
)
≡
∫∞

−∞
x(t)e−2π f tdt. (7)

This gives, furthermore, the definition of the one sided power
spectrum (in Sq. Amplitude/Hz) which is defined as

Power spectrum,φ
(
f
)
≡
∣∣X
(
f
)∣∣2

n2 ≡
∣∣X
(
f
)∣∣∣∣X

(
f
)∣∣∗

n2 ,

(8)

where n is the number of points in the signal, and ∗ denotes
the complex conjugate. The integral of the power spectrum
(area under the curve) provides the final value according to
the Parseval’s theorem which states that the area under the
energy spectral density curve is equal to the total energy.

It is important to note that only the area under the
first resonance peak is considered in further measurements,
neglecting the higher modes since their contribution was
seen to be minor (modelled as a simple harmonic oscillator
with one degree of freedom). The spring constant of the
calibration cantilevers hence needs to be measured as well.
There are several methods available to perform such calibra-
tion to obtain spring constants [26–32] including the most
frequently used thermal noise method. We chose the thermal
calibration module in the Asylum MFP-3D AFM [33, 34]
(Asylum research, USA) which has been shown to measure
the values with relatively good accuracy and reproducibility
[34]. The method records the change in PSD position as a
function of cantilever angular bending when pressed against
a hard surface using a closed loop piezo actuator and then
converts it into values for cantilever spring constant using a
predetermined sensitivity factor called inverse optical lever
sensitivity. With the rest of the terms known in the equation,
the calibration factor can be calculated.
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Table 1: Manufacturer specifications of the cantilevers used for calibration factor measurement.

Specifications
Mikromasch CSC38/AIBS “B” NTMDT CSCS12 “E”

Min Typical Max Min Typical Max

Length (l) µm 350 350
Width (w) µm 35 35
Thickness, µm 0.7 1.0 1.3 0.9 1.0 1.1
Resonant frequency (kHz) 7 10 14 8 10 12
Force constant (N/m) 0.01 0.03 0.08 0.02 0.03 0.04

Table 2: Spring constants κ of the calibration cantilevers.

Spring
constant

Micromasch B cantilevers NTMDT cantilevers E

B1 B2 E1 E3

κ (pN/nm) 69.66 166.74 32.64 53.13

Data: Data2 B
Model: Lorentz
Equation: y = y0 + (2∗A/PI)∗(w/(4∗(x − xc)2 + w2))
Weighting
y No weighting

χ2/DoF = 9.2491E−29

R2 = 0.99638

y0
xc
W
A

= 3.6454E−13
= 11057.05225
= 591.40258
= 5.3566E−10

± 8.8807E−16
± 1.02355
± 3.88807
± 3.2412E−12
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Figure 2: Thermal noise power spectrum of NTMDT cantilever
E1 on trial 2 for calibration of Setup 2. The area obtained under
the peak after a Lorentzian fit (uniform broadening and best fitting
parameters) is later used for determining the calibration factor.

2. Materials and Methods

Different sets of commercially available AFM cantilevers were
used namely Mikromasch CSC38/AIBS “B” (Mikromasch,
Estonia) and NTMDT CSCS12 “E” (NT-MDT, Russia)
cantilevers for the measurement of the thermal noise spec-
trum and final calibration. The cantilevers were calibrated
using the Asylum MFP-3D AFM to get individual values
for their spring constants κ. Table 1 enlists manufacturer
specifications for these AFM cantilevers.

The power spectrum of the thermal noise was obtained
using a 150 kHz band pass position-sensitive detector (SiTek,
Sweden). This detector is a modified version of the low-
pass 5 Hz sensor which is used for performing static mode
biological experiments. A Labview program was used to
obtain the averaged power spectrum from the differential
and sum signals from the PSD. The parameters for obtaining
the power spectrum had to be chosen so as to eliminate
effects like aliasing which leads to truncated or artificially
small resonance peaks and also electronic noise. Also it was
necessary to choose the number of samples and the sampling
frequency such that it avoided overloading the system and the
data acquisition card (DAQ, National instruments). Keeping
in mind all these details and following the Nyquist theorem
(signal must be sampled at a rate at least greater than
twice the highest frequency component of the signal) the
parameters which were chosen for the power spectral analysis
were as follows: sampling frequency: 100 kHz, number
of samples: 10,000, and number of averages: 5000. The
area under the first resonance peak was obtained using
a Lorentzian fit in origin graphical software (OriginLab
Corporation, USA). The area hence calculated along with the
spring constant values was then used to determine the value
of G for a particular setup. Two different cantilevers were
used for the calibration of each setup with three trials on
each cantilever, and the values were finally averaged. Between
each trial, the cantilever was taken out of the holder chamber
and reinserted. The laser power and the temperature of the
chamber were kept constant for all trial measurements.

3. Results

3.1. Geometric Method for Calibration Factor. For our present
instrumental scheme, the geometrical calculation for both
the setups is the same as derived below. For: s = 61 mm (for
instrument 1 and 2) and L = 500µm.

Equation (1) can be modified to obtain

∆x = ∆d
488

(9)
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Table 3: Calibration factors for the cantilever deflection Setups.

Area under curve G Average G

Deflection factor G setup 1

Cant B1 (κ = 69.66 pN/nm) Trial 1 5.20E − 10 2128 2077.5

Trial 2 4.51E − 10 2284

Trial 3 4.98E − 10 2175

Cant B2 (κ = 166.74 pN/nm) Trial 1 2.49E − 10 1986

Trial 2 2.50E − 10 1982

Trial 3 2.70E − 10 1910

Deflection factor G setup 2

Cant E1 (κ = 32.64 pN/nm) Trial 1 7.93E − 10 2517 2679.5

Trial 2 5.36E − 10 3062

Trial 3 6.01E − 10 2891

Cant E3 (κ = 53.13 pN/nm) Trial 1 3.92E − 10 2807

Trial 2 5.50E − 10 2368

Trial 3 5.22E − 10 2432

Substituting ∆d from (3)

∆x = 2049
I1 − I2

I1 + I2

lpsd

2
. (10)

Comparing (2) and (10) the deflection factor G from
geometric calculations is 2049 for the particular geometry
and is the same for any instrument made to this scheme.

3.2. Calibration Factor G Using Equipartition Theorem

3.2.1. Determination of Spring Constants for the Cantilevers
Using Asylum AFM . The spring constants for the calibration
cantilevers were determined as an average of three trials
during which the cantilevers were removed and replaced in
the AFM setup in order to average out errors. The averaged
values of the cantilevers are summarized in Table 2.

3.2.2. Thermal Noise Data Acquisition from the Instrumental
Setups. Calibration factor, G was calculated for two different
deflection setups both identical with respect to geometrical
design using the previously mentioned cantilever sets. The
power spectrum was obtained when keeping the differential
signal as close as possible to zero (centre of the PSD) and
the sum signal as high as possible. Figure 2 shows a sample
powers pectrum obtained for Cantilever E1 on the second
trial. According to the power spectrum analysis, we relate the
vibrational amplitude in ambient air to the spring constant
using (4).

Table 3 summarizes the results for the calibration of
the instruments using the above set of cantilevers and
substituting the values of the spring constant and the area
under the power spectrum into (6).

From the above set of values of the G factor, it can
be seen that the two setups differ from the theoretical
geometric value and also from each other. The difference
between the two values (the value of s differs by∼13.518 mm
between the two when back calculated from the obtained

calibration factors) indicates that the two setups despite
having similar geometry have different travel lengths of
the laser from the cantilever surface to the PSD. This
could be attributed mainly to the change in position and
tilt of the mirror, small differences in the setting up and
machining of the home made systems and angles of the
cantilever holders and hence the manner in which the lasers
spot is reflected by the mirror onto the PSD. It is, hence,
important to note that modifications of any kind to such
laser deflection systems require a recalibration especially
when the differential measurements are close ranged. When
compared to results from the geometric method, it is clear
that the method we propose shows the variation between
individual deflection setups despite their similar geometric
design within reasonable error margins (5–10%).

4. Conclusions

The importance of having sensitive measurements especially
in systems involving a differential analysis is of foremost
significance for ensuring the reliability of cantilever sensor
systems. Establishing the occurrence of an event of interest
on the cantilever surface using in situ reference cantilevers
is absolutely essential to eliminate convoluted environmental
signals. Hence, a reliable method to calibrate the deflection
of the cantilever is mandatory.

We demonstrate here a simple and reliable method for
rapid calibration of laser-based deflection systems. Using
commercially available AFM cantilevers, we can show that
the relationship between the spot movement on the PSD and
the actual cantilever deflection can be determined although
within the accuracy of the assumptions and the thermal
calibration method (∼5–10%) [35]. The method was used to
calibrate comparable cantilever array systems with a mirror
used for deflecting the laser onto the PSD because of space
restrictions. This indicates the application of the method
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to more complex geometries without the need for accurate
measurement of other physical parameters of the geometry.
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