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Abstract

In this paper we investigate the use of classical fMRI Random Effect (RFX) group statistics when analysing a very large
cohort and the possible improvement brought from anatomical information. Using 1326 subjects from the IMAGEN
study, we first give a global picture of the evolution of the group effect t-value from a simple face-watching contrast with
increasing cohort size. We obtain a wide "activated" pattern, far from being limited to the reasonably expected brain
areas, illustrating the difference between statistical significance and practical significance. This motivates us to inject
tissue-probability information into the group estimation, we model the BOLD contrast using a matter-weighted mixture
of Gaussians and compare it to the common, single-Gaussian model. In both cases, the models parameters are estimated
per-voxel for one subgroup, and the likelihood of both models is computed on a second, separate subgroup to reflect
models generalization capacity. Various group sizes are tested, and significance is asserted using a 10-fold cross-validation
scheme. We conclude that adding matter information consistently improves the quantitative analysis of BOLD responses
in some areas of the brain, particularly those where accurate inter-subject registration remains challenging.

Keywords: Brain Mapping: methods, Likelihood Functions, Linear Models, Magnetic Resonance Imaging, Sensitivity
and Specificity

1. Introduction

Functional Magnetic Resonance Imaging (fMRI) is a
reference modality to explore the structure of the human
brain and its functional organization. It offers a spatial
and temporal resolutions that allow to characterize many
brain processes, and benefits from an established set of sta-
tistical methods, making it the modality of choice for num-
ber of studies in both cognitive neurosciences and transla-
tional neurosciences.

Most of the published fMRI studies involve 15 to 25
subjects. While this is sufficient to detect a large range
of contrast effects in carefully controlled experiment or to
establish group differences when the number of category is
low, it quickly becomes insufficient to detect more subtle
effects, such as phenomena involving some trait difficult
to control or just plainly unknown. An example of this
are studies linking neuroimaging with genetic data, where
the need to find relevant correlations from a large pool
of genomic variables benefits from having a larger cohort.
These large cohorts are currently few, but are becoming

more common, and the number of such studies will prob-
ably increase in the future.

This raises the question of how classical fMRI statis-
tical methods behave when applied to group comprising
several hundreds of subjects, or more. In fMRI group ex-
periments, the classical method relies on a spatial nor-
malization to gain voxel-to-voxel matching of the individ-
ual effect across all subjects. The group detection step
uses the General Linear Model and associated statistics
to compute voxel-wise estimation of the strength of some
contrast of interest across the population, and eventually
tries to reject the null hypothesis that the effect occurred
by chance using significance testing on parametric distri-
butions (Worsley and Friston, 1995). A common way to
choose the threshold for significance is to set it at the p-

value of 5% (using some correction for multiple compar-
isons). For most simple cases, it comes down to a single t
statistic assessed on a student law distribution with a rel-
atively low number of degrees of freedom. Considering the
fact that the t-value increases with the square-root of the
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group size N, we question whether it remains meaningful to
look at a binary pattern obtained by simply thresholding
the map at some standard p-value to answer a neurological
or cognitive neuroscience question.

In this paper, we make use of an unique fMRI dataset
comprising more than a thousand subjects. We apply a
standard fMRI group analysis using the Statistical Para-
metric Mapping (SPM) method, and illustrate the be-
haviour of this approach on this unusually large cohort.
We show that in doing this, a very wide area of the brain,
including white matter areas, is shown as activated - or
more accurately, a large number of voxels are found above
the statistical threshold used for rejecting the null-hypothesis
(corrected for multiple comparison). Although it is in fact
not a surprise at all from a statistical point of view given
the large number of observations, it is important to quan-
tify this and convey this information practically, as it may
have important consequences in actual experimental se-
tups and analyses.

As some regions may show statistical significance while
not biologically relevant, we were interested to see, in a
second part of this paper, whether a more relevant and
precise estimation of the BOLD signal may be obtained
by considering the underlying anatomical matter. Even
though spatial warping algorithms have significantly im-
proved, especially those that include structural segmenta-
tion (Ashburner and Friston (2005)), the classification of
every voxel as belonging to a certain kind of structure (e.g.
Grey Matter or White Matter) is at best fuzzy. It is ex-
pected that, for some voxel location of the MNI space, the
underlying anatomy will be different across subjects. Mod-
els that tolerate a certain variation of the location across
subjects alleviate this issue but they are usually compu-
tationally expensive and not widely used yet (Keller et al.
(2009); Thirion et al. (2006)). Therefore, we tested the
effect of including individual subject’s structural informa-
tion in the model. Following the hypothesis that neuronal
activity is the original cause of the BOLD signal, we expect
that BOLD values will be higher in grey matter compared
to white matter or cerebrospinal fluid. Hence, the use of
the information provided by the tissue segmentation, as
obtained from a T1-weighted image, may be useful to ob-
tain a better estimation and detection of the BOLD signal.

Several approaches to improve fMRI signal estimation
by including anatomical information have been proposed.
One of the simplest is to include anatomical priors from
an atlas to conduct analysis on specific region of inter-
est. However, the structural reliability of this method is
limited to the accuracy of the atlas being considered, and
currently most anatomical atlases are mutually inconsis-
tent, as described by Bohland et al. (2009). Furthermore,
atlas-based methods rely on a correct initial registration to
atlas space and are probabilistic in their target labelling,
as they do not use subject-specific anatomy.

An increasingly popular method for analysis consists
in projecting the fMRI data onto the cortical surface. In
that framework, a mesh of the cortical surface is first com-

puted, usually from a structural, segmented T1-weighted
image (Fischl et al. (1999), Van Essen et al. (2001)) and
the fMRI data, coregistered to the structural image, are
projected onto this surface where the analysis occurs. In
Andrade et al. (2001), the projection relies on the inter-
polation of the BOLD data at the mesh nodes, plus some
signal from the normal direction. The group-wide func-
tional statistics in surface space benefit from the associ-
ated strong structural input to the spatial-normalization
process. Some drawbacks include the difficulty of getting
a working surface from noisy T1 images even when tis-
sue classification is mostly correct, the restriction of the
method to cortical brain structures, ignoring sub-cortical
nuclei, and the fMRI data distortion correction. Another
major practical drawback, however, is the heavy computa-
tional cost associated with all the processings, which cur-
rently limits the popularity of the technique.

Other methods aim at increasing the detection effi-
ciency by inserting a-priori information on the shape of
the expected result in the estimation process. The most
common one is simply to filter the BOLD data to an aver-
age expected size of activations, usually 8 to 12 mm in di-
ameter. In Penny et al. (2005), a Bayesian scheme is used
to include regression coefficients of neighboring voxels in
the model. Alternatively, regularisation based on Markov
Random Fields has been suggested (Held et al. (2002);
Descombes et al. (1998)) as a way to increase signal from
noise. A fast implementation proposed by Ou et al. (2010)
further incorporates anatomical information into the MRF-
based detection framework. In Van De Ville et al. (2007),
some statistical testing associated with wavelet-based pro-
cessing is proposed, and in a different manner, in order
to overcome inter-subject variability, Thirion et al. (2006)
proposed a data-driven approach to create functional parcels,
constraining them to be spatially-connected. Some other
models uses spatial regularization to improves the esti-
mation of the data autocorrelation. In Woolrich et al.
(2001), the estimated autocorrelation parameters are spa-
tially smoothed in a nonlinear, edge-sensitive way, hope-
fully within matter type. And while Worsley et al. (2002a)
focuses on smoothing the autocorrelation as a way to gain
degrees of freedoms, he suggests that adding cortical-surface
information would improve the estimation. However, all
these fMRI regularisation schemes do not make explicit
use of the structural information such as provided by an
additional, higher resolution image.

When dealing with a large group of subjects, it is in-
creasingly difficult to fully guarantee the common spatial
alignment of structures via, e.g. MNI standard-space nor-
malization. Even though spatial warping algorithms have
significantly improved (Klein et al. (2009)), especially those
that include structural segmentation (Ashburner and Friston
(2005)), the classification of every voxel as belonging to a
certain kind of structure (e.g. Grey Matter or White Mat-
ter) is at best fuzzy and the matching imperfect. It is
expected that, for some voxel location of the MNI space,
the underlying anatomy will be different across subjects.
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More advanced and more accurate models of the BOLD

signal accounting simultaneously for signal variances origi-
nating from tissue-, subjects-, group-, or even scanner-level
effects - are likely to emerge. However, such methods are
not yet widely available nor practically usable in neuro-
imaging studies.

We therefore tested the effect of the inclusion of in-
dividual subject’s structural information into the group
BOLD model, and tested whether this improved the sta-
tistical model. Following the hypothesis that neuronal ac-
tivity is the original cause of the BOLD signal, we expect
that BOLD values will be higher in grey matter compared
to white matter or cerebrospinal fluid. Hence, better use
of the information provided by the tissue segmentation, as
obtained from the T1-weighted image, would reveal useful
to obtain a better estimation and detection of the BOLD
signal.

Objectives of the study

The objectives of the study are three-fold.
First, we wanted to characterize the impact of using

very large N while using classical inference, and whether
an increased sensitivity leads to a situation for which ac-
tivated regions are not likely to be biologically plausible,
demonstrating and quantifying the difference between sta-
tistical and practical significance.

Second, for large N, it may be that some regions are
significantly activated while only a subgroup of the popu-
lation is indeed showing some effect, leading to erroneous
interpretation. This is even clearer when looking at regions
that contain grey matter only for part of the population.
One goal of the study is therefore to see to which extent
some effects could be detected in brain areas most likely
to be composed of white matter. Recent work have re-
ported that activity could be detected in the white matter
(Mazerolle et al. (2008)).

Third, we wanted to establish whether the model used
to detect BOLD activity in a population would benefit
from knowledge of the underlying subject-per-subject anatomy,
and if the use of this knowledge could lead to more sensi-
tive or specific analyses.

We investigated these issues with a simple contrast
computed from a face-viewing task, from the multi-centre
IMAGEN neuroimaging-genetic database.

2. Material and Methods

2.1. Dataset and preprocessings

The fMRI paradigm

A large number (> 1500) of adolescents (13 to 15 years
old), part of the IMAGEN sample (Schumann et al. (2010)),
underwent fMRI BOLD recording during a simple passive
face-viewing task (Grosbras and Paus (2006)). The task
comprises alternating blocks containing videoclips of faces
or control stimuli. Each block lasts 18-seconds, for a total
duration of about six minutes. Face blocks comprise short

greyscale videos of male or female faces, (emotionally neu-
tral or angry) whereas control blocks are made of expand-
ing or contracting grey circles. The functional contrast of
interest in the present study corresponds to the face view-
ing condition (blocks of neutral and angry faces combined)
minus the control condition: this contrast exhibits strong
response in the fusiform gyrus and the amygdala, and sev-
eral other brain regions, such as those along the superior
temporal sulcus and in the frontal cortex (see probabilistic
maps of the face network in Tahmasebi et al. (2011)).

Acquisitions parameters

Data were acquired from each of 7 acquisition centers
on 3 Tesla scanners of three different manufacturers (Gen-
eral Electric (2), Siemens (4), Philips (1)), transferred to
the data processing center at Neurospin, and made avail-
able to the consortium in a central database. The Imagen
study gathers data from 8 acquisition centers, but at the
time of this study, data from one of them had not been
fully available.

For each subject, the BOLD time series are recorded
using Echo-Planar Imaging, at the spatial resolution of
3.4mm isotropic, and temporal resolution of 2.2 seconds.
The total length is 160 volumes. A separate high resolution
(1mm isotropic) structural T1-weighted image is subse-
quently acquired using a MPRAGE (Mugler and Brookeman
(1990)) sequence. For a complete description of the IMA-
GEN project, see Schumann et al. (2010).

Preprocessings and contrast maps

Each subject’s data are processed using the SPM8 soft-
ware (http://www.fil.ion.ucl.ac.uk/spm/) using the
following steps. To correct for movements, each volume is
spatially realigned to the mean over time. A linear model
is then defined and fitted per-voxel to the realigned time
series, using SPM8’s standard General Linear Model rou-
tine. The design matrix defines the timing of Faces blocks
and Control blocks, and also includes estimated motion pa-
rameters (3 translations and 3 rotations). Standard auto-
regressive noise model (AR(1)) and low frequency filters
are set unchanged from the SPM8 defaults. This allows to
compute an effect-size map for the "Faces vs Control" con-
trast, and its associated t significance map under normal
hypothesis.

Separately, the T1-weighted image is segmented and
warped to the MNI standard space using the "New Seg-
mentation" algorithm from SPM8. This algorithm both
classifies the input T1 image voxels as belonging to one of
six classes of tissues (Grey, White, CSF, Meningeal, Skull,
Background), and estimates the best spatial warping of
six MNI-space tissue prior maps to match their respec-
tive T1 image tissues, in an iterative Bayesian framework.
(Ashburner and Friston (2005)). This spatial normaliza-
tion is based on a high-dimensional non-linear warping
field (59 x 70 x 59 x 3 parameters), providing a possible
relatively fine matching between images.

3
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This yields probabilistic classification maps in both na-

tive and MNI space – of which we keep only the classes
corresponding to Grey-Matter, White-matter, and Cere-
brospinal fluid - and a deformation field.

The individual average BOLD image is then rigidly
registered to the structural T1 image, and the resulting
transformation, combined with the T1 deformation field,
is applied to the fMRI statistics images using trilinear
interpolation to obtain MNI-space, accurately registered
contrast images and then, group significance maps. To
avoid spreading the signal across anatomical structures,
no smoothing is applied. However, the interpolation nec-
essary for warping would inevitably add a limited amount
of smoothing.

Additional checks of correct alignment

Due to the very high number of images involved, quality-
checking has been made partially automatic. The func-
tional signal intensity values were averaged over a few Re-
gions of Interest (namely, in-brain mask, out-brain mask,
Grey-matter mask, White-matter mask) for every subject
images, and further manual, visual reviews have been lim-
ited to images whose values departed most from the mean
values across the whole group. These manual reviews were
mostly intended, and were successful at detecting obvious
issues, such as problems due to warping, or severe arte-
facts. Additionally, contrasts images were binarized (non-
null values set to 1) and summed over the group to detect
misregistrations. In both cases, subjects are simply ex-
cluded if any problem occurred.

Data of 1326 subjects (from the initial ∼1500) suc-
cessfully passed the pre-processing and checking steps and
were included in the present study.

To create the tissue binary masks, thresholded tissues
probability maps were used, at different thresholds due to
the non-uniformity of the probabilities distribution, which
were respectively 0.94, 0.82 and 0.80 for GM, WM and
CSF, based on visual feedback, to ensure that masks were
conservatively limited to their respective area.

2.2. Methods: 1 - sensitivity analysis as a function of

brain matter

Description of the experiments

Empirical measures of sensitivity as a function of grey
or white matter proportion are estimated from group re-
sults. For a specific population of subjects, a group sig-
nificance map of the effect is obtained by computing the
student t-value at each voxel. Additionally, a group prob-
ability for each tissue is obtained by summing the binary
tissue masks of every subjects of the group.

We applied the following experiment on several sub-
groups of various sizes, obtained by selecting randomly
subjects from the initial population.

First, we computed the distribution of the tissues as
a function of the student p-value. The absolute values
of t are discretized from 0 to 50 (with a 20 bins reso-
lution), and for each bin, the average tissue probability

Figure 1: The 11 tissue-ratio Regions Of Interest, defined from iso-
lines of the Grey/White probability ratio across the group. Color-
coded levels use a random palette for better visual discrimination.
The largest area ROI is defined from the upper bin of the grey-matter
histogram

over the image is measured for each tissue category. We
report this for groups with different number of subjects
(30,200,500,1326), and the significance threshold value for
rejecting the family wise null hypothesis under normal-
ity assumption at the 5% level corrected level is com-
puted with the bonferroni procedure to obtain a compara-
ble statistic across groups of different sizes.

Second, the converse relationship is investigated. The
average t-value is measured as a function of the Grey-
White matter ratio. As we focus on grey and white mat-
ter, a special mask is computed which includes only voxels
from where at least half of the subjects from the group
has grey or white matter. For each voxel, the ratio of the
two tissues across the group is computed and discretized
(10 bins from 0 to 1). Figure 1 illustrates the regions of
interest defined that way. The average t-values over those
10 iso-ratio ROIs is measured.

2.3. Methods: 2 - modeling the tissue difference

After studying the sensitivity of the standard analysis
as a function of the amount of grey to white matter in a
given voxel, we investigated whether the activation may
come from a mixing of signals from different tissue type
from different subjects. First, we checked whether at the
same spatial locations, the variance coming from subjects
having grey-matter tissue and the variance coming from
subjects having white-matter tissue are equal. As the tis-
sue classification algorithm is probabilistic, reflecting the
uncertainty in labelling, we used a statistic adapted from
the Levene test (Levene (1960)) for weighted data. The
statistic formula is:

W =
{n1.(r1 − r)2 + n2.(r2 − r)2}/(2− 1)

{n1.(r21 − r1
2) + n2.(r22 − r2

2)}/(n1 + n2 − 2)
,

where wik are the weights of tissue class k for subject i
(k ∈ {1, 2}, for resp. Grey or White matter) and nk =∑N

i=1 wik; r is the (weighted) average of the data deviation
from their mean, the rk are the (weighted) average of the

deviation from the mean inside tissue class k and r2k are
the (weighted) average of the squared deviation from the
mean within tissue class. In essence, this ratio compares
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the variances of the deviation from the mean within each
of the two classes to the variance of the deviation from the
mean between the two classes - as in the original Levene
Test - except that we substituted standard moments by
weighted moments in the computation (see Appendix 7
for details).

Then, we investigated whether a model that makes use
of the knowledge of the underlying tissue classification,
and potentially different variance components, would help
signal detection. We compared the standard model (that
does not consider tissue classes) to the one that explicitly
model the provenance of the BOLD signal and asked under
which model the data are most likely.

Therefore, at each voxel of subject i, the first model
considers that the contrast effect yi is normally distributed
around the group mean value µ, with variance σ2:

yi ∼ N (µ, σ2)

The second model considers that yi is drawn from a
weighted mixture of tissue-specific normal distributions:

yi ∼
3∑

k=1

wik N (µk, σ
2
k) k ∈ {GM,WM,CSF}, (1)

where each Gaussian component with parameters (µk, σ
2
k)

models the signal originating from tissue k (resp. Grey
matter, White matter, and Cerebrospinal Fluid), and the
weights wik (0 ≤ wik ≤ 1) reflect the voxel-specific pro-
portion of those tissues for the subject i.

Estimation and testing

The first model parameters (µ, σ2) are trivially esti-
mated for each subgroups by computing the sample mean
µ̂ and sample variance σ̂2 at each voxel of the brain in the
MNI space. For the second model, the estimation is also
straightforward as we need to estimate the Gaussians pa-
rameters (µ̂k, σ̂k) only given that the tissues weights wik of
each observations are known from the segmentated image.
We use the sample weighted mean and sample weighted
variance as maximum likelihood estimators, that is, for a
specific voxel the model parameters for tissue k are:

µ̂k =

∑N
i=1 wikxi∑N
i=1 wik

(2)

σ̂2
k =

∑N
i=1 wik (xi − µ̂k)

2

∑N
i=1 wik

, (3)

where xi is the BOLD contrast effect of the voxel for sub-
ject i, wik is the weight of the tissue at that voxel and N
is the group size1.

To assess whether one model fits better than the other,
a ratio of the averaged likelihood Λ was computed. To

1Note that in this mixture model, the mean and variance can be
estimated directly as the weights are known

ensure that the results hold, we used a cross validation
scheme, for which the model parameters were estimated on
one subgroup while the likelihood statistics was computed
on another.

Λ =

1
n

∑N
i ( 1

√

2πσ̂2
exp (− (xi−µ̂)2

2σ̂2 ))

1
n

∑N
i=1

∑3
k=1

wik√
2πσ̂2

k

exp (− (xi−µ̂k)2

2σ̂2

k

)

At every voxel, we tested for the null hypothesis that
the two models equally fit, or equivalently, that the log-
likelihood difference is zero. Significance was asserted us-
ing 44 folds, by computing the p-value associated with the
binomial law that the difference distribution would have
under the null hypothesis.

2.4. Methods: 3 - Application of the model

We studied whether using tissue information leads to
better estimation of the activations. In this experiment,
we compare the group-wide Gaussian model restricted to
the grey-matter to the group-wide model ignoring tissue
information. We compared the sensitivity of the two mod-
els, both estimated with a simple normal distribution. We
selected two activation thresholds by using the 0.25 and
0.75 quantile of the contrast image histogram. The supra-
threshold probability associated with the two Gaussian
models is measured, and their difference is computed. This
is repeated over ten independent samples for three group
sizes: 15, 100, and 500 subjects. The difference between
the two models is tested against the null using a binomial
distribution over the ten different folds.

3. Results

3.1. Results-1: sensitivity analysis

The empirical relationship between the t-value and the
tissue probability is shown in Figure 2 for various group
size (100, 200, 500, and our maximum possible, 1326). It
is apparent that when group sizes get larger, the effect
of thresholding with a usual parametric threshold (e.g.
from a Student t distribution, choosing a fixed p-value)
will delimit larger and larger clusters. For the 1326-sized
group, t-values as extreme as 50 can be reached. Moreover
for t values of 10 (corresponding to a p-value < 10−15),
the underlying anatomy probability is roughly equally dis-
tributed between Grey and White matter, thus violating
the common prior about the localization of BOLD activa-
tions. Also, we noted that even with a drastic multiple-
comparisons correction (p=5% bonferroni-corrected, i.e.
assuming iid. voxel signal), which is often considered too
severe for practical use, about 6% of the suprathreshold
voxels were still located inside of a stringent white matter
mask (area where 95% of registered subjects agreed on la-
belling the most probable tissue as white matter). These
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Figure 3: Inequality of BOLD variance components of the two tis-
sues types. This map depicts the value of the adapted Levene test
statistic. Stronger hot colors indicate areas where the variances of
the Grey- and White-matter classes are the most different. Voxels
where more than 90% of the subjects agree on the tissue class are
not depicted as this statistic is mostly relevant in areas where both
tissue proportion are non-null, i.e. voxels with strong inter-subject
variability, partial volume effects or ambiguous tissue type.

exact values apply to the strongly activating contrast of in-
terest (faces-viewing vs visual control contrast) and would
certainly differ for more subtle contrasts.

The influence of the group size on a group t statistic is
well known. As the group size increases, the t-value also
increases following its square root. It is often assumed,
however, that suprathresholds clusters of activations fully
originate from a well-defined effect of interest consistent
through all the subjects. The trend suggested by these
plots is that by including more and more subjects into
fMRI experiments, even effects of non-interest such as very
faint background BOLD signal may be considered as rele-
vant activations. In fact, in the simple linear model frame-
work y = xβ + ǫ, ǫ normal iid, if an effect of magnitude m
reaches the significance of p = 0.05×10−3 on a group of 30
subjects, (ie. if m

s/
√

29
= t−1

(29)(10
−5), where s is the sample

standard deviation and t−1
(ν) is the inverse Student prob-

ability function of ν degrees of freedom) then, when the
group size is as high as 1300, an effect of magnitude about
7 times smaller can be detected at the same significance

(since then t−1
(1299)(10

−5) = m/7.72

s/
√

1299
). This demonstrates

that statistical significance is not necessary related to prac-
tical significance on an actual neuroimaging dataset.

3.2. Results-2: modeling with the tissues

The comparison of the variances coming from the two
tissues classes, using the weighted Levene statistic, is il-
lustrated in Figure 3, indicating that the variance at Grey
Matter, White Matter and CSF cannot be assumed identi-
cal. This favors the hypothesis that those voxels contains
a mixture of signal originating from grey matter for some
subjects, and white matter for other subjects. This is a
strong incitment to further exploit the variance compo-
nents via a mixture model.

The possible improvement brought by adding anatom-
ical information to the modelling of the BOLD effect is
demonstrated by the likelihood ratio of two models which
either makes use or ignores this information. Figure 4
shows three examples of the log of the estimated likelihood

Figure 4: Example of the result of Likelihood ratios between the two
models. For pairs of groups of three different size (15, 100 and 500,
from top to bottom rows), the two models parameters are estimated
on the first group and the likelihood computed for the other groups.
The log-likelihood difference is depicted (Blue as favouring single-
normal model, Orange as favouring matter-weighted normal model,
not colored when the absolute log difference is less than 1.0). The
estimated effect map for the contrast computed on 100 subjects is
depicted as background overlay, thresholded at +/- 3 (Green). The
improvement brought by the matter-weighted model becomes more
obvious as the number of subjects increases.

ratio of both models. It should be noted that, although the
tissue-weighted model has more parameters which would
naturally better fit the training data set, the likelihood is
evaluated on a separate testing data set, which removes
non-specific bias and ensures generalization.

Although the model difference is typically small, it
is significant and can be consistently reproduced. Fig-
ure 5 depicts areas where the likelihood ratio favors the
anatomically-informed model significantly. These areas
tend to correspond to voxels for which tissue classification
varies across individual subjects, despite the registration.

3.3. Results-3: Using the selected model

The difference in sensitivity of the two models is as-
sessed and depicted in Figure 6 to quantify the gain brought
by the tissue-weighting model over the tissue-blind model.
It is apparent that the GM-weighted model is more sen-
sitive in areas with actual activations, and where tissue
classification is ambiguous or suffers from partial-volume
effects. This is the case both for positive and negative
effect.
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Figure 2: Relationship between the effect statistics and the anatomical structure, for different group sizes (100, 200, 500, 1326). Top: Tissue
probability as a function of the t-statistic. Red is Grey-matter, Blue is White-matter. Plain color lines is the averages over the ROIs, dashed
lines are their 25-75% quantiles. Bottom: Average effect t-value as a function of the White/Grey probability ratio.

Figure 5: Significance from small groups. p-values of the bino-
mial test assessing the advantage of the the anatomically informed
model in terms of likelihood ratio. At each voxel, for 44 indepen-
dent subgroups of 30 subjects, the two models are estimated on the
first “training” half, and the log-ratio of their average likelihood on
the “testing” second half is computed. The sign of that log-ratio
value over the 44 subgroups is tested against a binomial distribution,
and the corresponding p-value is depicted. Plain Cyan is << 0.001,
whereas Yellow is > 0.05, not significant.

Figure 6: Group-wide average effect (greyscale background) and,
as overlay, the significant difference of suprathreshold probability
for the GM-weighted normal model minus the tissue-independent
normal model. (Red when the effect is positive, Cyan when the
effect is negative, estimated on N=500 subjects. Yellow iso-contour
shows tissue probabilities of 50% grey, 50% white).

7
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4. Discussion

In the above experiments, we described the behaviour
of the thresholded t-test for significance assessment, as
classically done in fMRI, on a database of unprecedented
size. It can be emphasized that, as more and more sub-
jects are included, the statistical test outcome becomes
less and less anatomically relevant, as it tends to cross the
threshold for significance however low the effect and what-
ever the underlying tissue might be. As strong activation
in white matter is usually problematic from the physio-
logical standpoint, we wanted to investigate whether it
could partly be explainable by a subset of true signal com-
bined with the undesired mixture of tissues. This led us to
test whether tissue-dependent distributions could explain
the voxel signal better than the classical Gaussian model.
We then showed that the sensitivity of such a model is
improved, even for small group sizes. A possible limita-
tion of the current study is the lack of any modelling of a
scanner effect. Whether the signal variance could be ex-
plained better with an additional scanner-specific variable
remains to be verified, but appears most likely. This would
strengthen our current results.

In the linear model framework, the standard error de-
creases as the square root of the number of subjects, and
associated significance tests will therefore reject the null-
hypothesis more and more easily. This is expected and
well-known from a statistical point of view, but it has not
been observed on actual neuroimaging data. Here we show
that, using analyses performed with a popular fMRI anal-
ysis package (SPM) that can be used with large cohorts,
biological significance may differ from statistical signifi-
cance.

In this paper, we chose to use the high-dimensional
SPM8 warping procedure and associated segmentation.
We may expect the results to have differed quantitatively
should we have used a different segmentation and/or warp-
ing algorithm, such as SyN (Avants et al. (2008)), ART
(Ardekani et al. (1995)), or DARTEL (Ashburner (2007)).
It is well known that spatial normalization is an approx-
imative process. However the simultaneous influence of
spatial normalization and tissue classification on the BOLD
signal detection is not yet thoroughly documented. By ex-
ploiting the probabilistic nature of the tissue labelling, we
showed that we can recover additional signal. Spatial reg-
istration is a complex procedure, which usually involves
constrained deformations. The regularisation is necessary
to protect against meaningless warping, but may also pre-
clude perfect tissue alignment.

This problem can even corrupt white-matter areas, usu-
ally considered of lesser importance in cognitive studies.
The activations in regions corresponding to white matter
may arise from some BOLD signal originating in fact from
cortical tissue as a consequence of misclassification and
poor spatial normalization. Indeed, in another experiment
(not presented in this paper) conducted using the white-
matter ROIs set from the Johns Hopkins University atlas

(Mori et al., 2008) as regions further intersected with each
subject-level white-matter mask, the BOLD signal aver-
aged over the defined regions was significantly non-null
across subjects in most areas, at a 0.05 risk of error cor-
rected for the number (50) of ROIs. At the voxel level,
up to 6% of the activated voxels were found inside a very
stringent white matter mask.

In an alternative approach, one may have the intuitive
idea to simply fit some tissue confounding regressors (ie.
each tissue probability) in the voxel signal model (e.g. us-
ing method from Casanova et al. (2007)); but as the vari-
ance components are unequal, a multilinear model with
a single, normally-distributed residual variance model will
not optimally explain the data. In a measurement of the
1326-sized group map, the average variance over the grey
and white matter mask was 0.32, while it was 0.37 and
0.22 when separately restricted to Grey and White mat-
ter masks, respectively, indicating that BOLD signal mea-
sured on grey and white matter regions could be consid-
ered as originating from different distributions. This is
reflected in our weighted-Levene statistic map depicting
the difference of the signal variances between each tissues
(fig. 3).

In neuroimaging fMRI analyses, it is usual to apply
some smoothing to the data, and this is recommended be-
cause it increases the signal to noise ratio, mitigate inter-
subject spatial variability, and enables the use of the Gaus-
sian Random fields Theory for multiple comparisons cor-
rection. However, in this study, we did not apply any extra
spatial smoothing to avoid mixing white and grey matter
signals. Therefore, in real setting, one has to take care not
to consider the effect illustrated in this paper as a simple
undesirable consequence of smoothing.

Another limitation of the study is the use of a simple
Random-Effect statistic that does not consider intra sub-
ject residual variance. Although it is a deliberate choice in
this study to use that most common setting, it is possible
that using the full Mixed-Effects statistics (Worsley et al.,
2002b; Roche et al., 2007) would improve the estimation
accuracy, by downweighting uncertain data, possibly even
in a tissue-specific way. However, grey matter voxels have
generally larger variance than white matter voxels, so the
effect we observed may in fact be increased. It remains to
be seen if a better mixed-effects model can be obtained by
including anatomical information.

Finally, although the main point of this study was
to illustrate the behaviour of classical analyses on large
datasets, the model proposed here could have important
practical applications. First, it allows to compute the
BOLD effect measured at a voxel or within a region of in-
terest accounting for variation of the underlying anatom-

ical structure, for each subject. This may be crucial for
instance in imaging genetic studies that require precise in-
dividual endophenotypes. Second, it may be important
to be able to compare the BOLD values of different brain
regions. This requires removing the effect induced by the
amount of grey or white matter in these regions. Our
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model allows to compare areas near the tissue interface to
areas in plain grey-matter cortex, for either the effect size
or the t- or z-value. Jernigan et al. (2003) argue that dif-
ferences in size effects between areas of interest should be
required before interpreting an activation pattern in fMRI
studies, and propose that this should be the standard way
of data presentation.

We hope that the present paper emphasized the limita-
tions of the simple Student t-test based maps when work-
ing on large fMRI cohorts. This work may also be used to
obtain better BOLD estimates that account for anatomical
information of individual subjects.
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7. Appendix

We derived here a statistic for weighted data inspired
by the Levene statistic (Levene, 1960). The original Lev-
ene statistic, for two groups (1 and 2) is:

W =
{n1(r1 − r)2 + n2(r2 − r)2}/(2− 1)

{∑n1

j=1 (rj1 − r1)2 +
∑n2

j=1 (rj2 − r2)2}/(N − 2)
,

where

• nk is the number of subjects in class (group) k,

• rjk = |yjk − ȳk|, where yjk is the value of the jth
observation in class k and ȳk is the mean of observa-
tions in class k,

• rk is the mean of the rjk in class k,

• r is the global mean of the rjk

To rearange the denominator, we use the expectation equal-
ity

E[(x− E[x])2] = E[x2]− E[x]2,

which, in its discrete form applied to rk, reads:

1

n

n∑

j=1

(rjk − rk)
2 = r2k − rk

2,

where r2k is the mean of rjk
2 over j. This equality still holds

when the expectation is changed to a weighted mean. We
can therefore rewrite the statistic as:

W =
{n1.(r1 − r)2 + n2.(r2 − r)2}/(2− 1)

{n1.(r21 − r1
2) + n2.(r22 − r2

2)}/(n1 + n2 − 2)
,

We modified the above to account for weighted infor-
mation, by replacing means with weighted-means; ie. we
now redefine the above terms as:

nk =

N∑

j=1

wjk,

rjk =|yj − yk|, where yk =
1

nk

N∑

j=1

wjkyj,

rk =
1

nk

N∑

j=1

wjkrjk,

r2k =
1

nk

N∑

j=1

wjkr
2
jk,

r =
1

n1 + n2

N∑

j=1

(wj1rj1 + wj2rj2)

with yj the observation for subject j, k ∈ {1, 2} the two
classes, and wjk the weight from class k for subject j.

In this manuscript, yj is the BOLD effect of subject
j at some voxel of interest, whereas wjk is the estimated
proportion of tissue k (k ∈ {1, 2} corresponding to Gray
Matter and White matter) at that voxel for that subject.

Note that our notion of group is different in this later
statistic than in the original Levene statistic, and is not
expected to follow a known distribution under the null hy-
pothesis. However, for our experiment, we tabulated this
statistic using simulations under several weight distribu-
tion profiles (and the number of observations equals that
of our experimental data) in order to confirm that voxels
highlighted in hot colors in figure 3 were significant at a
5% level (W ≈ 2 for p = 0.05, while W ≈ 4 for a p = 10−4

level).
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- The behaviour of classical fMRI statistical analysis for very large databases 

- Thresholded activation maps get less relevant as the number of subjects grows 

- Including anatomical information, through simple tissue types, improves accuracy. 

- BOLD signal is better estimated using 3 tissue-dependent variance components 

!"#$%"#$&'


