Accepted Manuscript

Evaluating the utility of 15n and 18o isotope abundance analyses to identify nitrate sources: A soil zone study

By E. Minet, C.E. coxon, R. Goodhue, K.G. richards, R.M. Kalin, W. Meier-Augenstein

PII: S0043-1354(12)00167-4

DOI: 10.1016/j.watres.2012.03.004

Reference: WR 9154

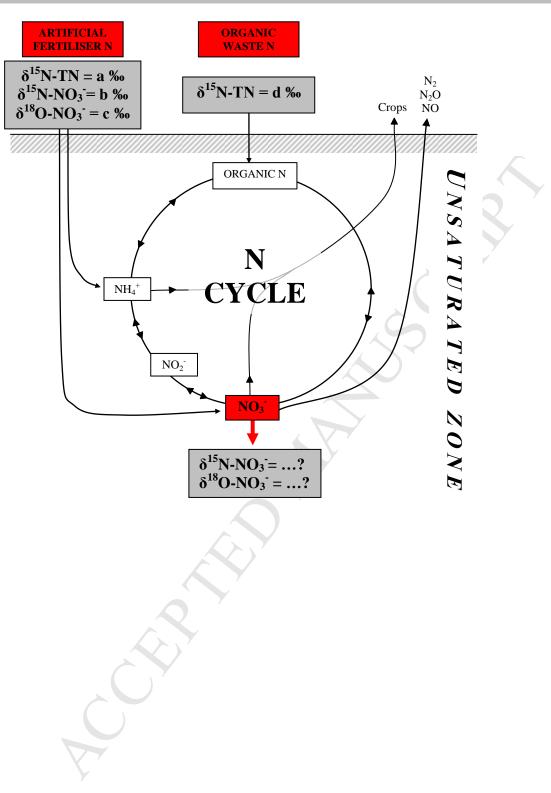
To appear in: Water Research

Received Date: 22 November 2011

Revised Date: 8 February 2012

Accepted Date: 4 March 2012

Please cite this article as: Minet, B.E., C.E. coxon, Goodhue, R., richards, K.G., Kalin, R.M., Meier-Augenstein, W., Evaluating the utility of 15n and 18o isotope abundance analyses to identify nitrate sources: A soil zone study, *Water Research* (2012), doi: 10.1016/j.watres.2012.03.004


This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HIGHLIGHTS

- Using stable isotopes for NO₃⁻ source tracking in soils showed limitations.
- ¹⁵N and ¹⁸O contents in soil-water NO₃⁻ were confined to a narrow range of values.
- Tracking artificial fertiliser NO₃⁻ was possible in limited circumstances.
- Correlating δ^{15} N-NO₃⁻ and δ^{18} O-NO₃⁻ variables helped characterise nitrate sources.

CHR MAN

-

	ACCEPTED MANUSCRIPT
1	EVALUATING THE UTILITY OF 15 N and 18 O isotope abundance analyses to identify nitrate
2	SOURCES: A SOIL ZONE STUDY
3	
4	BY E. MINET ¹ *, C.E. COXON ¹ , R. GOODHUE ² , K.G. RICHARDS ³ , R.M. KALIN ^{4,5} AND W. MEIER-
5	AUGENSTEIN 4,6
6	
7	¹ Geology Department and Centre for the Environment, School of Natural Sciences, Trinity College
8	Dublin, Dublin 2, Ireland
9	² Geology Department, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
10	³ Teagasc Environment Research Centre, Johnstown Castle, Co. Wexford, Ireland
11	⁴ Environmental Engineering Research Centre, David Keir Building, Queen's University Belfast,
12	Stranmillis Road, Belfast BT9 5AG, Northern Ireland
13	⁵ New address: David Livingstone Centre for Sustainability, Level 6, Graham Hills Building, 50
14	Richmond Street, Strathclyde University, Glasgow G1 1XN, Scotland
15	⁶ New address: Stable Isotope Unit, The James Hutton Institute, Invergowrie, Dundee DD2 5DA,
16	Scotland
17	
18	* Author to whom correspondence should be addressed (current address):
19	Eddy Minet
20	Teagasc Environment Research Centre
21	Johnstown Castle
22	Co. Wexford, Ireland
23	Email: eddy.minet@gmail.com / Tel: +353 (0)86 8274921
24	

25 Abstract

26

¹⁵N and ¹⁸O isotope abundance analyses in nitrate (NO₃⁻) (expressed as δ^{15} N-NO₃⁻ and δ^{18} O-NO₃⁻ 27 values respectively) have often been used in research to help identify NO₃⁻ sources in rural 28 29 groundwater. However, questions have been raised over the limitations as overlaps in δ values may occur between N source types early in the leaching process. The aim of this study was to evaluate 30 the utility of using stable isotopes for nitrate source tracking through the determination of δ^{15} N-31 NO_3^- and $\delta^{18}O-NO_3^-$ in the unsaturated zone from varying N source types (artificial fertiliser, dairy 32 33 wastewater and cow slurry) and rates with contrasting isotopic compositions. Despite NO₃⁻ concentrations being often elevated, soil-water nitrate poorly mirrored the ¹⁵N content of applied N 34 35 and therefore, δ^{15} N-NO₃⁻ values were of limited assistance in clearly associating nitrate leaching with N inputs. Results suggest that the mineralisation and the nitrification of soil organic N, 36 37 stimulated by previous and current intensive management, masked the cause of leaching from the isotopic prospective. δ^{18} O-NO₃⁻ was of little use, as most values were close to or within the range 38 39 expected for nitrification regardless of the treatment, which was attributed to the remineralisation of 40 nitrate assimilated by bacteria (mineralisation-immobilisation turnover or MIT) or plants. Only in 41 limited circumstances (low fertiliser application rate in tillage) could direct leaching of synthetic nitrate fertiliser be identified (δ^{15} N-NO₃⁻ < 0 ‰ and δ^{18} O-NO₃⁻ > 15 ‰). Nevertheless, some useful 42 differences emerged between treatments. δ^{15} N-NO₃⁻ values were lower where artificial fertiliser was 43 applied compared with the unfertilised controls and organic waste treatments. Importantly, δ^{15} N-44 NO₃⁻ and δ^{18} O-NO₃⁻ variables were negatively correlated in the artificial fertiliser treatment (0.001 45 46 $\leq p \leq 0.05$, attributed to the varying proportion of fertiliser-derived and synthetic nitrate being 47 leached) while positively correlated in the dairy wastewater plots ($p \le 0.01$, attributed to limited 48 denitrification). These results suggest that it may be possible to distinguish some nitrate sources if 49 analysing correlations between δ variables from the unsaturated zone. In grassland, the above

50	correlations were related to N input rates, which partly controlled nitrate concentrations in the
51	artificial fertiliser plots (high inputs translated into higher NO ₃ ⁻ concentrations with an increasing
52	proportion of fertiliser-derived and synthetic nitrate) and denitrification in the dairy wastewater
53	plots (high inputs corresponded to more denitrification). As a consequence, nitrate source
54	identification in grassland was more efficient at higher input rates due to differences in δ values
55	widening between treatments.
56 57 58	Key words
59	Nitrate; soil-water; stable isotope; nitrate source; artificial fertiliser nitrogen; organic waste nitrogen
60	
61	1. INTRODUCTION
62	
63	The common occurrence of elevated nitrate (NO_3^-) levels in groundwater has long been a cause of
64	concern for human/animal health (Stark and Richards, 2008) and the environment (discharge into
65	surface-waters associated with eutrophic conditions (Howarth, 1988)). In response to these
66	problems, environmental policies have been implemented in many countries. In the European Union
67	for instance, legislation including the Nitrates Directive 91/676/EEC and the Groundwater Directive
68	2006/118/EC prohibits nitrate concentrations in aquifers to exceed the mandatory limit of 50 mg L^{-1}
69	NO_3^- and requires that actions be taken in order to reverse or prevent any infringement (Stark and
70	Richards, 2008). However, such a task remains challenging, partly because nitrate can come from
71	multiple sources, which makes identifying and controlling the main contamination difficult.
72	
73	To date, nitrate source identification has been a central topic to rural groundwater quality studies to

help reduce nitrate occurrence. One of the commonly used methods are stable isotope analyses,

which investigate ${}^{15}N/{}^{14}N$ and ${}^{18}O/{}^{16}O$ ratios in dissolved NO₃⁻ (referred to as $\delta^{15}N$ -NO₃⁻ and $\delta^{18}O$ -75 NO_3^{-1} values respectively). The interest in this technique came from the expectation that major N 76 sources involved in the terrestrial N cycle (artificial fertilisers, human/animal organic wastes, soil 77 nitrogen (N), atmospheric depositions) generate nitrate with characteristic and therefore 78 79 recognizable δ values (Kendall and Aravena, 2000). Ideally, nitrate deposited or nitrified in soils would carry these characteristics unchanged while leaching to the water-table. However, 80 81 complications can occur, especially if biochemical reactions that transform NO_3^{-} proceed in the unsaturated zone. Denitrification causes an elevation of both δ^{15} N-NO₃⁻ and δ^{18} O-NO₃⁻ (Chen and 82 MacQuarrie, 2005), while mineralisation-immobilisation turnover (MIT) (rapid remineralisation of 83 nitrate assimilated by bacteria) alters δ^{18} O-NO₃⁻ to within the range expected from nitrification 84 (Mengis et al., 2001). Isotopic fractionation can also be caused by ammonia volatilisation, which 85 shifts δ^{15} N in the remaining substrate towards higher values, resulting in higher δ^{15} N-NO₃⁻ for 86 subsequently nitrified nitrate. Consequently, overlaps in nitrate δ values may occur between N 87 source types early in the leaching process (Fogg et al., 1998), hence weakening nitrate source 88 89 tracking in underlying groundwater.

90

91 The utility of using stable isotopes to identify nitrate sources in rural groundwater was evaluated through the determination of δ^{15} N-NO₃⁻ and δ^{18} O-NO₃⁻ values in soil-water from the unsaturated 92 93 zone under varying N source types (artificial fertiliser, dairy wastewater and cow slurry) and rates 94 with contrasting isotopic compositions. Three main aspects of stable isotope analyses were explored: i) efficiency in identifying NO₃ sources, ii) ability to discriminate N treatments relative to 95 96 one another and iii) influence of application rates on leaching and δ variables. Overall, an 97 underlying purpose was to shed more light on nitrate dynamics in soils and improve our 98 understanding of the leaching process.

99

100 2. MATERIALS AND METHODS

101 2.1 Sites description and N management

102

103 Experiments were conducted at Teagasc facilities (Irish Agriculture and Food Development 104 Authority) on three Irish soils (Table 1) already set up for several Teagasc studies. Most soil-water sampling took place at Moorepark Research Centre (County Cork, 52°09'35" N - 8°16'28" W) 105 106 where soils allow good drainage (Gibbons et al., 2006). Some samples were collected at Knockbeg near Oak Park Research Centre (County Carlow, 52°51'57" N - 6°54'45" W), where soils of 107 108 medium to heavy texture are nonetheless well drained (Hooker, 2005). Additional sampling was 109 also undertaken on coarse and excessively drained soils originating from Oak Park but transported to lysimeters at Johnstown Castle Research Centre (County Wexford, 52°17'35" N - 6°30'03" W) 110 111 (Brennan et al., 2010). All three soils overlie free-draining sediments. The climate at these sites is 112 temperate and oceanic. Temperatures remained mild during the sampling period, with the daily mean oscillating between -2.2 °C in winter (December/January) and 21.3 °C in summer 113 114 (July/August) (Figure 1). Effective rainfall was nil in summer (July to September) and positive in-115 between with a peak around late autumn/early winter (Figure 1).

116

Up to four treatments were investigated (Table 2) - application of artificial N fertiliser (all three 117 118 soils), dairy wastewater (Moorepark), cow slurry (Moorepark) and no application (Moorepark, Oak 119 Park) - on two types of land use - permanent intensively managed grassland (perennial ryegrass 120 Lolium perenne L., Moorepark and Oak Park) and tillage (winter wheat Triticum aestivum L. and spring barley Hordeum vulgare L., Knockbeg) - at different application rates (Moorepark and 121 122 Knockbeg). Except for urea, synthetic fertiliser N applied to artificial fertiliser plots consisted of 123 ammonium (NH₄⁺) and nitrate, the latter fraction amounting to between 41 and 50 % of annual N 124 inputs. Distinctly, dairy wastewater (washings from milking parlours, dairies, run-off from cattle

125	house, etc) and slurry (mixture of urine, faeces and water) hardly contained any nitrate, almost all N
126	being organically bound or in ammonium form (Table 3) as expected from anaerobic storage. Soil
127	nitrogen, 95 % of which is generally expected to be in the form of insoluble organic matter
128	(Whitehead, 1995), was another potential source of N examined in the unfertilised controls.
129	Atmospheric N deposition rates, estimated between 6 to 20 kg N/ha/year in Ireland (Jordan, 1997),
130	were not deemed to contribute to a large extent to the total N inputs when compared with treatment
131	N rates. Primary N fixers like clover were controlled in the swards to prevent any N fixation
132	occurring. N inputs could therefore be all accounted for by treatment N applied.
133	
134	The pre-existing soil-water sampling units were designed to avoid cross-contamination between
135	these single N source treatments. In Moorepark, 8×8 m plots separated from each other by a 3 m
136	buffer strip were instrumented with one to three ceramic suction cups that were installed at four
137	'shallow' (0.9 m, 1.0 m, 1.2 m and 1.5 m) and three 'deep' depths (2.0 m, 2.5 m and 3.0 m)
138	(Gibbons et al., 2006). At Knockbeg, 12×30 m plots with a 3 m buffer strip were instrumented with
139	six to eight ceramic suction cups at a single depth of 1.5 m (Hooker, 2005). Lysimeters of Oak Park
140	soils consisted of three outdoor cylindrical undisturbed soil monoliths per treatment, 0.6 m diameter
141	by 1 m depth (Brennan et al., 2010). All three soils had a previous history of intensive farming.
142	However, Moorepark and Knockbeg treatment plots had been set up in early 2001, i.e. more than a
143	year before the first sampling event, to allow residual nitrate from previous treatments to be flushed
144	out of the soil profile (favoured by free drainage and high precipitation). Lysimeters of Oak Park
145	soils had been isolated from their original environment since the early 1990's, and have been
146	subject to lower N inputs with cut only regime and no animal dung/urine deposition since that time.
147	

148 2.2 Sampling programme

149

150	Suction cups were sampled less than fourteen days after applying a negative initial pressure up to 50
151	mBar, while lysimeters were sampled at the outlet where leachates drained by gravity. Sampling
152	time was dictated by recharge conditions and nitrate concentrations in the unsaturated zone, both
153	being sufficiently high after the start of the recharge season in late autumn (Gibbons et al., 2006) to
154	allow isotopic analyses. Variable drainage conditions within plots meant that a single suction cup
155	rarely yielded enough nitrate for isotopic analyses, and therefore, samples often had to be
156	aggregated (Table 3). In Moorepark, forty soil-water samples collected on four occasions
157	(December 2002, June 2003, April 2004 and June 2004) were the result of combining the 'shallow'
158	depths (labelled as depth 1.0 m) and the 'deep' depths (labelled as depth 2.5 m). Likewise, nine
159	samples collected at Knockbeg (March 2004) were the result of aggregating replicated cups.
160	Distinctly, all six lysimeters of Oak Park soil (November 2003) yielded enough water and nitrate for
161	chemical and stable isotope analyses.
162	
163	2.3 Chemical and isotope abundance analyses
164	
165	Upon collection into polyethylene bottles, water samples were kept chilled into cool boxes for
166	transport to the laboratory, where they were 0.45 μ m nylon-filtered and stored at 4 °C. NO ₃ ⁻
167	concentrations, reported in mg L^{-1} NO ₃ ⁻ (Table 4), were measured within 24 hours of collection by
168	cadmium reduction with a flow injection analyser (Bran & Luebbe Auto-Analyser AA3) (Minet,
169	2007).
170	
171	

171 Within 48 hours of collection, 6.2 mg NO₃⁻ (i.e. 100 μ mol) were extracted according to a simplified 172 'ion-exchange resin method' best suited for freshwater samples with high nitrate (> 25 mg L⁻¹ NO₃⁻) 173 and low dissolved organic carbon (DOC) levels (typically < 5 mg L⁻¹ C) (Minet et al., 2011). In 174 brief, water samples were i) treated with barium chloride to precipitate out major O-bearing

175 contaminants (mainly sulphate), ii) passed through an anion exchange resin highly selective to nitrate (barium cations and DOC had been left in solution); this was followed by iii) nitrate elution 176 177 with a hydrochloric solution, iv) neutralisation with silver oxide to form silver nitrate (AgNO₃) and v) freeze-drying. % N analyses of AgNO₃ (Table 4) confirmed a consistent preparation, 87 % of 178 179 samples (48/55) displaying values between 6.2 and 8.2. Sample preparation was also efficient since 180 the median % N value was 7.6, which compared well with the value of 8.2 % N expected for pure AgNO₃. It should be noted that the extraction lost efficiency with low nitrate water, as witnessed in 181 182 the Oak Park control and the Moorepark slurry plots from which a few AgNO₃ samples of low 183 purity (% N between 1.7 and 5) were produced. The nature of that contamination was unknown but 184 it was not thought to be nitrogenous. In fact, % C analysis results remained below detection limit to rule out the presence of DOC, i.e. a common source of unwanted N. δ^{15} N-NO₃⁻ and δ^{18} O-NO₃⁻ 185 values (Table 4), determined in duplicate by Continuous-Flow Isotope Ratio Mass Spectrometry 186 187 (CF-IRMS), were expressed in permil ‰ (relative to AIR and VSMOW respectively) using the standard definition of the δ -value of the heavier isotope (h) of a given chemical element (E), $\delta^{h}E =$ 188 $\{(R_{sample} - R_{std}) / R_{std}\} \times 1000$, where R represents ${}^{15}N/{}^{14}N$ or ${}^{18}O/{}^{16}O$ ratios in samples (R_{sample}) and 189 standards (R_{std}) (Kendall and Aravena, 2000). Analyses were carried out as reported in Minet et al. 190 (2011). For quality control and normalisation purposes a laboratory standard L-alanine ($\delta^{15}N_{AIR} = -$ 191 192 1.7 ‰) was run in blocks each before, during, and after actual samples. Similarly, reference material IAEA-NO-3 ($\delta^{18}O_{VSMOW} = 25.6$ ‰) was run and the $\delta^{18}O$ consensus value ($\delta^{18}O_{VSMOW} =$ 193 25.6 %) used to quality control and normalise δ^{18} O sample values. Silver boats (4 × 6 mm) used to 194 encapsulate samples and reference materials were also inserted empty at the beginning of each 195 batch for blank correction. Quality of ¹⁸O isotope abundance analysis by TC/EA-IRMS was later 196 monitored by analysis of reference materials USGS34 and USGS35 ($\delta^{18}O_{VSMOW} = -27.9$ % and 197 57.5 ‰, respectively). Observed δ^{18} O values for USGS34 and USGS35 were -28.0 ±0.1 ‰ and 57.4 198 ± 0.2 %, respectively. Standard deviations (SDs) for scale corrected δ^{15} N values of AgNO₃ soil-199

water samples were in line with the analytical precision of the instrument (≤ 0.1 ‰, measured from L-alanine): SDs was always better than 0.3 and ≤ 0.1 ‰ in 96 % of the samples (53/55). For δ^{18} O values of AgNO₃ soil-water samples, SDs were ≤ 0.5 in 60 % of the analysed samples (32/53) but always better than 1.1 ‰ (analytical precision ≤ 1.1 ‰ in batches where AgNO₃ soil-water samples were analysed).

205

In addition to soil-water, applied N and soils (top 10 cm) were analysed. Fertilisers were finely 206 ground before measuring δ^{15} N-TN (δ^{15} N in total nitrogen), while the nitrate fraction of two nitrate 207 fertilisers was extracted and converted into silver nitrate for δ^{15} N-NO₃⁻ and δ^{18} O-NO₃⁻ 208 determination. Dairy wastewater and slurry, frozen after collection, were freeze-dried and finely 209 ground for δ^{15} N-TN measurements. Two representative samples of each soil were frozen after 210 collection, dried at 60 °C, 2 mm-sieved and finely ground. 0.5 g was then decalcified in duplicate 211 212 with an acid washing (13 mL of 0.5 M HCl) (carbonates can generate carbon monoxide m/z 28 that interferes with ¹⁵N analysis), rinsed twice with deionised water and dried before insoluble N was 213 analysed for δ^{15} N-TN in tin capsules (Midwood and Boutton, 1998). For information, δ^{15} N-TN in 214 acidified soil was very similar to that of untreated samples (results not shown), the difference 215 between the two methods (acidified minus untreated) ranged from -0.4 to +0.2 ‰. Differences in 216 217 soil C content before and after acidification were within the analytical precision of the instrument 218 (results not shown), suggesting that soil contained little carbonate. All CF-IRMS measurements were duplicated 219

220

221 2.4 Data analysis

222

The efficiency of stable isotope analyses in identifying NO₃⁻ sources was estimated after comparing δ^{15} N-NO₃⁻ and δ^{18} O-NO₃⁻ data measured in soil-water nitrate with values expected from applied N

225	(all three soils). The ability to discriminate N application types relative to one another was gauged
226	by comparing δ values between treatments (Moorepark, Oak Park). Further disparities were sought
227	from Spearman's rank correlation coefficients r_s between δ variables and nitrate concentration
228	(Moorepark, Knockbeg). The influence of application rates on δ values and nitrate leaching was
229	examined within treatments (Moorepark, Knockbeg). Finally, δ values were compared at two depths
230	representing different points in the leaching process (Moorepark).
231	
232	3. RESULTS
233	3.1 Nitrate concentrations
234	
235	Unfertilised controls and slurry treatments generated little to moderate nitrate leaching, with NO ₃ ⁻
236	concentrations in soil-water as low as 2.6 mg L^{-1} and no higher than 34 mg L^{-1} (Figure 2). By
237	contrast, the other N treatments clearly increased N losses. In the artificial fertiliser plots/lysimeters,
238	NO_3^- levels in soil-water ranged from 13.2 to 152.2 mg L ⁻¹ . The second largest range of values was
239	met in the dairy wastewater treatment where NO_3^- concentrations were between 20 and 108.8 mg L ⁻
240	1.
241	
242	3.2 Comparisons between measured and expected δ values
243	
244	 Isotopic composition of N sources and expected δ values for soil-water nitrate
245	
246	Noticeable differences were observed between all N sources in terms of ¹⁵ N content (Table 5).
247	Artificial fertilisers had by far the lowest δ^{15} N values (δ^{15} N-TN and δ^{15} N-NO ₃ ⁻ between -1.5 and 0.4
248	‰), followed by dairy wastewater (δ^{15} N-TN of 3.8 ‰) and then slurry (greatest ¹⁵ N-enrichement
249	with δ^{15} N-TN of 10.2 ‰). Soil N from unfertilised controls displayed intermediate values between

250	these last two N sources, with δ^{13} N-TN ranging between 3.8 ‰ (see Oak Park soil) and 5.4 ‰ (see
251	Moorepark soil) (Knockbeg fertilised soil noticeably showed δ^{15} N-TN very similar to Moorepark
252	soil values). Since mineralisation causes little isotopic fractionation and δ^{15} N-NO ₃ ⁻ shifts towards
253	δ^{15} N-TN of the source as nitrification goes on in non N-limited systems (Kendall and Aravena,
254	2000), it was expected that in the hypothetical absence of any interference, nitrate derived from
255	these N sources would display δ^{15} N-NO ₃ ⁻ in soil-water within the same ranges.
256	
257	Three main theoretical ranges were expected for δ^{18} O-NO ₃ ⁻ in soil-water. Firstly, leached synthetic
258	nitrate should display values slightly above 18 ‰, as measured in fertiliser nitrate (Table 5).
259	Secondly, other forms of N that underwent nitrification should have much lower δ^{18} O-NO ₃ ⁻ . If
260	assuming that the oxidation of ammonia incorporates two oxygen atoms (O) from water (H ₂ O) and
261	one from air (O ₂) (Andersson and Hopper, 1983; Hollocher, 1984), a theoretical range of δ^{18} O-NO ₃
262	values can be calculated for biologically formed nitrate (Equation 1).

- 263
- 264 δ^{18} O-NO₃⁻ = 2/3 δ^{18} O-H₂O + 1/3 δ^{18} O-O₂
- (Equation 1)

265

Based on δ^{18} O-H₂O measured between -8.9 and -5.9 ‰ in local groundwater (Minet, 2007) and 266 δ^{18} O-O₂ of 23.5 % reported for atmospheric O₂ (Kroopnick and Craig, 1972), δ^{18} O-NO₃⁻¹ 267 268 nitrification values could then range between 1.9 and 3.9 %. However, Equation 1 makes the few (debatable) assumptions that i) O₂ and H₂O contributions to O incorporation observed under 269 laboratory conditions with chemolithoautotrophic organisms are similar in undisturbed natural soils, 270 ii) O incorporation occurs without isotopic fractionation, iii) δ^{18} O-O₂ of incorporated O is identical 271 to that of atmospheric O₂ and iv) δ^{18} O-H₂O of incorporated O is identical to that measured in 272 273 precipitation, soil-water or groundwater bulk samples (Kendall and Aravena, 2000).

274	Between synthetic and nitrified NO ₃ , a great variety of other values were also expected from mixed
275	fertiliser applications. Based on % N applied as artificial NO ₃ -N (Table 2), it was estimated that
276	urea plus calcium ammonium nitrate (CAN) (Moorepark) could give rise to δ^{18} O-NO ₃ ⁻ between 8.6
277	and 9.9 ‰, SuperNet and compound 18-6-12 to values between 9.0 and 10.2 ‰ (Knockbeg, high
278	rate spring barley), and other applications to values between 10 and 11.2 ‰. Overall, artificial
279	fertiliser N could then generate a third set of δ^{18} O-NO ₃ values between 8.6 and 11.2 ‰.
280	
281	 Comparison of measured and expected δ values for soil-water nitrate
282	
283	Measured and expected δ^{15} N-NO ₃ ⁻ and δ^{18} O-NO ₃ ⁻ values are plotted in Figure 3. Except for two low
284	rate spring barley samples from Knockbeg (Lsb treatment), which yielded values of -0.4 ‰, δ^{15} N-
285	NO_3^- in soil-water from artificial fertiliser treatments (between 0.4 and 6.6 ‰) was found to be
286	consistently ¹⁵ N-enriched in comparison with the range of -1.5 to 0.4 ‰ expected from the analysis
287	of artificial fertilisers. In the dairy wastewater treatment, soil-water δ^{15} N-NO ₃ ⁻ (between 4.3 and 7.6
288	‰) was likewise slightly higher than the value of 3.8 ‰ expected from the wastewater analysis. By
289	contrast, the slurry treatment plots leached nitrate with δ^{15} N-NO ₃ ⁻ between 5.1 and 9.2 ‰, i.e. lower
290	than the value of 10.2 ‰ expected from the slurry analysis. In the Moorepark unfertilised control
291	plot however, δ^{15} N-NO ₃ ⁻ in the suction cups was measured between 5.1 and 7.2 ‰, which
292	encompassed the 5.2 to 5.4 ‰ range of soil δ^{15} N-TN (from the analyses of 0-10 cm depth soil
293	samples). In the Oak Park control lysimeters, measured δ^{15} N-NO ₃ ⁻ in the drainage water (between
294	2.3 and 2.9 ‰) was slightly lower than the 3.8 to 3.9 ‰ range of Oak Park soil δ^{15} N-TN.
295	7
296	High δ^{18} O-NO ₃ ⁻ above 15 ‰ was recorded in Lsb samples. However, much lower δ^{18} O-NO ₃ ⁻ were

observed in other artificial fertiliser plots and lysimeters (between -1.4 and 7.4 ‰). These values

were well below the range expected from the direct leaching of artificial pre-formed nitrate (about

297

298

12

299	18 ‰) or from the leaching of a mixture of artificial nitrate and nitrified artificial N (between 8.6
300	and 11.2 ‰). In fact, δ^{18} O-NO ₃ ⁻ widely encompassed the range expected for nitrification (calculated
301	between 1.9 and 3.9 ‰). On the other hand, soil-water samples collected from dairy wastewater,
302	slurry and unfertilised treatments showed a narrow range of δ^{18} O-NO ₃ ⁻ values between -1.2 and 2.8
303	‰, overlapping with the lower end of the range expected for nitrification.
304	
305	3.3 Comparisons of measured δ values between N treatments
306	
307	• δ^{15} N-NO ₃ ⁻ and δ^{18} O-NO ₃ ⁻ values
308	
309	Despite an overlap with the lower end of the dairy wastewater range between 4 and 5 ‰, most
310	δ^{15} N-NO ₃ values measured in Moorepark artificial fertiliser plots were lower than in other
311	Moorepark treatments (Figure 4A). On the other hand, δ^{15} N-NO ₃ ⁻ in Moorepark slurry treatments
312	and the control were very similar, and their ranges were encompassed by that of the dairy
313	wastewater treatments (except for one outlier). δ^{18} O-NO ₃ ⁻ values followed a different pattern
314	(Figure 4B), all values being within the range displayed by soil-water nitrate from the fertiliser plots
315	(between -1.4 and 2.9 ‰).
316	
317	Some contrasts were also observed between treatments on Oak Park soils. Artificially fertilised
318	lysimeters displayed δ^{15} N-NO ₃ ⁻ values which were 1.2 ‰ lower than the unfertilised controls
319	(Figure 5A). Conversely, δ^{18} O-NO ₃ ⁻ was higher by 3.4 ‰ where artificial fertiliser was applied
320	(Figure 5B).

- 321
- 322 <u>Correlation coefficients</u>

323

324	Strong relationships with high Spearman's rank correlation coefficients (0.691 \leq r _s absolute value \leq
325	0.946) and high significance levels ($p \le 0.05$ at the very least) were observed in artificial fertiliser
326	treatments at Moorepark (Table 6A) and Knockbeg (Table 6B). Nitrate concentration (y coordinate)
327	was negatively correlated with δ^{15} N-NO ₃ ⁻ (x coordinate) (slopes of -38 and -15.6 in Moorepark and
328	Knockbeg respectively) while positively correlated with δ^{18} O-NO ₃ ⁻ (x coordinate) (slopes of 21.7
329	and 6 in Moorepark and Knockbeg respectively). Consequently, δ^{18} O-NO ₃ ⁻ (y coordinate) was
330	negatively correlated with δ^{15} N-NO ₃ ⁻ (x coordinate) (slopes of -1.1 and -2.1 in Moorepark and
331	Knockbeg respectively).
332	By contrast, organic wastes applied to Moorepark soils were not associated with strong
333	relationships. No significant correlation was detected in the slurry treatment (Table 6D), while only
334	one significant correlation ($p \le 0.01$) occurred in the dairy wastewater plots (Table 6C): δ^{18} O-NO ₃ ⁻
335	(y coordinate) was correlated with δ^{15} N-NO ₃ ⁻ (x coordinate) (slope of 0.63). Not enough data were
336	available in the controls (Moorepark, Oak Park) to explore relationships.
337	

- 338 **3.4** Comparisons of nitrate concentrations and δ values between application rates
- 339
- 340 Artificial fertiliser treatments
- 341

Nitrate concentrations in Moorepark soil-water markedly increased under higher application rates of artificial fertiliser (Figure 6A): means of 35.6, 73.2 and 130.1 mg L⁻¹ NO₃⁻ at low, medium and high rate, respectively. Larger fertiliser inputs were associated with lower δ^{15} N-NO₃⁻ (means of 4.6, 3.7 and 2.6 ‰ at low, medium and high rate, respectively) and higher δ^{18} O-NO₃⁻ values (means of -0.2, 0.4 and 2.4 ‰ at low, medium and high rate, respectively) in soil-water (Figure 6B).

348	Unlike Moorepark soils, nitrate leaching and artificial fertiliser inputs on the Knockbeg tillage plots
349	did not increase together (Figure 7A). In the spring barley plots, high NO_3^- levels were observed at
350	the lower fertiliser application rate (mean of 149 mg L^{-1} NO ₃ ⁻), whereas lower concentrations were
351	measured at high rate (mean of 85.8 mg L^{-1} NO ₃ ⁻). In the winter wheat plots, NO ₃ ⁻ concentrations
352	were slightly above 50 mg L^{-1} NO ₃ ⁻ regardless of the fertiliser application rate. Stable isotope ratios
353	in Knockbeg tillage plots (Figure 7B) also followed a different pattern from that witnessed at
354	Moorepark artificial fertiliser plots. The lowest δ^{15} N-NO ₃ ⁻ (-0.4 ‰) was measured in low rate
355	spring barley plots (Lsb), along with the highest δ^{18} O-NO ₃ ⁻ values (15.1 and 17 ‰). δ^{15} N-NO ₃ ⁻ in
356	other Knockbeg artificially fertilised plots were higher and δ^{18} O-NO ₃ ⁻ much lower.
357	
358	Dairy wastewater treatments
359	
360	Higher applications rates of dairy wastewater were associated with a moderate increase in soil-
361	water nitrate concentrations (Figure 8A): means of 43.7 and 62.7 mg $L^{-1} NO_3^{-1}$ at medium and high
362	rate, respectively. Higher inputs were accompanied with a slight increase in both δ^{15} N-NO ₃ ⁻ (means
363	of 4.9 and 5.8 ‰ at medium and high rate, respectively) and δ^{18} O-NO ₃ ⁻ (means of 0.9 and 1.2 ‰ at

364 medium and high rate, respectively) (Figure 8B).

365

366 • <u>Slurry treatments</u>

367

Minor differences in soil-water nitrate concentrations or isotopic values were observed between low, medium and high application rates of slurry. Except for one outlier, nitrate levels remained consistently low (< 23 mg L⁻¹ NO₃⁻). The only sample from the low rate plot showed the highest δ^{15} N-NO₃⁻ value (9.2 ‰), whereas medium and high rate plots showed similar ranges (between 5.1 and 6.2 ‰). As for δ^{18} O-NO₃⁻, it ranged between -1 and 2.3 ‰. 373

374 **3.5** Influence of depth on nitrate concentrations and δ values

375

Comparing nitrate concentrations between the 2.5 m and 1.0 m depths of the Moorepark plots 376 (Table 4) showed high variations within treatments and sampling events. The difference ranged 377 378 from -25.8 to +54.4 mg/L NO₃ in the artificial fertiliser plots (eight comparisons), from -52.4 to +39.9 mg/L NO₃⁻ in the dairy wastewater plots (six comparisons), from +11.9 to +14 mg/L NO₃⁻ in 379 380 the in slurry plots (two comparisons) and from -6.3 to -4.4 mg/L NO₃⁻ in the control plot (two comparisons). However, δ^{15} N-NO₃⁻ and δ^{18} O-NO₃⁻ values fell within similar ranges at both depths. 381 In the artificial fertiliser plots, the difference in δ values between 2.5 m and 1.0 m depths ranged 382 from -0.5 to +2.3 ‰ (δ^{15} N-NO₃⁻) and from -1.7 to 0.4 ‰ (δ^{18} O-NO₃⁻). In the dairy wastewater plots, 383 this difference ranged from -1.5 to +2.8 % (δ^{15} N-NO₃⁻) and from -1.4 to +1.7 % (δ^{18} O-NO₃⁻), 384 whereas in the slurry and the control plots, it ranged from -0.8 to +0.2 $(\delta^{15}N-NO_3)$ and from -3.2 385 to +0.1 % (δ^{18} O-NO₃⁻). 386

- 387
- 388 4. DISCUSSION
- 389 4.1 Identifying nitrate sources
- 390

In a context favourable to NO₃⁻ source tracking (soils very responsive to varying N inputs with nitrate concentrations often elevated, good drainage assumed to limit denitrification and the associated isotopic fractionation), it was hypothesised that leached nitrate would display the isotopic signature expected from treatment N (section 3.2). However, the ¹⁵N content of soil-water nitrate poorly reflected that of applied N (Figure 3), highlighting the limitations of using ¹⁵N to clearly associate nitrate leaching to N inputs. Despite concentrations up to three times the limit set in the Nitrates Directive and Groundwater Directive (Figure 2), nitrate in artificial fertiliser and

dairy wastewater plots was consistently ¹⁵N-enriched in comparison with treatment N, except for 398 two low rate spring barley soil-water samples (Lsb) ('FER Kno' samples in Figure 3). By contrast, 399 the little nitrate leached from the slurry plots displayed δ^{15} N-NO₃⁻ lower than expected. These 400 findings suggested that nitrate leaching originated dominantly from a source with an intermediate 401 ¹⁵N content higher than in artificial fertiliser and dairy wastewater but lower than in slurry. This 402 403 description matched that of soil insoluble organic N (micro-organisms, plant and root residues, organic molecules, decomposed organic matter) whose δ^{15} N-TN was measured across all three soils 404 between 3.8 and 5.6 ‰ (in agreement with values reported by Heaton (1986)). Experiments in 405 Moorepark (δ^{15} N-TN in soil N between 5.2 and 5.4 ‰) supported such an assumption as the 406 407 unfertilised control plot, whose main N source is soil organic N, vielded nitrate with intermediate δ^{15} N-NO₃⁻ (between 5.1 and 7.2 ‰). In the Oak Park controls, δ^{15} N-NO₃⁻ was a bit lower than 3.8 408 %, but values were still higher than δ^{15} N-TN of artificial fertiliser applied to fertilised lysimeters. 409 NO_3^{-1} levels recorded close to 25 mg L⁻¹ in the Moorepark control (Table 4) confirmed that soils in 410 411 previously intensively managed grassland can release large quantities of N through mineralisation 412 of organic matter (Gill et al., 1995). Oak Park controls leached comparatively far less nitrate, but 413 these lysimeters had a lower N input history for more than a decade. In the case of slurry 414 applications, lower quantities of applied N than in other treatments (Table 2), a larger fraction of organically bound N (i.e. N not readily available) and favouring of bacterial immobilisation (due to 415 416 higher C/N ratio) possibly meant slower nitrate release from soils (Hoekstra et al., 2010). Studies have also shown that when applied as readily available nitrogen, almost all added N ends up 417 418 incorporated in the biomass while very little is left unused (Cookson et al., 2002). At the same time, 419 such addition can induce a positive priming effect, i.e. the mineralisation and nitrification of soil organic N is stimulated (Kuzvakov et al., 2000). Artificial fertiliser and dairy wastewater 420 treatments, whose N consisted largely of NO_3^- and NH_4^+ (Table 3), may then have promoted nitrate 421

422 production from soil organic N, herein further masking the cause of leaching from the isotopic423 prospective.

424

Except for both Lsb samples (low rate spring barley), δ^{18} O-NO₃⁻ in all artificial fertiliser treatments 425 ranged far below ranges expected for synthetic fertiliser ('FER' samples in Figure 3), which 426 questioned the utility of ¹⁸O to identify artificial fertiliser nitrate. Values were in fact much closer to 427 the expected range of nitrification. A combination of two factors may have contributed to explain 428 the absence of higher δ^{18} O-NO₃⁻ values in the soil-water from the artificial fertiliser experiments. 429 Mengis et al. (2001) linked this to the occurrence of MIT processes: large gross rates of NO_3^{-1} 430 immobilisation by bacteria followed by rapid remineralisation would mask the original high δ^{18} O-431 NO₃ values (similarly, the mineralisation and nitrification of fertiliser nitrate taken up by plants 432 will have the same effect). An alternative hypothesis by Roadcap et al. (2002) is that fertiliser pre-433 434 formed nitrate is rapidly taken up by plants, leaving only the non-nitrate fraction (i.e. NH_4^+) available for nitrification and subsequent leaching. However, some plants (especially grass) tend to 435 utilise NH_4^+ more readily than NO_3^- (Whitehead, 1995), the latter possibly being too mobile an 436 anion to be entirely taken up. Therefore, fertiliser NH₄⁺ seemed unlikely to be a primary source of 437 438 nitrate leaching, giving more credence to the MIT hypothesis. Interestingly, the data from the two Lsb plots, i.e. occurrence of high δ^{18} O-NO₃⁻ (> 15 ‰) in conjunction with low δ^{15} N-NO₃⁻ (< 0 ‰) 439 and high nitrate concentrations (> 120 mg L^{-1} NO₃⁻), proved that direct leaching of fertiliser nitrate 440 can be identified using dual stable isotope analyses in the soil zone in some limited circumstances 441 (see section 4.3). 442

443 δ^{18} O-NO₃⁻ in controls, dairy wastewater and slurry plots should match values expected for 444 biologically formed nitrate. Instead, measured values narrowly overlapped with the lower end of the

445 1.9 to 3.9 ‰ range calculated for nitrification ('CTL', 'SLR' and 'DW' samples in Figure 3). These

446 results highlighted the difficulty to predict nitrification δ^{18} O-NO₃⁻ values from Equation 1 (section

447	3.2), which does not take into account potential nitrite-water oxygen exchange or isotopic
448	fractionations (kinetic fractionation during O incorporation from O2 and H2O, equilibrium
449	fractionation for the nitrite-water equilibrium) (Snider et al., 2010). Laboratory experiments with
450	marine nitrifiers suggest that the overall isotopic enrichment by nitrification is negative (Snider et
451	al., 2010). If these studies are valid in natural soil conditions, microbial nitrate should be depleted in
452	¹⁸ O relative to O_2 and H_2O , and calculated $\delta^{18}O$ - NO_3^- value should then be lower than that given by
453	Equation 1, as suggested by our results. However, other parameters can complicate this picture (e.g.
454	evaporation and respiration in top soil), and most studies have in fact reported δ^{18} O-NO ₃ ⁻ values
455	higher than that given by Equation 1 (Snider et al., 2010). Using groundwater δ^{18} O-H ₂ O rather than
456	soil-water values in Equation 1 probably added some bias to the calculation. Using precipitation
457	δ^{18} O-H ₂ O values (-8.1 to -2.7 ‰) from the closest International Atomic Energy Agency station at
458	Valentia Island (IAEA/WMO, 2006) would have only widened the gap between calculated and
459	observed δ^{18} O-NO ₃ ⁻ values.

460

461 Depth at Moorepark had no noticeable effect on δ^{15} N-NO₃⁻ and δ^{18} O-NO₃⁻, which remained 462 relatively unchanged within treatment and sampling event at 1.0 m and 2.5 m depth (section 3.5). 463 This suggests that soil-water nitrate underwent very little transformation below the 1.0 m zone, and 464 therefore, the isotopic signature was acquired earlier during the leaching process.

465

466 4.2 Discriminating between N treatments

467

468 Differences useful for differentiating some N source treatments from one another emerged in 469 section 3.3. Essentially, artificial fertiliser plots/lysimeters leached nitrate with δ^{15} N-NO₃⁻ clearly 470 lower than in unfertilised controls or where dairy wastewater and slurry were applied (Figures 4A 471 and 5A). Similar differences have often been reported in the literature between artificial fertiliser

472 and organic waste, but more rarely between artificial fertiliser and soil N (Fogg et al., 1998; Kendall 473 and Aravena, 2000). Two concomitant factors may explain this outcome. Firstly, applied N influences the ¹⁵N content of soil organic N and the subsequent product of nitrification (Choi et al., 474 2002). In the case of artificial fertiliser applications, the incorporation of N with low δ^{15} N in the 475 tissues of plants, micro- and macro-living organisms should generate NO₃⁻ slightly ¹⁵N-depleted 476 477 compared with other treatments. Secondly, the small proportion of artificial fertiliser N not taken up by the biomass mixes with soil-derived nitrate and lowers soil-water δ^{15} N-NO₃⁻ values. No such 478 difference was revealed between the dairy wastewater and control treatments, as N source δ^{15} N-TN 479 values of dairy wastewater and soil organic N were much closer to one another. More elevated 480 δ^{15} N-NO₃ values could have been expected from slurry plots owing to ammonia volatilisation and 481 denitrification that typically trigger large isotopic fractionation (Kendall and Aravena, 2000). 482 However, slurry was used as a diffuse source that provided a limited N and C supply less likely to 483 shift δ^{15} N-NO₃⁻ towards very high values. Besides, rainy conditions often met in Ireland (Figure 1) 484 485 could have curtailed ammonia volatilisation, not only from applied slurry but also from applied dairy wastewater and artificial fertiliser (which both contain large quantities of ammonium). 486 Less contrasting results were observed with δ^{18} O-NO₃⁻. All values in the Moorepark treatments fell 487 488 within the range of the artificial fertiliser plots, close to that expected for nitrification (Figure 4B). δ^{18} O-NO₃⁻ was higher in the Oak Park fertilised lysimeters than in the controls (Figure 5B), but 489 linked with low δ^{15} N-NO₃, this suggests that some synthetic nitrate was leached (the more 490 491 favourable drainage conditions might give less time to bacteria for MIT to fully operate).

492

Matrices of correlation coefficients (Table 6) further highlighted differences between treatments.
(While these coefficients cannot be taken as a definite guide to relationships owing to correlations
forced by outliers or the possibility of non-linearity often met with stable isotopes, they provide
indications of relationships worthy of further exploration.) Under artificial fertiliser applications,

20

497	higher nitrate concentration was related with lower δ^{15} N-NO ₃ ⁻ ($p \le 0.0001$) and higher δ^{18} O-NO ₃ ⁻ (p
498	\leq 0.01), which is consistent with the leaching of an increasing proportion of synthetic NO ₃ ⁻ and
499	fertiliser-derived nitrate (i.e. nitrified artificial NH_4^+). Importantly, $\delta^{15}N-NO_3^-$ was negatively
500	correlated with δ^{18} O-NO ₃ ⁻ (0.001 $\leq p \leq$ 0.05 depending on the soil), which contrasted with the
501	positive correlation observed with dairy wastewater application ($p \le 0.01$). With a slope of 0.63, the
502	latter correlation suggested the occurrence of denitrification affecting the entire nitrate pool, in line
503	with other studies where slopes close to 0.5 have been reported (Chen and MacQuarrie, 2005).

504

505 4.3 Influence of application rates on δ values

506

507 The apparent linear response of grassland soil leaching (Moorepark) to applications of artificial 508 fertiliser was related to input rates in a systematic pattern (section 3.4) similarly witnessed by 509 Barraclough et al. (1984): increasing CAN application rate resulted in much higher soil-water nitrate concentrations (Figure 6A) and proportionally higher losses of synthetic NO₃⁻ and fertiliser-510 derived nitrate (Figure 6B), widening the gap in δ^{15} N-NO₃ values with the control and organic 511 512 wastes treatment plots. These results also highlighted that highly managed grassland can be at risk 513 of high nitrate leaching, even though application rates in Moorepark fertiliser plots were high but in 514 line with Teagasc recommendations based on the relationship between soil analysis and nutrient 515 requirements (Coulter et al., 2002). 516 No such systematic pattern was observed in tillage soils (Knockbeg). Higher application rates for

spring barley and winter wheat matched Teagasc recommendations, but in the lower rate Lsb, fertiliser inputs were below agronomic crop requirements (Figure 7A). The highest nitrate levels were recorded in the Lsb plots, as previously observed by Hooker (2005), where δ^{15} N-NO₃⁻ and δ^{18} O-NO₃⁻ values were close to that of synthetic nitrate (Figure 7A). Reasons for this unexpected outcome were unclear.

Increase in the application rates of organic wastes led to far less contrasting results than from the artificial fertiliser applications. δ^{15} N-NO₃⁻ and δ^{18} O-NO₃⁻ values from the dairy wastewater plots increased slightly (along with nitrate levels) (Figures 7A and 7B), suggesting limited denitrification of the whole NO₃⁻ pool stimulated by larger carbon availability and higher soil moisture content (Whitehead, 1995). As for the slurry treatment, nitrate levels were very low and δ values remained within similar ranges irrespective of the input rates.

529

530 **5.** CONCLUSIONS

531

¹⁵N isotope abundance analyses in nitrate were of limited assistance in clearly associating the 532 origin of NO₃⁻ in the unsaturated zone with N inputs, because soil-water nitrate poorly mirrored 533 the ¹⁵N content of applied N in spite of NO₃⁻ concentrations often elevated. Results suggested 534 535 that leaching originated dominantly from soil organic N, whose mineralisation and nitrification 536 may have been stimulated by previous intensive managements and current N treatments (priming 537 effect), herein masking the cause of leaching. Direct leaching of synthetic nitrate was 538 unexpectedly identified in tillage under the lower fertiliser rate in the spring barley plots. Despite 539 this, variations which may be useful to differentiate some N source treatments from one another emerged: δ^{15} N-NO₃⁻ values were consistently lower where artificial fertiliser was applied than in 540 unfertilised controls and organic waste treatments (dairy wastewater, slurry). 541 ¹⁸O isotope abundance analyses in soil-water nitrate were of little use to identify nitrate sources 542 as most δ^{18} O-NO₃⁻ values were close to the range expected for nitrification, regardless of the N 543 544 treatment. This was attributed to the occurrence of mineralisation-immobilisation turnover

545 processes.

546	• Relationships between δ^{15} N-NO ₃ ⁻ and δ^{18} O-NO ₃ ⁻ differed drastically in soil-water from the
547	artificial fertiliser and the dairy wastewater treatments: δ variables were negatively correlated in
548	the former (0.001 $\leq p \leq$ 0.05, attributed to the varying proportion of fertiliser-derived and
549	synthetic nitrate being leached) and positively correlated in the latter ($p \le 0.01$, attributed to
550	limited denitrification). These results suggest that it may be possible to distinguish artificial
551	fertiliser and organic wastes contaminations if analysing correlations between δ variables in the
552	unsaturated zone.

553 In grassland, higher artificial fertiliser input rates were associated with a sharp rise in nitrate concentrations and a growing proportion of fertiliser-derived and synthetic nitrate leached. As a 554 consequence, the differences in δ^{15} N-NO₃⁻ and δ^{18} O-NO₃⁻ values between the artificial fertiliser 555 treatment and other treatments became more noticeable. 556

557

558 **ACKNOWLEDGEMENTS**

559

560 The authors are grateful to Enterprise Ireland for funding this project, to Trinity College Dublin for providing facilities for δ^{15} N analyses, to the Environmental Engineering Research Centre (Queen's 561 University of Belfast) for δ^{18} O analysis facilities, to the Centre for the Environment (Trinity College 562 Dublin) for their support during chemical analyses and to two anonymous reviewers for their 563 564 constructive comments. The authors also thank Teagasc at Oak Park, Moorepark and Johnstown Castle Research Centres for allowing soil-water sampling. 565

566

567 **References**

568

569 Andersson, K.K. and Hopper, A. B. (1983) O₂ and H₂O are each source of one O in NO₂ produced from NH₃ by *Nitrosomonas*: ¹⁵N-NMR evidence. *FEBS Letters*, **164**: 236-240. 570

- 571 Barraclough, D.; Geens, E.L. and Maggs, J.M. (1984) Fate of fertilizer nitrogen applied to
- 572 grassland. II. Nitrogen-15 leaching results. Journal of Soil Science, **35**: 191-199.
- 573 Brennan, F. P.; O'Flaherty, V.; Kramers, G.; Grant, J. and Richards, K.G. (2010) Long-term
- 574 persistence and leaching of Escherichia coli in Temperate Maritime Soils. Applied and
- 575 Environmental Microbiology, **76** (**5**): 1449–1455.
- 576 Chen, D.J.Z. and MacQuarrie, K.T.B. (2005) Correlation between δ^{15} N and δ^{18} O in NO₃⁻ during
- denitrification in groundwater. *Journal of Environmental Engineering and Science*, 4 (3): 221226.
- 579 Choi, W.J.; Lee, S.M.; Ro, H.M.; Kim, K.C. and Yoo, S.H. (2002) Natural ¹⁵N abundances of maize
- and soil amended with urea and composted pig manure. *Plant and Soil*, **245**: 223-232.
- 581 Cookson, W.R.; Rowarth, J.S. and Cameron, K.C. (2000) The effect of autumn applied ¹⁵N-labelled
- 582 fertiliser on nitrate leaching in a cultivated soil during winter. Nutrient Cycling in
- 583 Agroecosystems, **56**: 99-107.
- 584 Coulter, B.S.; Carton, O.T.; Culleton, N.; Herlihy, M.; Murphy, W.E.; Ryan, M.; Schulte, R.P.O.;
- 585 Tunney, H.; Dillon, P.G.; Stakelum, G.; Conry, M.J.; Grennan, E.J.; O'Kiely, P. and
- 586 MacNaeidhe, F.S. (2002) Nutritent and trace element advice for grassland and tillage crops.

587 Teagasc, Ireland, 67 p.

588 FAO-UNESCO (Food and Agriculture Organization - United Nations Educational, Scientific and

589 Cultural Organization) (1988) Soil map of the world. Revised legend. World Soil Resources Rep.

- 590 60. FAO, Rome, Italy.
- Fogg, G.E.; Rolston, D.E.; Decker, D.L.; Louie, D.T. and Grismer, M.E. (1998) Spatial variation in
 nitrogen isotope value beneath nitrate contamination sources. Ground Water, 36 (3): 418-426.
- 593 Gibbons, P.; Mulqueen, J. and Rodgers, M. (2006) Eutrophication from agriculture sources: nitrate
- leaching soil investigation (project 2000-LS 2.3.1.2). Environmental Protection Agency,
- 595 Wexford, Ireland.

- 596 Gill, K; Jarvis, S.C. and Hatch, D.J. (1995) Mineralisation of nitrogen in long-term pasture soils:
- 697 effects of management. Plant and Soil, 172: 153-162.
- 598 Heaton, T.H.E. (1986) Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: a
- 599 review. Chemical Geology (Isotope Geoscience Section), **59**: 87-102.
- 600 Hoekstra, N. J.; Lalor, S.T.J., Richards, K.G.; O'Hea, N.; Lanigan, G.J.; Dyckmans, J.; Schulte,
- 601 R.P.O. and Schmidt, O. (2010) Slurry ¹⁵NH₄-N recovery in herbage and soil: effects of
- application method and timing. Plant and Soil, **330**: 357-368.
- Hollocher, T.C. (1984) Source of the oxygen atoms of nitrate in the oxidation of nitrite by
- 604 Nitrobacter agilis and evidence against a P-O-N anhydride mechanism in oxidative
- 605 phosphorylation. Archives of Biochemistry and Biophysics, **233**: 721-727.
- Hooker, K.V. (2005) A field study of nitrate leaching from tillage land in south east Ireland. MSc
- 607 thesis, Trinity College Dublin, Ireland.
- 608 Howarth, R.W. (1988) Nutrient limitation of net primary production in marine ecosystems. Annual
- 609 Review of Ecology and Systematic, **19**: 89-110.
- 610 IAEA/WMO (2006). Global Network of Isotopes in Precipitation. The GNIP Database,
- 611 http://www.iaea.org/water [accessed 05/02/2012].
- Jordan, C. (1997) Mapping rainfall chemistry in Ireland 1972-94. Proceedings of the Royal Irish
- 613 Academy 97B, 53-73.
- 614 Kendall, C. and Aravena. R. (2000) Nitrate isotopes in groundwater systems. In: Cook, P.G. and
- 615 Herczeg, A.L. (ed.), Environmental Tracers in Subsurface Hydrology. Kluwer Academic
- 616 Publishers, Norwell, MA, pp. 261-297.
- 617 Kramers, G.; Richards, K.G. and Holden, N.M. (2009) Using image analysis to determine the effect
- of soil type and initial moisture conditions on preferential flow in three Irish grassland soils.
- 619 Geoderma, **153**: 362-371.

- Kroopnick, P.M. and Craig, H. (1972) Atmospheric oxygen: isotopic composition and solubility
 fractionation. Science, **175**: 54-55.
- 622 Kuzyakov, Y.; Friedel, J.K. and Stahr, K. (2000) Review of mechani
- Kuzyakov, Y.; Friedel, J.K. and Stahr, K. (2000) Review of mechanisms and quantification of
- 623 priming effects. Soil Biology and Biochemistry, **32**: 1485-1498.
- 624 Mengis, M.; Walther, U.; Bernasconi, S.M. and Wehrli, B. (2001) Limitations of using δ^{18} O for the
- source identification of nitrate in agricultural soils. Environmental Science & Technology, 35:
 1840-1844.
- 627 Midwood, A.J. and Boutton, T.W. (1998) Soil carbonate decomposition by acid has little effect on 628 δ^{13} C of organic matter. Soil Biology and Biochemistry, **30** (10-11): 1301-1307.
- 629 Minet, E. (2007) Evaluation of stable isotope analysis as a tool to determine nitrate sources in Irish
- 630 groundwaters. Ph.D. thesis, Trinity College Dublin, Ireland.
- Minet, E.; Goodhue, R.; Coxon, C.E.; Kalin, R.M. and Meier-Augenstein, W. (2011) Simplifying
- and improving the extraction of nitrate from freshwater for stable isotope analyses. Journal of
- 633 Environmental Monitoring, **13**: 2062-2066.
- 634 Roadcap, G.S.; Hackley, K.C. and Hwang, H.-H. (2002) Application of nitrogen and oxygen
- 635 isotopes to identify sources of nitrate. Report to the Illinois Groundwater Consortium Southern636 Illinois University, pp. 30.
- 637 Ryan, M.; McNamara, K.; Carton, O.T.; Brophy, C.; Connolly, J. and Houtsma, E. (2006)
- Eutrophication from agriculture sources: nitrate leaching farm scale (project 2000-LS 2.3.1.1-
- 639 M2). Environmental Protection Agency, Wexford, Ireland.
- 640 Snider, D.M.; Spoelstra, J; Schiff, S.L. and Venkiteswaran, J.J. (2010) Stable oxygen isotope ratios
- of nitrate produced from nitrification: 18O-labeled water incubations of agricultural and
- temperate forest soils. Environmental Science and Technology, **44** (**14**): 5358-5364.

643	Stark, C.H. and Richards, K.G. (2008) The continuing challenge of nitrogen loss to the
644	environment: environmental consequences and mitigation strategies. Dynamic Soil, Dynamic
645	Plant, 2 : 41-55.
646	Whitehead, D.C. (1995) Grassland Nitrogen. CAB International, Oxon, UK, 397 pp.
647	
648	TABLE TITLES
649	
650	Table 1: Soil classification (FAO-UNESCO, 1988), particle size analysis and organic matter content
651	(% OM) in topsoil (¹ Kramers et al., 2009; ² Teagasc, unpublished data; ³ Brennan et al., 2010).
652	Table 2: Description of N treatments (unfertilised control as 'CTL', artificial fertiliser as 'FER',
653	dairy wastewater as 'DW', cow slurry as 'SLR'), application rates (high as 'H', medium as 'M',
654	low as 'L'), land use (grassland as 'g', spring barley as 'sb', winter wheat as 'ww'), application
655	times and N inputs characteristics over Moorepark, Knockbeg and Oak Park soils.
656	Table 3: Mean concentrations of total nitrogen (TN), ammonium (NH4 ⁺ -N) and nitrate nitrogen
657	(NO ₃ ⁻ -N) in cow slurry (6.6 ± 2.7 ‰ dry matter content) and dairy wastewater at Moorepark
658	Research Centre between 2002 and 2004 (Ryan et al., 2006)
659	Table 4: Nitrate concentrations, stable isotope composition of soil-water nitrate and % N content of
660	silver nitrate (AgNO3) under different N treatments (unfertilised control as 'CTL', artificial
661	fertiliser as 'FER', dairy wastewater as 'DW', slurry as 'SLR'), application rates (high as 'H',
662	medium as 'M', low as 'L'), land use (grassland as 'g', spring barley as 'sb', winter wheat as
663	'ww') and depths (with detail of aggregated depths for Moorepark soil experiment) on
664	Moorepark, Knockbeg and Oak Park soils.
665	Table 5: Stable isotope composition of total nitrogen (TN) and nitrate fractions (artificial fertilisers
666	only) in N sources at Moorepark (Moo), Knockbeg (Kno) and Oak Park (Oak) (adapted from

667 Minet (2007)).

668	Table 6: Correlation matrices of Spearman's rank r_s values between nitrate concentration, δ^{15} N-
669	NO ₃ ⁻ and δ^{18} O-NO ₃ ⁻ in A) Moorepark fertiliser plots (FER_Moo, $15 \le n \le 16$), B) Knockbeg
670	fertiliser plots (FER_Kno, $n = 9$), C) Moorepark dairy wastewater plots (DW_Moo, $n = 12$) and
671	D) Moorepark slurry plots (SLR_Moo, n = 7) (* $p \le 0.05$, ** $p \le 0.01$, *** $p \le 0.001$, ****
672	0.0001).
673	
674	FIGURE TITLES
675	
676	Figure 1: Monthly precipitation, calculated monthly effective rainfall (precipitation minus
677	evapotranspiration minus surface runoff) and daily air temperature at the weather station in Oak
678	Park Research Centre between February 2002 and June 2004 (Minet, 2007).
679	Figure 2: Ranges of soil-water nitrate concentration in the unfertilised controls (CTL, n = 8), cow
680	slurry (SLR, $n = 7$), dairy wastewater (DW, $n = 12$) and artificial fertiliser treatments (FER, $n = 12$)
681	27) across all soils.
682	Figure 3: Scatterplot of δ^{15} N-NO ₃ ⁻ and δ^{18} O-NO ₃ ⁻ values measured in soil-water nitrate collected
683	from Moorepark (Moo), Knockbeg (Kno) and Oak Park soils (Oak) subject to applications of
684	artificial fertiliser (FER), dairy wastewater (DW), slurry (SLR) or no application (CTL), and
685	comparison with δ values expected from the analysis of each treatment N source (delineated by
686	boxes).
687	Figure 4: Distribution of A) δ^{15} N-NO ₃ ⁻ and B) δ^{18} O-NO ₃ ⁻ measured in soil-water nitrate from the
688	following Moorepark treatment plots: control (CTL), slurry (SLR), dairy wastewater (DW) and
689	artificial fertiliser (FER).
690	Figure 5: Distribution of A) δ^{15} N-NO ₃ ⁻ and B) δ^{18} O-NO ₃ ⁻ measured in soil-water nitrate from the
691	following Oak Park treatment lysimeters: control (CTL) and artificial fertiliser (FER).

693 application rate and B) δ^{15} N-NO ₃ ⁻ with δ^{18} O-NO ₃ ⁻ (with linear regression line) in the Mo	orepark
694 artificial fertiliser treatment (high rate H marked with hollow rounds, medium rate M wit	1
695 diamonds, low rate L with crosses; grassland (g) land use).	
Figure 7: Variations of A) mean soil-water NO_3^- concentration (± standard deviation) with	
697 application rate and B) δ^{15} N-NO ₃ ⁻ with δ^{18} O-NO ₃ ⁻ (with linear regression line) in the Kno	ckbeg
698 artificial fertiliser treatment (high rate H marked with rounds and low rate L with crosses	spring
barley (sb) land use designated by shaded marks and winter wheat (ww) by unshaded ma	·ks).
Figure 8: Variations of A) mean soil-water NO_3^- concentration (± standard deviation) with	
701 application rate and B) δ^{15} N-NO ₃ ⁻ with δ^{18} O-NO ₃ ⁻ (with linear regression line) in the Mo	orepark
702 dairy wastewater treatment (high rate H is marked with hollow rounds and medium rate N	1 with
703 diamonds; grassland (g) land use).	
704	

Table 1: Soil classification (FAO-UNESCO, 1988), particle size analysis and organic matter content (% OM) in topsoil (¹ Kramers et al., 2009; ² Teagasc, unpublished data; ³ Brennan et al., 2010).

Soil	FAO soil classification	De	epth (m)	% sand	% silt	% clay	% OM
Moorepark ¹	haplic cambisol	0.00	-	0.15	53	31	16	8.5
		0.15	-	0.55	55	37	8	3.7
Knockbeg ²	haplic luvisol	0.00	-	0.30	44	34	22	nd
		0.30	-	0.70	37	33	20	nd
Oak Park ³	haplic cambisol	0.00	-	0.20	67	23	11	4.9
		0.20	_	0.45	68	20	12	3.4

Nd not determined

Table 2: Description of N treatments (unfertilised control as 'CTL', artificial fertiliser as 'FER', dairy wastewater as 'DW', cow slurry as 'SLR'), application rates (high as 'H', medium as 'M', low as 'L'), land use (grassland as 'g', spring barley as 'sb', winter wheat as 'ww'), application times and N inputs characteristics over Moorepark, Knockbeg and Oak Park soils.

Soil & treatment	Application rate (kg N/ha/yr)	Land use	Reps	Type of N applied (% of annual input)	Application time	% N applied as artificial NO ₃ -N
Moorepark						
CTL	-	g	1	-		/ <u> </u>
FER	H (387)	g	1	urea (18), CAN (82)	January to September ³	41 4
	M (286)	g	1	urea (18), CAN (82)	January to September ³	41 4
	L (174)	g	1	urea (18), CAN (82)	January to September ³	41 4
DW	$H(343)^{1}$	g	1	dairy wastewater (100)	May & November	0
	$M(171)^{1}$	g	1	dairy wastewater (100)	May & November	0
SLR	$H(160)^2$	g	1	slurry (100)	March	0
	$M(105)^2$	g	1	slurry (100)	March	0
	$L(53)^2$	g	1	slurry (100)	March	0
Knockbeg						
FER	H (137.5)	sb	2	SuperNet (56), 18-6-12 (44)	March to April	43.4 4
	L (105)	sb	2	SuperNet (43), 20-0-15 (57)	March to April	50 ⁴
	H (225)	ww	3	CAN (100)	March to April	50 ⁴
	L (187.5)	ww	2	CAN (100)	March to April	50 ⁴
Oak Park						
CTL	-	g	3	-	-	_
FER	H (390)	g	3	urea (18), CAN (82)	January to September 3	414

1 estimated from total nitrogen concentrations (257 and 430 mg L⁻¹ N in May 2003 and November 2001 respectively (Gibbons et al., 2006)) and volumes applied (high rate: 500 m³, medium: 250 m³) in May and November

2 estimated from total nitrogen concentration (3548 mg L^{-1} N in March 2002 (Gibbons et al., 2006)) and volumes applied (high rate: 45 m³, medium: 30 m³, low: 15 m³)

3 urea was applied in late January (single application), CAN was applied quasi-monthly between April and September in seven equal applications

4 calculated from N applied (% annual input) and % NO₃-N provided by manufacturers for urea (0 % NO₃-N), calcium ammonium nitrate (CAN) (50 % NO₃-N), SuperNet (50 % NO₃-N), NPK compounds 18-6-12 (35 % NO₃-N) and 20-0-15 (50 % NO₃-N)

Table 3: Mean concentrations of total nitrogen (TN), ammonium (NH4⁺-N) and nitrate nitrogen (NO₃⁻-N) in cow slurry ($6.6 \pm 2.7 \%$ dry matter content) and dairy wastewater at Moorepark Research Centre between 2002 and 2004 (Ryan et al., 2006)

Parameter	cow slurry (mg/kg, n = 18)	dairy wastewater (mg/L, n = 28)
Total nitrogen (TN)	3392 ±687	289 ±194
Ammonium (NH4+-N)	$\approx 1696^{-1}$	149 ±109
Nitrate (NO ₃ ⁻ -N)	$pprox$ 0 $^{2)}$	≤ 0.2

1) Estimated from TN concentration and an assumed NH_4^+ -N/TN ratio of 0.5 (Whitehead, 1995)

2) Assumed null due to high ammonia levels (nitrification inhibited), high dissolved organic carbon and anaerobic conditions (denitrification promoted) (Whitehead, 1995)

Table 4

Click head to Mintend Tohlen WRition less that isotope composition of soil-water nitrate and % N content of silver nitrate (AgNO3) under different N treatments (unfertilised control as 'CTL', artificial fertiliser as 'FER', dairy wastewater as 'DW', slurry as 'SLR'), application rates (high as 'H', medium as 'M', low as 'L'), land use (grassland as 'g', spring barley as 'sb', winter wheat as 'ww') and depths (with detail of aggregated depths for Moorepark soil experiment) on Moorepark, Knockbeg and Oak Park soils.

Soil &	Application rate	Land	Aggregated	Dorle	T:	mg $L^{-1} NO_3^{-1}$	δ^{15}	N-N	03	δ ¹⁸ ()-NO)3	% N		
treatment	(kg N/ha/yr)	use	depths (m)	- Replicate	Time	$mg L^2 NO_3$	(‰ AIR)			(‰ V-SMOW)			(in AgNO ₃)		
Moorepark															
CTL	-	g	1.0 (1.2+1.5)	1	Jun-03	23.1	7.2	±	0.1	0.7	±	0.6	6.3	±	0.1
		g	1.0 (0.9+1.2)	1	Apr-04	34.0	5.9	±	0.1	1.6	±	0.1	6.7	±	0.1
		g	1.0 (0.9+1.2)	1	May-04	31.4	5.9	±	0.1	0.6	±	0.7	7.1	±	0.1
		g	2.5 (2.5+3.0)	1	Jun-03	23.5	6.8	±	0.1	1.6	±	0.2	6.9	±	0.1
		g	2.5 (2.0)	1	May-04	27.0	5.1	±	0.1	0.0	±	-0.2	7.7	±	0.1
FER	H (387)	g	1.0 (0.9+1.0)	1	Jun-03	101.9	2.9	±	0.1	1.2	±	0.1	7.8	±	0.1
		g	1.0	1	Apr-04	136.3	2.7	±	0.1	2.3	±	0.5	7.8	±	0.1
I		g	1.0	1	May-04	150.0	2.4	±	0.1	2.9	±	0.2	7.7	±	0.1
		g	2.5 (2.5+3.0)	1	Jun-03	112.2	2.5	±	0.1				8.2	±	0.1
		g	2.5 (2.5+3.0)	1	Apr-04	136.3	2.6	±	0.1	2.7	±	0.1	7.6	±	0.1
		g	2.5	1	May-04	143.7	2.7	±	0.1	2.9	±	0.5	7.7		
	M (286)	g	1.0	1	Dec-02	35.4	4.3	±	0.1	0.3	\pm	0.8	7.9	±	0.1
1		g	1.0	1	Jun-03	51.9	3.4	±	0.1	1.6	±	0.1	7.0	±	0.1
			(1.0+1.2+1.5)	1									7.9		0.1
		g	1.0	1	Apr-04	115.0	1.8	±	0.1	1.5	±	0.5	7.7	±	0.1
-		g	1.0 (0.9+1.0)	1	May-04	44.9	4.2	±	0.1	0.6	±	0.4	7.7	±	0.1
1		g	2.5	1	Dec-02	89.9	4.1	,±	0.1	-1.4	±	0.2	7.9	±	0.1
1		g	2.5	1	Jun-03	69.6 80.2	3.9	±	0.1	-0.1	±	0.1	8.0	±	0.1
		g	2.5	1	Apr-04	89.2	4.1	±	0.1	0.8	±	0.8	7.8	±	0.1
	I (174)	g	2.5	1	May-04	89.6	3.9	±	0.1	0.0	±	0.7	7.7	±	0.1
	L (174)	g	1.0(1.2+1.5)	1	Jun-03	27.9	4.9	±	0.1	0.5	±	0.2	8.0	±	0.1
	II (242)	g	2.5 (2.0+2.5)	1	Jun-03	43.4	4.4	±	0.1	-1.0	± .	0.8	8.1	±	0.1
DW	H (343)	g	1.0	1	Jun-03	24.2	6.1	±	0.1	0.2	±	0.2	7.4	±	0.1
		g	1.0	1	Apr-04	108.8	4.9	±	0.1	1.1	±	0.5	7.8	±	0.1
		g	1.0	1	May-04	76.2	4.5	±	0.1	0.9	±	0.3	7.8	±	0.1
		g	2.5 (2.0+2.5)	1	Jun-03	49.9	4.9	±	0.1	0.4	±	0.2	8.1	±	0.1
		g	2.5	1	Apr-04	56.4	7.6	±	0.1	2.8	±	0.8	7.7	±	0.1
		g	2.5	1	May-04	60.5	6.5	±	0.1	1.8	±	0.2	7.7	±	0.1
	M (171)	g	1.0	1	Dec-02	21.0	4.3	±	0.1	-0.6	±	0.1	7.3	±	0.1
		g	1.0	1	Apr-04	48.4	4.9	±	0.1	1.4	±	1.0	7.6	±	0.1
		g	1.0 (0.9+1.0)		May-04	20.0	6.1	±	0.1	1.8	±	0.6	6.4	±	0.1
		g	2.5	1	Dec-02	49.7	5.1	±	0.1	1.3			7.9	±	0.1
		g	2.5	1	Apr-04	63.4	4.5	±	0.1	1.0	±	0.7	7.7	±	0.1
		g	2.5	1	May-04	59.9	4.6	±	0.2	0.4	±	0.4	7.7	±	0.1
SLR	H (160)	g	1.0 (0.9+1.0)	1	Apr-04	7.4	6.1	±	0.1	0.6	±	1.0	3.9	±	0.2
		g	1.0 (0.9+1.2)	1	May-04	5.2	5.1	±	0.1	1.0	±	0.2	3.2	±	0.2
		g	2.5 (3.0)	1	Jun-03	22.9	5.9	±	0.1	0.0	±	0.1	7.1	±	0.1
		g	2.5 (2.0+3.0)	1	Apr-04	19.3	6.0	±	0.1	0.7	±	0.3	5.0	±	0.1
	M (105)	g	1.0 (1.2+1.5)	1	Jun-03	16.0	5.7	±	0.1	2.3	±	0.3	6.8	±	0.1
		g	2.5 (2.5+3.0)	1	Jun-03	30.0	6.2	±	0.1	-1.0	±	0.1	7.8	±	0.1
	L (53)	g	2.5 (2.5+3.0)	1	Jun-03	5.7	9.2	±	0.1	2.0	±	0.1	2.7	±	0.1
Knockbeg															
FER	H (137.5)	sb	1.5	1	Mar-04	87.0	2.0	±	0.1	7.4	±	0.2	7.6	±	0.1
		sb	1.5	2	Mar-04	84.6	2.6	±	0.1	5.5	±	0.3	7.6	±	0.1
	L (105)	sb	1.5	1	Mar-04	152.2	-0.4	±	0.1	17.0	±	1.1	7.4	±	0.4
1		sb	1.5	2	Mar-04	129.5	-0.4	±	0.3	15.1	±	0.1	7.7	±	0.1
1	H (225)	ww	1.5	1	Mar-04	68.6	3.7	±	0.1	1.5	±	0.7	7.6	±	0.1
		ww	1.5	2	Mar-04	71.0	3.5	±	0.1	1.0	±	0.2	7.5	±	0.1
		ww	1.5	3	Mar-04	13.2	5.6	±	0.1	3.1	±	1.1	6.2	±	0.1
	L (187.5)	ww	1.5	1	Mar-04	48.9	4.2	±	0.1	0.7	±	0.3	7.5	±	0.1
1	. *	ww	1.5	2	Mar-04	61.4	6.6	±	0.1	3.8	±	0.1	7.4	±	0.1
Oak Park															5.1
CTL	_	g	1.0	1	Nov-03	2.6	2.9	±	0.1	1.5	±	0.3	1.7	±	0.1
		g	1.0	2	Nov-03	11.4	2.7	±	0.1	-1.0	±	0.6	4.9	±	0.1
		g g	1.0	3	Nov-03	6.5	2.7	±	0.1	-1.2	±	0.0	4.9 4.1		0.1
FER	H (350)		1.0	1	Nov-03	29.7	1.1	±	0.1	4.9	 	0.1	4.1 6.9	±	
	11 (330)	g										0.4			0.1
		eg g	1.0 1.0	2 3	Nov-03 Nov-03	35.6 60.5	0.4 0.4	± ±	0.1 0.1	5.4	±	0.2	6.9 7.7	± ±	0.1 0.1

Table 5: Stable isotope composition of total nitrogen (TN) and nitrate fractions (artificial fertilisers only) in N sources at Moorepark (Moo), Knockbeg (Kno) and Oak Park (Oak) (adapted from Minet (2007)).

	<i>a</i> n		$\delta^{15}N$		δ ¹⁸ Ο
N source (N fraction)	Soil	(%	50 AI	R)	(‰ V-SMOW)
ARTIFICIAL FERTILISERS *	6				
urea (TN)	Moo, Oak	-0.4	±	0.1	n/a
CAN (TN)	Moo, Kno, Oak	-1.5	±	0.1	n/a
CAN (NO ₃ [•])	Moo, Kno, Oak	0.4	±	0.2	18.5 ± 0.3
SuperNet (TN)	Kno	0.1	±	0.1	n/a
SuperNet (NO ₃ ⁻)	Kno	0.3	±	0.2	18.2 ± 0.7
18-6-12 compound (TN)	Kno	0.2	±	0.5	n/a
18-6-12 compound (NO ₃ ⁻)	Kno		nd		nd
ORGANIC WASTES					
Dairy wastewater (TN)	Moo	3.8	÷	0.2	n/a
Slurry (TN)	Moo	10	±	0.2	n/a
SOIL INSOLUBLE NITROGE	N **				
Moorepark soil (TN)	Moo	5.2	±	0.2	n/a
	Moo	5.4	±	0.1	n/a
Knockbeg soil (TN)	Kno	5.6	±	0.1	n/a
	Kno	5.5			n/a
Oak Park soil (TN)	Oak	3.8	±	0.1	n/a
	Oak	3.9	±	0.1	n/a

nd not determined

n/a not applicable

* See fertiliser N description in Table 2 (footnote 3)

** Moorepark and Oak Park soils unfertilised, Knockbeg soil subject to application of artificial fertiliser

Table 6: Correlation matrices of Spearman's rank r_s values between nitrate concentration, δ^{15} N-NO₃⁻ and δ^{18} O-NO₃⁻ in **A**) Moorepark fertiliser plots (FER_Moo, $15 \le n \le 16$), **B**) Knockbeg fertiliser plots (FER_Kno, n = 9), **C**) Moorepark dairy wastewater plots (DW_Moo, n = 12) and **D**) Moorepark slurry plots (SLR_Moo, n = 7) (* $p \le$ 0.05, ** $p \le 0.01$, *** $p \le 0.001$, **** $p \le 0.0001$).

A. FER_Moo	[NO ₃ ⁻]	δ ¹⁵ N-NO ₃	δ ¹⁸ O-NO ₃
[NO ₃ ⁻]	1		
δ ¹⁵ N-NO ₃	-0.886****	1	
δ ¹⁸ O-NO ₃ ⁻	0.691**	-0.755***	1
	•		
B. FER_Kno	[NO ₃ ⁻]	δ^{15} N-NO ₃	δ ¹⁸ O-NO ₃
[NO ₃ ⁻]	1		
δ ¹⁵ N-NO ₃	-0.946****	1	
δ ¹⁸ O-NO ₃ ⁻	0.8**	-0.711*	1
C. DW_Moo	[NO ₃ ⁻]	δ ¹⁵ N-NO ₃	δ ¹⁸ O-NO ₃ ⁻
[NO ₃ ⁻]	1		
δ ¹⁵ N-NO ₃ ⁻	-0.194	1	
δ ¹⁸ O-NO ₃ ⁻	0.098	0.672**	1
D. SLR_Moo	[NO ₃ ⁻]	δ^{15} N-NO ₃ ⁻	δ ¹⁸ O-NO ₃ ⁻
[NO ₃ ⁻]	1		
δ ¹⁵ N-NO ₃	0.214	1	
δ ¹⁸ O-NO ₃ ⁻	-0.679	-0.286	1
	1		

Figure 1: Monthly precipitation, calculated monthly effective rainfall (precipitation minus evapotranspiration minus surface runoff) and daily air temperature at the weather station in Oak Park Research Centre between February 2002 and June 2004 (Minet, 2007).

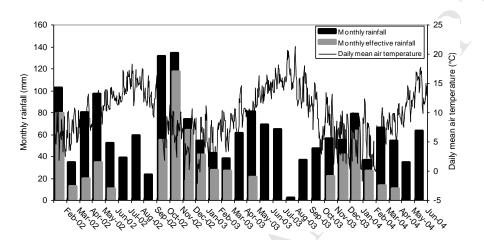


Figure 2: Ranges of soil-water nitrate concentration in the unfertilised controls (CTL, n = 8), cow slurry (SLR, n = 7), dairy wastewater (DW, n = 12) and artificial fertiliser treatments (FER, n =27) across all soils.

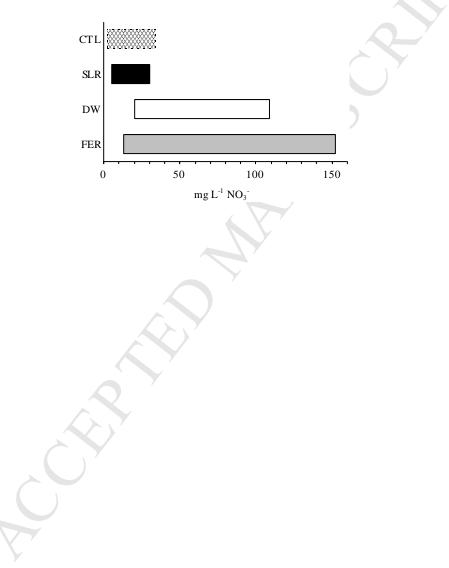


Figure 3: Scatterplot of δ^{15} N-NO₃⁻ and δ^{18} O-NO₃⁻ values measured in soil-water nitrate collected from Moorepark (Moo), Knockbeg (Kno) and Oak Park soils (Oak) subject to applications of artificial fertiliser (FER), dairy wastewater (DW), slurry (SLR) or no application (CTL), and comparison with δ values expected from the analysis of each treatment N source (delineated by boxes).

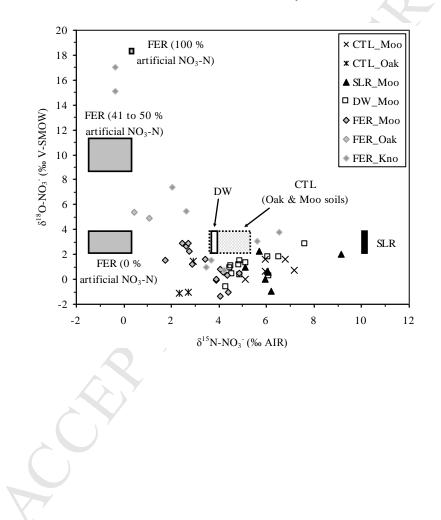


Figure 4: Distribution of **A**) δ^{15} N-NO₃⁻ and **B**) δ^{18} O-NO₃⁻ measured in soilwater nitrate from the following Moorepark treatment plots: control (CTL), slurry (SLR), dairy wastewater (DW) and artificial fertiliser (FER).

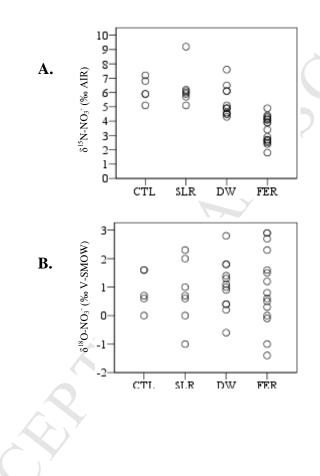


Figure 5: Distribution of **A**) δ^{15} N-NO₃⁻ and **B**) δ^{18} O-NO₃⁻ measured in soilwater nitrate from the following Oak Park treatment lysimeters: control (CTL) and artificial fertiliser (FER).

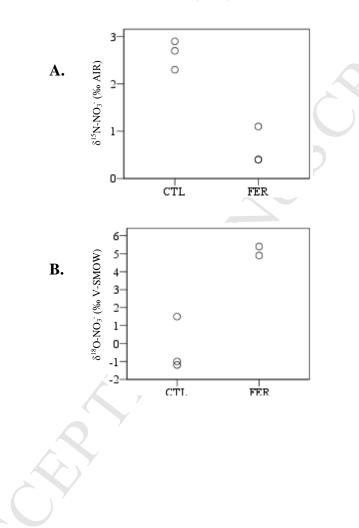


Figure 6: Variations of A) mean soil-water NO_3^- concentration (± standard deviation) with application rate and **B**) δ^{15} N-NO₃⁻ δ^{18} O-NO₃⁻ with (with linear regression line) in the Moorepark artificial fertiliser treatment (high rate H marked with hollow rounds, medium rate M with diamonds, low rate L with crosses; grassland (g) land use).

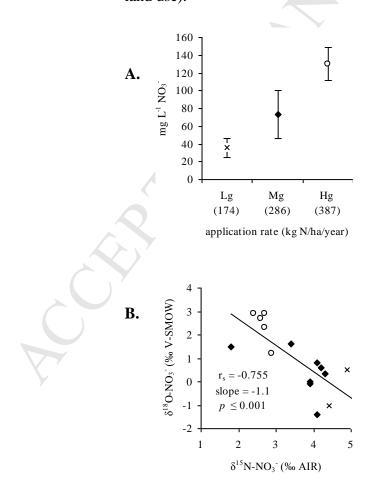


Figure 7: Variations of A) mean soilwater NO_3^- concentration (± standard deviation) with application rate and **B**) δ^{15} N-NO₃⁻ with δ^{18} O-NO₃⁻ (with linear regression line) in the Knockbeg artificial fertiliser treatment (high rate H marked with rounds and low rate L with crosses; spring barley (sb) land use designated by shaded marks and winter wheat (ww) by unshaded marks).

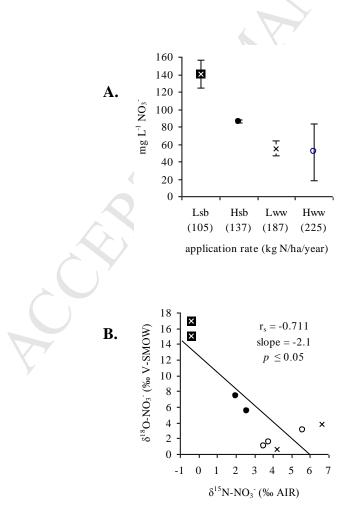
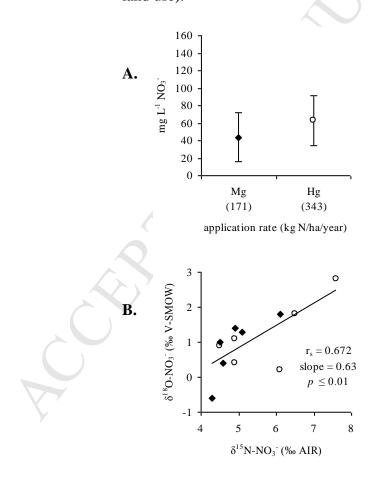



Figure 8: Variations of **A**) mean soil-water NO₃⁻ concentration (\pm standard deviation) with application rate and **B**) δ^{15} N-NO₃⁻ with δ^{18} O-NO₃⁻ (with linear regression line) in the Moorepark dairy wastewater treatment (high rate H is marked with hollow rounds and medium rate M with diamonds; grassland (g) land use).

