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Abstract 

Vortex shedding may occur in tube arrays, resulting in strong excitation forces at 
discrete frequencies. In the past the Strouhal numbers governing vortex 
shedding in these systems were determined primarily by experiment. This paper 
presents a computationally inexpensive method of numerical simulation for the 
unsteady flow through a rigid normal triangular tube array which determines 
both the frequency of vortex shedding and the instantaneous flow structure. The 
technique used is based on a discrete vortex method similar to the cloud-in-cell 
approach which has been applied to flow problems for small numbers of 
cylinders. However, in the current implementation the flow velocity calculation is 
carried out on an unstructured grid using a finite element discretization. Thus, 
the complex geometry associated with a tube array can be easily 
accommodated. The method, referred to as the “Cloud-in-element” method, is 
validated for the standard case of flow over a single cylinder and then applied to 
flow through a normal triangular array with a pitch-to-diameter of 1.6. The 
Reynolds number is 2200. The Stouhal number obtained from the numerical 
simulation is 1.27, which is within 6% of the value available in the literature. 
Qualitatively, the vortex shedding pattern obtained is in agreement with 
published flow visualization. 

 

 



1 Introduction

Weaver (1987) notes that if periodicity exists in the flow in the absence of structural motion then “self-
controlled vibrations” may occur. This flow periodicity may be generated by acoustic resonance or by an-
other mechanism referred to as Strouhal periodicity. Both mechanisms will produce similar tube responses,
a fact that led Weaver & Fitzpatrick (1988) to dismiss as unreliable much earlier (pre1980) Strouhal data
for tube arrays, since it was obtained from heat exchangers prone to acoustic resonance.

Prior to the 1960s, vortex shedding within heat exchangers (which was thought to be identical to that from
a single cylinder) was accepted as the major cause of FIV in tube bundles. But Owen (1965) disputed
the possiblity that discrete vortex shedding could occur in closely packed tube arrays. He attributed the
widely observed resonant phenomenon to a peak in the turbulence spectrum, the frequency of which
was dependent on flow velocity and array geometry. He derived a semi-empirical formula to predict the
frequency of this peak. Paidoussis (1981) pointed out that other predictive formulae, which were based
on the vortex shedding concept, agreed well with Owen’s model. He argued that, since the various semi-
empirical formulae were based on the same experimental data, it was hardly surprising that the predictions
were comparable.

However, Owen’s ideas highlight the fact that even at the time of Paidoussis’ review (1981), there was no
definitive proof of the exact nature of Strouhal periodicity, as the phenomenon had come to be known. For
example, Grover & Weaver (1978), despite setting out to clarify the issue, succeeded only in observing
a strong resonant peak in tube response, the existance of which was not in doubt. It was not until 1985,
that Weaver & Abd-Rabbo (1985) published a flow visualization study of water flow in a fully flexible,
normal square (inline) array (P

d
= 1.5), which shows periodic vortex shedding, although not very clearly.

Several other visualization studies followed for various array geometries. Price et al. (1992) show pictures
of vortex shedding in a parallel triangular array (P

d
= 1.375); Weaver et al. (1992) present photographs

of vortex shedding in rotated square arrays (P
d
= 1.21 to 1.83) with air as the working fluid. Perhaps the

clearest images of vortex shedding have been produced by Oengeron & Ziada (1998) who investigated both
inline and staggered array configurations subject to water cross flow including several normal triangular
arrays.

Before the acceptance of vortex shedding as the mechanism of Strouhal periodicity, much was known
about the phenomenon. Weaver & Yeung (1984) having studied all four array geometries, produced a
general expression which relates the RMS tube response, normalized against tube diameter, to the mass
damping parameter (including “fluid added mass”). The authors suggest that vortex shedding will not
produce significant tube response for mass damping parameters greater than about unity, although they
caution that the experimental data is quite sparse.

Savkar (1984) reported that upstream turbulence generators (grids) in air flow eliminated the problem of
Strouhal periodicity altogether. This result suggests that, since turbulence levels by the fifth row are very
high (Weaver & El-Kashlan, 1981), the problem of Strouhal periodicity is only a problem in the first few
rows. However, Fitzpatrick et al. (1986) report a substantial peak in the turbulence spectra as deep as the
fifteenth row of inline arrays. They also reported multiple Strouhal numbers. This result has been found by
other researchers. Paidoussis et al. (1988) found two Strouhal numbers for a rotated square array, P

d
= 1.5.
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Price et al. (1987) report three Strouhal numbers, but note that only one Strouhal number persists beyond
the fourth row.

Previously, Zukauskas & Katinas (1980) attempted to collapse all the Strouhal data on to a single curve,
however, the presence of multiple vortex shedding frequencies renders their curve obsolete. Polak & Weaver (1995)
argue that for normal triangular arrays with a pitch ratio of less than 2, only a single shedding frequency
can be observed. However, Oengoren & Ziada (1998) collated all the available data, including new data
from their own study, to provide two empirical curves which predict the Strouhal number as a function of
pitch ratio. Furthermore, they go on to show experimentally that the higher value is dominant at small pitch
ratios (P

d
< 1.6), while the lower Strouhal number dominates in arrays with large pitch ratios ( P

d
> 3.4).

At intermediate spacing, both Strouhal numbers are apparent, but which is strongest depends on which
row is being examined, and in some cases, how many tubes are in a row. The presence of a third shedding
frequency can be attributed to a non-linear interaction between the other two frequencies. This explains
the behaviour reported by Price et al. (1987).

As can be seen from the discussion above, vortex shedding in tube arrays is now reasonably well under-
stood. However, it is also clear that this knowledge base has been achieved primarily through experimental
investigation.

The steady state mass and heat transfer in heat exchanger tube bundles have been successfully modelled
numerically by making use of the periodic nature of the geometry (e.g. Johnson et al., 1993; Beale &
Spalding, 1998). Beale & Spalding (1999) have also employed periodic boundaries with a finite volume
discretisation of the laminar Navier-Stokes equations cast in primitive variables to simulate the unsteady
flow in rigid tube arrays and so obtain Strouhal numbers. They state that “ideally, flow-field calculations
would be performed over the entire bank of tubes”, but note that computational restrictions on the mesh
size and density make this impractical for this method of flow simulation. There have also been studies
which have applied large eddy simulation (LES) to a full tube array (e.g. Barsamian & Hassan, 1997).
However, LES is still very costly computationally, and so is not useful as a potential design tool nor as a
tool for parametric studies.

It has long been recognized that vortex methods offer an alternative approach to flow simulation which is
considerably less computationally expensive. Vortex methods are based on solving the vorticity transport
equation (which can be shown to be equivalent to the Navier-Stokes equations) by convecting particles
of vorticity (or circulation) in an instantaneous velocity field which is obtained from the distribution of
vorticity. A detailed review of vortex methods can be found in Cottet & Koumoutsakos (2000). This paper
outlines a computational scheme, which makes use of an unstructured finite element mesh to solve the
velocity field and so can easily be used to simulate the flow through an entire tube array. The method is
demonstrated on a normal triangular tube array with a pitch ratio of 1.6 and a Reynolds number of 2200.
This corresponds to the experimental data provided by Polak & Weaver (1995).
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2 Governing equations

The governing equations which are needed to describe two dimensional, incompressible fluid flow may be
expressed as the vorticity transport equation, Eq. (1), and the stream function-vorticity equation, Eq. (2).
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where ψ is the stream function, ω is the vorticity and ν is the dynamic viscosity.

Vortex methods use a Lagrangian approach to flow simulation by concentrating on the vorticity field in the
flow. If the field is represented by point vortices, then the governing equations of the flow may be solved
by considering the creation, interaction and motion of these point vortices.

Chorin (1973) proposed an operator-splitting scheme whereby the processes of convection and viscous
diffusion, denoted by the suffices C and D respectively, are solved separately. Convection is solved by
moving the point vortices in the velocity field. Viscous diffusion is solved by walking the point vortices
through a distance chosen at random from a Gaussian distribution with standard deviation

√
2νΔt. The

final position of each point vortex at the end of a time step is given by the combination of the diffusion
and convection processes. The simulation then advances onto the next time step, and the new velocity field
is calculated and the boundary conditions applied. This time-stepping procedure by which the governing
equations are solved is called the random vortex method.

The velocity field must be calculated by solving the stream function-vorticity Poisson equation at each time
step of the simulation so that the point vortices may be convected. To solve this using a direct Biot-Savart
summation for the interaction of N point vortices would take an operation count of O(N 2).

Christiansen (1973) introduced the cloud-in-cell (CIC) method to allow a more efficient calculation of the
velocity field. In this method, a mesh is placed over the flow field and the vorticity of the point vortices is
attributed to the nodes of the cell in which it is contained. Once all of the point vortices have been spread
in this way onto the nodes of the mesh, the governing stream function - vorticity equation can be solved
on the mesh using standard Eulerian mesh techniques, such as finite-difference. The velocity of each point
vortex in this flow field can be now obtained from the stream functions at the mesh points by interpolation,
and the simulation advanced.

This reduces the cost of the flow field calculation for N point vortices from O(N 2) (calculating the effect
of every point vortex on every other point vortex) to a number of computations that is roughly linear in
the number of vortices and mesh points, O(N +M) (Milinazzo & Saffman 1977). Although this method
offers an efficient calculation of the velocity field, it is restricted to use on regular Cartesian or polar
meshes. Application of the method to flow over multiple bodies requires the use of multiple meshes with
mesh interaction schemes.
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The objective of the cloud-in-element method is to allow the efficiencies offered by CIC to be applied for
use on an unstructured mesh. This would allow an efficient calculation of the velocity field on a single mesh
due to a set of point vortices in a domain which may contain multiple bodies and complex geometries.

3 Cloud-in-element

If the velocity field is to be solved on an unstructured mesh, the circulation of the point vortices must be
spread onto the nodes of the mesh. Once this has been done, the stream function at the mesh nodes may
be calculated by use of the finite element method. There are two stages involved in preparing the mesh to
calculate the velocity field. First, each point vortex needs to be located in the mesh. This involves finding
which triangular finite element of the mesh contains each point vortex. Once the point vortices have been
located in their home elements, the strength of the point vortices must be assigned to the mesh nodes, so
that the velocity field can be calculated.

3.1 Graphical look-up matrix

Locating a point in a regular polar or Cartesian mesh is a simple procedure, as the coordinates of the point
may be used as a pointer to the mesh cell in which it belongs. It is not so easy to locate points in an
unstructured mesh, however, as the elements are not necessarily regular in size, orientation, or numbered
in a regular manner. It would be convenient to be able to use the coordinates of the point vortex as a pointer
to its home element. This can be achieved by building a matrix which reports the likely home element for
the coordinates of a given point vortex, called a graphical look-up matrix.

To see how a graphical look-up matrix may be used to locate a point in an unstructured mesh, consider
Figure 1(a), which shows a point vortex located in element number 59 in an unstructured mesh. The
graphical look-up matrix has been generated for this mesh by stepping through the unstructured mesh by
a fixed amount, and at each step entering the number of that location’s home element as an index into a
matrix. As the mesh does not change during the course of the simulation, neither does the graphical look-
up matrix, and it can be assembled at the pre-processing stage and stored for use during the simulation.
With the graphical look-up matrix, the index states the element number which contains the point at that
location. This allows the coordinates of the point vortex, once suitably truncated, to be used as pointers to
the row and column indices of the graphical look-up matrix, hence returning the number of the most likely
home element of the point vortex, Figure 1(b).

The graphical look-up matrix offers an efficient way of getting the home element of a point in an un-
structured mesh. However, if the point lies near the boundary separating two or more elements, the home
element returned from the look-up matrix may be incorrect. To find out if the element number given is
indeed the home element of that point, a rigorous mathematical test for determining whether a point lies
inside a given triangle is required. The vector product can be used as such a test.

For each vortex and corresponding test element, the vortex coordinates are subtracted from the vertices of
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(a) Unstructured mesh.

44 44 36 35 35 35 35 30 29 29 29 29 18 18 17 17

75 76 76 62 62 62 62 59 59 59 29 29 29 17 46 46

76 76 76 62 62 63 63 63 59 59 59 60 60 61 61 61
78 78 78 78 63 63 63 63 59 59 59 60 60 61 61 61
78 78 78 69 69 69 63 63 59 59 60 60 60 60 81 81
77 78 78 69 69 69 69 69 59 60 60 60 60 60 61 71
77 78 78 69 69 69 58 58 51 52 52 52 52 52 71 71
77 77 69 69 58 58 58 58 51 51 52 52 52 52 49 50
74 74 57 58 58 58 58 58 51 51 52 52 52 49 49 50
74 73 73 57 58 58 58 51 51 51 51 52 52 49 49 49
73 73 73 57 57 57 58 51 51 51 51 51 49 49 49 49

75 75 62 35 35 35 35 30 29 29 29 29 18 18 17 17

76 76 76 62 62 62 63 63 59 59 59 59 60 61 46 46

(b) Graphical look-up matrix.

Fig. 1. Point location.

the element, which results in the element being positioned with the vortex at the origin. The vertices of
the triangle can now be considered as vectors (�a,�b,�c) from the point vortex to the vertices. If the vortex
is inside the triangle, then �a × �b, �b × �c and �c × �a will all have the same sign, as the angles between the
vectors are all less than π. If the vortex is outside the triangle, on the other hand, one of the cross products
will have the opposite sign to the others, as one of the angles will be greater than π.

This test is mathematically sufficient to verify that a point lies within a triangular element. If it is found
that the point vortex does not lie within the element given by the graphical look-up matrix, the neighbours
matrix is used to find the correct home element.

3.2 Neighbours matrix

Figure 2 shows a point vortex near the edge of an element. The graphical look-up matrix returns the home
element of this point as being the adjacent shaded element (#69), instead of the true home element (#78).

This is where the matrix of neighbouring elements can be used. Each row of the neighbours matrix lists all
of the elements which share nodes with the element associated with that row. In Figure 2(a) the graphical
look-up matrix has returned the incorrect element number 69 as the home element. However, by testing

7



76

78
77

69

63
62

52

60

59

51
58

5773
74

(a) Neighbouring elements.

...
67 ...
68 ...
69 58 62 78 63 59 60 51 52 74 57 73 77 76
70 ...
71 ...
...

(b) Neighbours matrix.

Fig. 2. Finding the correct home element.

the elements listed in row 69 of the neighbours matrix, element number 78 will be found as the true home
element.

3.3 Spreading the circulation

At this stage of the process every point vortex has had its home element verified. In order to solve for the
velocity field caused by these point vortices, their circulation needs to be spread from the point vortices
onto the nodes of their home elements. Then the Poisson equation can be solved on the unstructured mesh
using the finite element method to obtain the stream function and hence the velocity field.

Area-weighting is efficient to implement with a regular Cartesian or polar coordinate system as the ratio
of the areas involved can be directly related to the coordinate system being used. When spreading onto the
nodes of a triangular element in an unstructured mesh, these regular coordinate systems do not directly
give information about the areas needed for area-weighting. A coordinate system based on the triangle
itself is desirable, and can be achieved by using area coordinates.

⎛
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8



1 1

2 2

3 3

A

A

1

3

A2

1 (x ,y )

2 (x ,y )

3 (x ,y )

P (x,y)

Fig. 3. Area-weighting in a triangle.

a1= x2y3 − x3y2
b1= y2 − y3 (4)
c1= x3 − x2

with cyclic rotation of indices 1, 2, 3. If the circulation of the vortex at P in Figure 3 is Γ, then the circula-
tion spread onto node 1 will equal ΓA1

A
, that spread onto node 2 will equal ΓA2

A
, and for node 3 will equal

ΓA3

A
, where A is the area of the triangle. Area coordinates directly give the area ratios required for area-

weighting, and so the circulation spread onto node 1 is given by L1Γ, the circulation on node 2 is L2Γ, and
for node 3 is L3Γ. Once the circulation has been assigned onto the nodes of the unstructured mesh in this
manner for all the point vortices, the finite element method is used to solve the stream function-vorticity
equation, and the velocity field is obtained.

3.4 Boundary considerations

Any solid surfaces in a viscous flow require two boundary conditions to be enforced. The zero-permeability
boundary condition ensures that the fluid flows around and not through the solid. If there is only a single
body in the flow, a Dirichlet condition may be applied by setting the value of the stream function at the
solid surface to a constant. If there is more than one body in the flow, the stream function values for the
different bodies will not be known in advance. In this case a source panel method can be used to enforce
a Neumann condition of zero normal flux at the surface. In the source panel method the strengths of a
collection of source panels is calculated from the onset velocity and the geometries of the solid surfaces
so as to ensure that the flow does not cross the boundary (Kellogg, 1929).

Another boundary condition which must be applied is the no-slip condition. The velocity of the fluid at
the surface is zero, as viscosity causes the fluid to stick to the solid surface. In the simulation, the no-slip
condition is enforced at the surface at each time step by creating a vortex sheet. The strength of the vortex
sheet is calculated so that it will induce a velocity equal and opposite to the tangential velocity of the fluid
at the surface. The overall velocity at the surface once the vortex sheet has been created, therefore, will
be zero and the no-slip condition satisfied. This vortex sheet is then discretised into point vortices which
diffuse into the flow.

Point vortices may cross a solid surface during the course of the simulation due to convection for a discrete
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time step, or diffusion by random walk. These internal point vortices may be absorbed following the
method of Smith & Stansby (1989). Any internal point vortices are deleted, but their circulation is noted.
The circulation of all internal point vortices is then assigned to the surface, and thus included in the next
velocity field calculation. The no-slip condition is enforced by the creation of a vortex sheet, and new
point vortices are created with circulation strengths defined by the circulation absorbed by deleted point
vortices, and the circulation due to the vortex sheet enforcing no-slip.

4 Validation for one cylinder

In order to validate the cloud-in-element method, simulations were run for the standard case of flow over a
single circular cylinder for a range of Reynolds numbers from 40 to 9,500. Plots of the computed Strouhal
number and mean drag variation with Reynolds number are compared with experimental results obtained
from the review on flow around circular cylinders by Zdravkovich (1997) and Norberg (2001).

Figure 4 shows a good agreement between the Strouhal (St) number calculated in the present work and
experimental results. The Strouhal number increases from a low value for low Reynolds numbers, to reach
a reasonably level value from Re = 550− 9500.

Figure 5 shows a comparison between computed and experimental results (Zdravkovich 1997) for the total
mean drag (CD). The simulations show a good initial trend, the mean drag decreasing with increasing
Reynolds number, and predicting values close to those found experimentally, although the agreement
deteriorates somewhat at higher Reynolds numbers.

5 Application to tube array

The validated technique has been applied to a four row normal triangular array with a pitch ratio of 1.6. A
schematic of the geometry can be found in figure 6. The array is similar to that investigated experimentally
by Polak & Weaver (1995), the difference being that the simulation is executed using non-dimensional
units with a tube radius is 1 and a flow velocity of 1. The simulation time is also non-dimensional. The
Reynolds number is set by the value of the viscosity. The results can be easily scaled to represent data
from a particular physical array, as long as the Reynolds numbers agree.

The computational domain, and hence the unstructured mesh, is extended slight above and below the array
so as to ensure that vortices which are convected or diffused across the solid boundary can be dealt with
and returned to the flow. Similarly, the mesh extends through the tubes to allow a whole field velocity
calculation as required by the source panel method. This also facilitates the absorption and reintroduction
of point vortices which have crossed cylinder surface. This highlights the fact that the unstructured mesh
on which the finite element solution of the velocity field is obtained is not coincident with the fluid domain.

The onset flow velocity is set at 1m/s and the Reynolds number is then chosen by setting an appropriate
value for the viscosity in the numerical model. The simulation was run for a Reynolds number of 2200,
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Fig. 5. Mean drag coefficient: ◦, present work; —, experiment, Zdravkovich (1997).

which corresponds to that used by Polak & Weaver in their flow visualisation, thus allowing direct com-
parison with that experimental study. The simulation was initiated with a potential flow solution in the first
time step and was allowed to run for 2000 time steps. The non-dimensional time step was set at 0.01 giving
a final non-dimensional time (T ∗ = Ut/r) of 20. As will be seen below, this corresponds to approximately
12 vortex shedding periods.

5.1 Results

The instantaneous fluid velocity was examined at the location in the second row indicated in figure 6. This
is close to one of the locations of the hotwire measurements in Polak & Weaver’s study thus allowing
direct comparison with experimental data. The time history of the streamwise velocity component at the
location can be seen in figure 7. Since the simulation represents impulsively started flow through a tube
array, the velocity field initially exhibits a transient build-up of vorticity (T ∗ < 2), after which the trace
exhibits a strong periodicity. The streamwise velocity in the gap initially exhibits an upward trend but then
fluctuates about a mean value of 3.5. This type of behaviour has been observed for starting flow over a
single cylinder. There is also a significant apparently random component to the time trace. This can be
attributed directly to the manner in which the diffusion has been modeled; the random walk approach
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to modelling diffusion tends to yield a velocity field with a strong random component. This could be
significantly reduced by ensemble averaging. The velocity component at the same point in the crossflow
direction is shown in figure 8. The magnitude of fluctuation is smaller, but a periodic nature can also be
observed in this quantity.
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(a) Non-dimensional time, T ∗ = 6.0 (b) Non-dimensional time, T ∗ = 6.2

(c) Non-dimensional time, T ∗ = 6.4 (d) Non-dimensional time, T ∗ = 6.6

(e) Non-dimensional time, T ∗ = 6.8 (f) Non-dimensional time, T ∗ = 7.0

(g) Non-dimensional time, T ∗ = 7.2 (h) Non-dimensional time, T ∗ = 7.4

Fig. 10. Positive vorticity shed from cylinder in the first row of the array over one cycle.
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Fig. 11. Mean vorticity downstream of first row.

Fig. 12. Variation of runtime per iteration with number of vortices.

The periodic nature of the flow field can more easily be seen in the power spectrum of the streamwise
velocity shown in figure 9. The frequency has been converted to Strouhal number(St = fd/U∞). Note that
the Strouhal number used here is based on the freestream velocity, as was the case in Polak and Weaver’s
study, rather than on the gap velocity as was done by Oengeron & Ziada (1998). The vertical axis is an
arbitray linear scale of Power Spectral Density. A strong peak is apparent in the PSD at a Strouhal number
of 1.27. For a Reynolds number of 2200, Polak & Weaver reported a value for the Strouhal number based
on hotwire measurements of 1.2± 0.15, which means that the numerical simulation has overestimated the
shedding frequency by about 6%. Although Polak and Weaver only reported a single shedding frequency
for this array geometry, Oengeron and Ziada reported two discrete frequencies. The second, should be
located at a Strouhal number of approximately 1.8. There is no evidence in this data for a second frequency,
however, there is insufficient data in the time record to generate an averaged spectrum and obtain improved
frequency resolution.

The periodic vortex shedding in the tube array predicted by the simualtion can be seen qualitatively by
examining the development of the vorticity field. Figure 10 shows the evolution of the vorticity field behind
the first row of the array from T ∗ = 6.0 to T ∗ = 7.4 which corresponds to just over one vortex shedding
cycle. Only the positive vorticty has been shown for clarity. The flow direction is from left to right.
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The sequence begins in figure 10(a) with a concentration of vorticity just detached from the leading tube.
A new vortex has already started to form on the lower suface of the tube. The detached vortex is elongated
as the flow is accelerated through the gap between the cylinders of the second row as can be seen in
figure 10(b-d). While this detached vortex is stretched and convected downstream, the vortex which is still
attached to the cylinder in the first row continues to grow. This vortex remains in the vicinity of the first
row (figure 10(e,f) ) until it is finally shed (figure 10(g) ) and begins to become elongated (figure 10(h) ).
Comparison of the sequence with figure 4 of Polak & Weaver’s study suggests that the unsteady flow field
obtained from the simulation agrees qualitatively with experimental flow visualization.

Figure 11 shows the absolute mean value of the vorticity field, averaged from T ∗ = 2 → 20 in the region
of the first row. As would be expected the mean flow is strongly symmetric. The figure shows clearly the
primary recirculating regions in the wake of the first row cylinder. Interestingly, secondary recirculating
regions can also be seen between the primary vortices and the tube surface.

5.2 Computational cost.

The simulation described above was executed on a desktop PC with a single Pentium 4 processor and
256 Mb of memory. The total runtime was approximately 70 minutes. New vortices are created at every
time step, however, as these move downstream they are combined or deleted and so the total number of
vortices being tracked in the simulation reaches a plateau which depends primarily of the size of problem
considered. For this simulation a maximum of 105 vortices was used.

Figure 12 shows the variation of the runtime for a single iteration of the algorithm with the number of
vortices. As can be clearly seen, this variation is linear; i.e. the scheme is O(N), where N is the num-
ber of vortices. The velocity calculation is a constant computational overhead for a given mesh, which
explains why the curve does not pass through the origin (i.e. for zero vortices the run time will not be
zero). This implies that the algorithm can be applied directly to larger problems (i.e. bigger arrays) with a
computational cost which is directly proportional to the size of the problem.

6 Conclusions

A variant of the Cloud-in-Cell discrete vortex method has been described which can easily accommodate
the complex geometry of a tube array. This is achieved using a finite element, rather than a finite dif-
ference, scheme on an unstructured mesh in order to solve for the flow field induced by the translating
point vortices. The computational problem of spreading the circulation field represented by the cloud of
vortices onto the unstructured mesh is accelerated using a look-up table. The resulting method referred
to as the “Cloud-in-Element” method is computationally inexpensive for solving unsteady flow around
complex bluff body geometries at moderate Reynolds number. The technique is shown to be accurate for
the standard case of flow around a single circular cylinder.

This Cloud-in-Element method has been applied to a normal triangular array with a pitch ratio of 1.6, at a
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Reynolds number of 2200. This case was chosen for direct comparison with experimental data available in
the literature. The simulation successfully predicted the Strouhal number to within 6% of the experimental
value and vortex shedding similar to that seen in experimental flow visualization has been observed.

As the simulation was initiated effectively from quiescent fluid (i.e. starting flow) it is desirable to extend
the computation in order to verify that a dynamically stable vortex shedding cycle has in fact been estab-
lished and that the velocity data at any given point becomes periodic about a mean value. Furthermore,
given the quantity of data available in the literature for vortex shedding in tube arrays, a detailed compari-
son of dependence of the predicted Strouhal number on Reynolds number, pitch ratio and array pattern is
necessary to further validate the approach.

Nonetheless, the technique provides a computationally inexpensive way to solve for the unsteady flow
within an entire tube array and it offers the opportunity to explore the effects of novel array geometries
without the expense and complexity of experimentation.

Furthermore, given that the approach used is basically a Lagrangian technique and that solid bodies are
represented using a surface integral technique, it is in principle straight forward to extend the method to
include moving boundaries.
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