
The Economic and Social Review, Vol. 27, No. 4, July, 1996, pp. 341-363 

Mapping Disease Risk Estimates Based on 
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Abstract: Choropleth maps are frequently used to analyse spatial variations in the risk of a 
disease. I n such maps the relative risk is typically quantified by dividing some measure of the 
number of cases of the disease by some measure of the population at risk. The resulting rates 
may be regarded as maximum likelihood estimates of individual risk. These estimates may be 
unstable if the areas are very small or if the disease is rare. I n such situations, the highest and 
lowest values on the map wil l display a tendency to be concentrated in the areas with the 
smallest populations. The traditional solution to this problem is to supplement maps based on 
ratios with probability maps. However, probability maps display an opposite bias — i.e., they 
tend to highlight the areas with the largest populations. Several statisticians have suggested a 
compromise between these two extremes using empirical Bayes techniques. This paper outlines 
the rationale underlying empirical Bayes techniques, and assesses their usefulness using case 
studies of neo-natal mortality and cancer mortality. 

I I N T R O D U C T I O N 

M aps of the prevalence or incidence of a disease often provide useful 
aetiological informat ion about the possible causes of t h a t disease. A 

heightened incidence of a part icular disease i n certain areas could reflect the 
effects of either "contextual" factors such as local environmental r isks (e.g., a 
pol lu t ion or radia t ion source), or "compositional" factors such as a higher per­
centage of people who as individuals have a higher r i s k because of genetic 

*The author would like to thank the unknown referees of an earlier draft of this paper for their 
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factors or h i g h r i sk behaviours (Duncan et al., 1993). Conversely, the absence 
of a heightened incidence may help to alleviate unjust i f ied public concern 
about a non-dangerous facili ty. Disease maps can also aid decision making by 
h e a l t h service policy makers, whether t he i r p r i m a r y concern is disease 
prevent ion or the provision of services for medical t reatment. Some heal th 
r i s k factors, such as pol lut ion sources or h igh r i sk behaviours (e.g., smoking), 
may be amenable to preventive strategies; other r i sk factors (such as age, 
race or gender) obviously are not, bu t a knowledge of the spatial d is t r ibut ion 
of these factors may facilitate the provision of a more efficient heal th delivery 
system. 

Disease mapping is by no means unproblematic. There are a large number 
of statist ical problems which have to be addressed — some of which are by no 
means obvious. There are also a large number of cartographic pitfalls await­
i n g the inexperienced map-maker. Maps can create a powerful visual image, 
bu t they can also create a very misleading impression either by accident or 
design (Monmonier, 1991). The meaningful in terpreta t ion of disease maps is 
therefore contingent upon an awareness of the potential problems. 

There are at present comparatively few examples of disease mapping i n 
I re land, a l though i t is envisaged tha t this s i tuat ion w i l l change rapidly w i t h 
increased adopt ion of geographical in fo rmat ion systems (GIS). Dawson's 
(1911) study of "insanity" provides an interest ing early example of a disease 
map (especially w h e n compared w i t h maps of repor ted schizophrenia 
m o r b i d i t y a t present), bu t most of the more recent examples of disease 
mapp ing tend to be based on m o r t a l i t y data. The Central Statistics Office 
normal ly includes maps of mor ta l i ty i n the Report on Vital Statistics which i t 
compiles each year for the Department of Heal th . However, these maps are 
based on data wh ich are standardised for variations i n population structure 
us ing the direct method. This tends to amplify minor stochastic fluctuations, 
thereby disguis ing aetiologically impor t an t regulari t ies i n the under ly ing 
var ia t ions i n r i sk . Indirect standardisation, as used for example by Howel l 
et al. (1993), is preferable, a l though the spatial variations displayed i n such 
maps tend to be dominated by variations i n the number of deaths i n the older 
age cohorts. Pr ingle (1986) a t tempted to overcome this part icular problem, 
w i t h mixed success, by calculating an "Unfulf i l led Life Index". 

Most I r i s h studies map regional variat ions at a nat ional level — main ly 
because of the absence of published data at larger scales. However, a few 
studies have mapped mor t a l i t y at an in t ra -urban level us ing data direct ly 
extracted from death certificates. These studies are par t icular ly susceptible 
to the "small numbers" problem (Congdon, 1990; Diehr, 1984; K i n g , 1979). 
Johnson and Dack (1989) i n a study of D u b l i n a t tempted to reduce the 
problem by aggregating data for several consecutive years, wh i l s t Pr ingle 



(1983; 1987) i n studies of Belfast and D u b l i n aggregated adjoining areas. 
Both strategies provide only par t ia l solutions. 

The "small numbers" problem is probably the most pervasive problem i n 
disease mapping. The problem arises when the absolute number of cases of 
the disease i n each area is small , either because the areas are very smal l or 
the disease is comparatively rare or both. When used as the numerators to 
calculate rates, small numbers may provide very misleading impressions of 
the under ly ing risks. S imi lar problems are associated w i t h other social and 
economic indicators expressed as rates or ratios for small areas (e.g., unem­
ployment rates, per capita income). Possible solutions, based on empir ica l 
Bayes techniques, have been proposed by various stat is t icians i n recent 
years. These techniques form the focus of the present paper. The paper begins 
by expla in ing the small numbers problem i n more detai l and then outlines 
some of the strategies which have t rad i t ional ly been adopted to t r y to circum­
vent the problem. Al te rna t ive approaches based on empir ical Bayes tech­
niques are then introduced. The f inal par t of the paper reports an empir ical 
assessment of the effectiveness of these techniques using case studies of neo­
natal mor ta l i ty and deaths from cancer. 

I I T H E S M A L L N U M B E R S P R O B L E M 

Normal ly when one maps the incidence or prevalence of a disease one is 
p r imar i l y interested i n the spatial d i s t r ibu t ion of ind iv idua l r isks — i.e., the 
question we wish to address is: do people l i v i n g i n some areas have a higher 
r i s k of disease t h a n people i n other areas? Age specific rates provide 
max imum likel ihood estimates of the ind iv idua l r i sk i n a given age cohort — 
i.e., the m a x i m u m likel ihood estimate of the ind iv idua l r i sk 6jj for people i n 
age group j i n area i is given by d iv id ing the number of cases of the disease dy 
amongst people i n age group j i n area i by the corresponding populat ion at 
r isk Py. 

es = d y/p s (i) 

Age standardised rates and ratios (e.g., standardised m o r t a l i t y rat ios) are 
essentially weighted sums of age specific rates and are consequently subject 
to s imi la r problems. However, i n the interests of c lar i ty , discussion w i l l be 
confined here to age specific rates for a single age group. 

The smal l numbers problem arises i f the values of the numerator dy are 
small and discrete. The numerators w i l l be discrete because they are counts 
of the number of people who are sick or die (i.e., you cannot have h a l f a 
person); and they may be smal l , e i ther i f the areas are smal l or i f the 



incidence or prevalence of the disease is small (i.e., i f i t is a rare disease). 
I f the numerators are small , the resu l t ing estimates of r i sk w i l l become 

very unstable — i.e., one case more or one case less w i l l make a large 
percentage difference. For example, consider a disease w i t h an average 
incidence of one case i n 1,000, i n two areas A and B having populations of 
10,000 and 1,000 respectively. The expected number of cases i n area A would 
be 10 (i.e., 10,000/1,000). I f there were actually 11 cases, the estimated r i sk 
for tha t area wou ld increase to 1.1 per 1,000, whereas i f the number of cases 
was one below the expected value the rate would be 0.9 per 1,000 — either 
way, there w o u l d be comparatively l i t t l e change. However, the expected 
number of cases i n area B is only 1 (i.e., 1,000/1,000). I f there was one case 
less t han expected i n a given year, the rate for t ha t area would fa l l to 0.0; 
wh i l s t i f there was one case more t h a n expected, the rate would increase to 
2.0. I n other words, the rates for the smaller area could fluctuate from 
extremely low to extremely h igh , possibly ref lect ing no th ing more t han 
stochastic var ia t ions . The net effect of th i s is tha t the extreme values on a 
choropleth map of estimated risks (whether extremely low or extremely high) 
w i l l display a tendency to be concentrated i n the smaller areas. Given tha t 
the extreme values are the ones which at t ract most at tention when interpret­
i n g the map, there is an obvious danger of creating a very misleading impres­
sion of the spatial d is t r ibut ion of disease r i sk . 

Table 1: The Small Numbers Problem 

Area A AreaB 

Population At Risk 10,000 1,000 
Expected Cases 10 1 
Rate I f + 1 Case 1.1 2.0 
Rate I f - 1 Case 0.9 0.0 

Most researchers at tempt to minimise the problem by aggregating data i n 
ways w h i c h w i l l increase the expected numbers of cases. There are three 
m a i n strategies i n th i s regard. The f i rs t is to extend the study period (e.g., 
from 1 year to 10 years). The second is to aggregate adjoining areas to form a 
smaller number of larger areas, each w i t h a larger expected number of cases. 
The t h i r d is to aggregate data on a par t icular disease w i t h data on diseases 
believed to have a s imi lar aetiology. Each strategy has obvious drawbacks: 
the f i rs t w i l l disguise temporal trends w i t h i n the data, some of which could be 
aetiologically significant; the second w i l l disguise local variat ions, some of 
which could again be aetiologically significant; whi l s t the t h i r d could result i n 



different diseases w i t h different causal processes being mixed and confused. 
A further response to the small numbers problem (often i n addi t ion to one 

or more of the strategies outl ined above) is to supplement the choropleth map 
of estimated r isks w i t h a probabi l i ty map ind ica t ing wh ich areas have a 
significantly h igh or a significantly low number of cases. These probabili t ies 
are usually calculated based on the assumption tha t the under ly ing r isks are 
the same i n a l l areas and tha t the number of cases i n each area is the product 
of a Poisson process. I f the cumulat ive probabi l i ty calculated under these 
assumptions is very large or very small , then the observed number of cases 
may be designated "significantly h igh" or "significantly low" (Choynowski, 
1959; Giggs et al., 1980; Whi te , 1972). However, this "solution" also runs into 
problems i f the numbers are small. I t is quite possible for there to be no cases 
at a l l i n an area, yet i f the area has a small population at r i sk even zero cases 
may not be low enough to be regarded as "significant". Likewise , a much 
higher prevalence is required i n a small area for the number of cases to be 
regarded as significantly high. The net effect of th is is t ha t probabi l i ty maps 
tend to create an impression which is biased i n favour of the larger (i.e., more 
populous) areas (Kaldor and Clayton, 1989). Urban areas are therefore more 
l i ke ly to be ident if ied as having a significantly h igh or a s ignif icant ly low 
number of cases than less populous r u r a l areas. 

Thus, to summarise, choropleth maps of the estimated r i sk tend to focus 
a t ten t ion on the smaller areas, whereas probabi l i ty maps t end to focus 
a t ten t ion on the larger areas. Clear ly we need some sort of compromise 
between these two extremes. Several biostatist icians have suggested t h a t 
empirical Bayes techniques offer a possible solution. 

I l l T H E E M P I R I C A L BAYES APPROACH 

The observed number of cases of the disease dy i n age group j i n area i may 
be regarded as the outcome of a Poisson process w i t h an expectation OyPjj 
where 0y is the under ly ing r i sk and p 4j is the number of people at r i sk . How­
ever, the observed number of cases may be either higher or lower t h a n the 
expected number, due to stochastic var ia t ions . The basic objective is to 
estimate and map the unknown under ly ing r i sk 9;j for each area us ing the 
informat ion available on the observed numbers of cases. The problem is that , 
for any given area, one does not know whether the observed number of cases 
is higher or lower t h a n the expected number (which is governed by the 
unknown underlying r i sk) or by how much. 

I n the absence of any other informat ion about the under ly ing r isks , the 
r isks could be estimated us ing formula (1). This gives the m a x i m u m l i k e l i ­
hood estimate of the unde r ly ing r i sk , b u t (as explained i n the previous 



section) i t may be subject to very large stochastic fluctuations as a result of 
the smal l numbers problem. The basic premise of the empi r ica l Bayes 
approach is t ha t we do i n fact have access to addit ional informat ion which 
may be incorporated i n the est imation process to produce more realistic esti­
mates of the under ly ing risks. 

To understand the nature of this additional information, i t is instruct ive to 
consider an extreme hypothetical s i tuat ion i n which we have perfect infor­
mat ion for every area except one — for which we have no information whatso­
ever (Kaldor and Clayton, 1989). App ly ing the maximum likel ihood formula 
we would be unable to say anyth ing at a l l about the r i sk i n the area w i t h the 
miss ing data. However, i t does not seem unreasonable to assume tha t the 
r i s k i n th i s area is probably of the same order of magnitude as the r isks i n 
the areas for wh ich we do have information. Indeed, i f the risks i n the other 
areas display a h i g h degree of spatial order, we may even be jus t i f i ed i n 
concluding t h a t the r i sk i n the area w i t h the missing data is s imilar to the 
r i sks i n the areas w h i c h border upon i t . I n other words, we could use our 
knowledge of the d i s t r ibu t ion of r isks i n general to say something about an 
area for wh ich we have no empirical information whatsoever. 

A s imi lar logic may be applied i n more normal circumstances to areas for 
wh ich we do have empir ical data. I f the max imum likelihood estimate of the 
r i s k i n an area is extremely h i g h or extremely low then i t wou ld seem 
reasonable to modify i t i n the l i g h t of what we know about the d is t r ibu t ion of 
r isks i n other areas. The resu l t ing estimate of the under ly ing r i sk for each 
area may therefore be regarded as a compromise between the m a x i m u m 
l ikel ihood estimate based upon the observed number of cases and the overall 
r i s k for the ent ire study area. The balance between these two components 
should reflect the re l i ab i l i ty of the empirical data: i f the area is large, then 
the m a x i m u m l ikel ihood estimate should receive most weight; however, i f the 
area is small , and the max imum likelihood estimates could be subject to large 
stochastic fluctuations, then the overall mean should receive more weight. 

These objectives may be achieved w i t h i n a Bayesian framework. Bayesian 
statistics are based upon the observation tha t the jo in t probabi l i ty of two 
events A and B is equal to the probabil i ty of the first times the probabil i ty of 
the second conditional upon the f i rs t (Iverson, 1984): 

Thomas Bayes, an eighteenth century clergyman, used th is relat ionship to 
develop a theorem which may be w r i t t e n as: 

p(AB) = p(A) .p(BIA) (2) 

p(6lx) = 
p(xie).p(0) 

(3) 
Jp(xl6).p(9).de 



where x is the observed data and 9 is an unknown parameter to be estimated 
( in our case, the r i sk of disease). The left hand side of the equation is referred 
to as the posterior d i s t r ibut ion , and i t describes the d is t r ibu t ion of possible 
values for the parameter conditional upon the observed data. The t e rm p(9) 
on the r i g h t hand side, referred to as the prior d is t r ibut ion , describes wha t 
we know about the dis t r ibut ion of possible parameter values before observing 
the data. The bottom l ine on the r i g h t hand side is a normal is ing constant 
which integrates to un i ty , wh i l s t the t e r m p(x I 9) may be interpreted as the 
l ikel ihood of 9 given data x. Bayes theorem may therefore be summarised as: 

posterior dis t r ibut ion « likelihood function x prior d is t r ibut ion 

I n the context of disease mapping, the prior d is t r ibut ion expresses our i n i t i a l 
belief about the dis t r ibut ion of under ly ing risks between areas, the l ikel ihood 
funct ion is the Poisson dis t r ibuted number of cases conditional on the t rue 
r i sk i n each area, and the posterior dis t r ibut ion is the d is t r ibut ion of possible 
values for the under ly ing r i sk i n each area conditional upon the observed 
number of cases. 

The researcher must make assumptions about the nature of the pr ior 
d i s t r i bu t ion of the under ly ing r isks and the l ike l ihood function. I n a f u l l 
Bayesian approach the researcher would be required to specify the pr ior 
d i s t r ibu t ion i n i ts entirety, but i n an empirical Bayes approach the researcher 
need only make an assumption about the nature of the prior d is t r ibut ion. The 
parameters of the prior d i s t r ibu t ion are then estimated from the observed 
data (Bailey and Gatre l l , 1995) . 1 This pr ior d i s t r ibu t ion is t hen combined 
w i t h the l ikel ihood function to give the posterior d is t r ibut ion. The mean of 
the posterior d is t r ibut ion provides an empirical Bayes estimate of the under­
ly ing risk. 

Applications of the empirical Bayes approach vary i n thei r choice of a prior 
d is t r ibut ion. A Gamma dis t r ibut ion is often preferred because i t is i n tu i t ive ly 
reasonable and results i n comparatively simple calculations, due to the fact 
t h a t a Gamma d i s t r ibu t ion combined w i t h a Poisson d i s t r ibu t ion gives a 
Negative B inomia l d i s t r ibu t ion (e.g., Clayton and Kaldor, 1987; Langford, 
1994; M a n t o n et al., 1987; Stone, 1988; Tsutakawa, 1988). Other published 
studies assume a N o r m a l d i s t r i bu t i on of the logi ts of the re la t ive r i sks 
(e.g., Tsutakawa et al., 1985); a N o r m a l d is t r ibu t ion of the Freeman-Tukey 

L Empir ica l Bayes techniques make use of the observed data twice: once to estimate the 
parameters of the prior distribution; and once to estimate the parameters of the posterior distrib­
ution — i.e., the "prior" information to be "refined" is to some extent dependent upon the same 
set of empirical observations which are used to refine it. There is therefore an element of "double 
counting" which runs counter to the Bayesian ethos. This is difficult to justify on theoretical 
grounds, but it may be defended on practical grounds by virtue of the fact that it seems to work. 



t ransformed r isks (Cressie, 1993); a Log-Normal d is t r ibu t ion (e.g., Clayton 
and Kaldor , 1987); a Beta d i s t r ibu t ion (e.g., M i y a w a k i and Chen, 1981); a 
u n i f o r m d i s t r i bu t ion (e.g., Heis terkamp, 1993); or even a non-parametric 
model (e.g., Clayton and Kaldor , 1987; Heisterkamp, 1993). The choice of 
pr ior d i s t r ibu t ion clearly influences the method of calculation and the values 
of the resu l t ing estimates: the empir ical Bayes approach should therefore be 
regarded as a family of techniques rather than a single method. 

Most of these models are unfortunately mathematically complex. The case 
studies below use the Gamma model developed by Clayton and Kaldor (1987). 
This is probably the best known model and has the advantage tha t i t can be 
expanded to accommodate situations where i t is necessary to take account of 
var ia t ions i n age composition (as i n the second case study reported below). 
Clay ton and Kaldor 's model assumes tha t the re la t ive r isks 6; follow a 
Gamma d is t r ibu t ion w i t h a scale parameter a, and a shape parameter v (i.e., 
mean v /a and variance v/a 2 ) and tha t the observed number of cases 0 ; are 
Poisson variates w i t h an expectation 9jE ; where E ; is the number of cases 
wou ld be expected i n area i given i ts population at r isk . Clayton and Kaldor 
derive two equations w h i c h can be used recursively to estimate the par­
ameters a and v : 

The author is unaware of any commercially available software to solve for a 
and v, so i t is necessary to w r i t e one's own. The procedure requires one to 
substitute estimates of a and v in to the r igh t hand sides of Equations (4) and 
(5). A new estimate for a may t hen be obtained by d iv id ing the answer for 
Equat ion (4) by the answer for Equat ion (5). This may then be subst i tuted 
in to Equa t ion (4) to get a new estimate of v. The whole procedure is t hen 
repeated u n t i l the estimated values of a and v stabilise between iterations. 
Hav ing solved for a and v, the posterior expectation of 0; conditional on 0 , is 
given by: 

a 

v (4) 

(5) 

E ( e i I O i ; a , v ) = 
O j + v 

E i + a 
(6) 



This provides the empir ical Bayes estimates of the relat ive r isks for each 
area. These may be converted into rates by s imply m u l t i p l y i n g them by the 
overall rate. 

I V CASE STUDIES 

Most published studies of empir ical Bayes techniques provide a detai led 
mathematical argument i n favour of a part icular approach, bu t provide l i t t l e 
concrete evidence to support the contention tha t empirical Bayes techniques 
are superior to more t radi t ional max imum likelihood techniques. This section 
of the paper therefore attempts to provide an objective assessment of the i r 
u t i l i t y based upon case studies of neo-natal deaths and female deaths from 
cancer i n I re land i n 1989 and 1990 — the last two years for which the Report 
on Vital Statistics is available at the t ime of w r i t i n g . I n both studies the data 
are disaggregated by county and county borough. 

Case Study 1 : Neo-Natal Mortality, 1989 
Neo-natal mor ta l i ty (i.e., deaths before 4 weeks) provides a suitable subject 

for assessment purposes. The neo-natal mor ta l i ty rate is calculated by d iv id ­
ing the to ta l number of neo-natal deaths i n a given year by the to ta l number 
of l ive b i r ths i n the same year. 2 Both figures may be directly obtained from 
the Report on Vital Statistics, thereby e l iminat ing the possibility of addit ional 
complications associated w i t h other mor ta l i ty or morbidi ty rates ar is ing from 
the need to estimate the population at r i sk for inter-censal years or from the 
need to take account of inter-county var ia t ions i n age composit ion. The 
number of neo-natal deaths is also smal l enough to make estimates of the 
under ly ing r i sk i n most counties extremely problematic, thereby providing a 
difficult challenge to the methods under scrutiny. 

The to ta l number of l ive bir ths i n 1989 was 52,018; whi ls t the tota l number 
of neo-natal deaths was 249, g iv ing a nat ional death rate of 4.8 per thousand. 
The absolute numbers of deaths per county var ied from a low of 0 (Roscom­
mon) to a h igh of 37 i n D u b l i n County. The number of b i r ths varied from a 
low of 355 (Le i t r im) to a h igh of 8,825 i n D u b l i n County. The resul t ing rates 
per county ranged from a low of 0.0 (Roscommon) to a h igh of 9.46 (Limer ick 
CB). 

I f we graph the calculated neo-natal mor ta l i ty rates against the number of 
b i r ths (Figure 1), we can see t h a t the neo-natal rates i n counties w i t h less 

2. This gives a period rate. A cohort rate, calculated by dividing the total number of deaths 
under the age of 4 weeks amongst children born in a given year by the total number of births in 
that year, would be preferable (Pressat, 1978). However, the period rate is normally used in 
Ireland and is sufficiently accurate for present purposes. 



t h a n 2,000 b i r ths (i.e., the major i ty of counties) vary from very low to very 
h igh . The rates for the larger areas (i.e., areas w i t h most bir ths) tend to be 
more i n l ine w i t h the nat ional average. This may be because the under ly ing 
r isks for the larger areas jus t happen to fa l l i n the middle range, but a more 
l i k e l y explanation is t ha t the observed variations i n the smaller counties are 
a funct ion of the smal l numbers problem (i.e., one extra death i n a small 
county could move i t from the "low r isk" category into a "high r isk" category). 
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Figure 1: Maximum Likelihood Estimates ofNeo-Natal Mortality Rates in 1989 
Graphed Against the Number of Births. 

As a result , the spatial d is t r ibut ion of mor ta l i ty rates (Figure 2) cannot be 
regarded as a reliable indicator of the spatial d is t r ibut ion of risks, given the 
smal l numbers of deaths i n most of the counties. The normal procedure would 
be to test the rates i n each area for statist ical significance. Doing this , i t is 
found t h a t Cork County has a significantly h igh number of deaths, and four 
counties (Tipperary South, Galway, Mayo and Roscommon) have a s ignif i ­
cantly low number of deaths. 

I f we look a t the location of these counties on the graph (Figure 1), i t w i l l 
be noted t h a t al though Cork County is the only county to have a significantly 



Figure 2: Spatial Distribution of Maximum Likelihood Estimates of Neo-Natal 
Mortality Rates in 1989. 

high number of deaths, i t had only the s ix th highest rate. This indicates tha t 
the rates for the 5 counties having a higher rate probably need to be inter­
preted w i t h caution due to the fact t ha t they are not significant. However, i t 
may also reflect the tendency for significance tests to favour the more popu­
lous areas (such as Cork County). The significance tests identify the three 
areas w i t h the lowest rates as having a significantly low number of deaths, 
b u t the area w i t h the four th lowest ra te (Monaghan) is not s ignif icant , 
whereas Galway w i t h a higher death rate is significant. Again there may be a 
tendency for the test to favour the larger areas (i.e., Galway, as opposed to 
Monaghan). 

I n an at tempt to s t r ike a balance between these contradictory tendencies 
to h igh l igh t either the smaller areas or the larger areas, empir ica l Bayes 
est imates of the u n d e r l y i n g r i s k were calculated us ing the approach 
developed by Clayton and Kaldor (1987). The or iginal range of values from 
0.0 to 9.46 was found to be compressed in to a much smaller band, rang ing 



Table 2: Maximum Likelihood and Empirical Bayes Estimates ofNeo-natal 
Mortality in 1989 (Deaths Per 1,000 Live Births) 

County Maximum Likelihood Empirical Bayes 
Estimate Estimate 

Carlow 2.95 4.61 
Dublin CB 4.49 4.64 
Dublin County 4.19 4.43 
Kildare 5.72 5.07 
Kilkenny 2.69 4.45 
Laois 6.27 5.02 
Longford 4.49 4.80 
Louth 4.78 4.82 
Meath 5.08 4.89 
Offaly 6.12 5.00 
Westmeath 6.02 5.02 
Wexford 3.13 4.43 
Wicklow 7.56 5.47 
Clare 7.53 5.38 
Cork CB 6.15 5.17 
Cork County 7.15 5.87 
Kerry 4.27 4.69 
Limerick CB 9.46 5.41 
Limerick County 3.05 4.40 
Tipperary NR 6.08 5.00 
Tipperary SR 0.90 4.14 
Waterford CB 8.24 5.19 
Waterford County 6.65 5.06 
Galway 2.30 3.98 
Leitrim 8.45 5.06 
Mayo 1.31 4.03 
Roscommon 0.00 4.30 
Sligo 3.88 4.70 
Cavan 6.26 5.02 
Donegal 6.20 5.20 
Monaghan 1.44 4.43 

from a low of 3.98 (Galway) to a h igh of 5.87 (Cork County) using Clayton and 
Kaldor 's method (Table 2). Graphing the empir ical Bayes estimates against 
b i r ths , i t is clear t h a t the rates for the larger counties remained more or less 
unchanged, whereas those for the smaller counties were shrunk towards the 
na t iona l average (Figure 3). The empir ical Bayes estimates can be regarded 
as a weighted mean between the informat ion available on each county and 
t h a t available for the whole country, w i t h more weight being given to the 
county informat ion when the county is large. 
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Figure 3: Maximum Likelihood and Empirical Bayes Estimates ofNeo-Natal Mortality 
Rates in 1989 Graphed Against the Number of Births. 

The pat tern of empirical Bayes estimates is, as one migh t expect, broadly 
s imi lar to the pat tern of raw rates (or max imum likel ihood estimates) shown 
i n Figure 2. However, there are also some notable differences (Figure 4). I t 
w i l l be noted, for example, t ha t Cork has now emerged as the area of h igh ­
est r i sk , over taking 4 counties w i t h a much smaller populat ion. L ikewise 
Galway, a county w i t h a large population, has moved into the lowest r i s k 
category, wh i l s t L e i t r i m , a county w i t h a low population, has moved from a 
h i g h r i sk category in to a medium r i sk category. Overal l , there is a higher 
degree of spatial autocorrelation i n the d i s t r ibu t ion of the empir ica l Bayes 
estimates — i.e., there is a greater degree of regional pa t t e rn ing i n the 
empir ical Bayes estimates, possibly ind ica t ing a reduction i n the "noise to 
signal" ratio. 

Figure 4 i n tu i t i ve ly appears to provide a more reliable ind ica t ion of the 
under ly ing r isks than Figure 2. However, appearances can be deceptive, so 
we ideally require a more objective assessment of the relative efficiency of the 
two methods. The u n d e r l y i n g r isks are by def in i t ion u n k n o w n , so i t is 
impossible to know w i t h complete certainty which method provides the better 



Figure 4: Spatial Distribution of Empirical Bayes Estimates ofNeo-Natal 
Mortality Rates in 1989. 

estimates. However, i f i t is assumed tha t the pa t tern of risks remains much 
the same from one year to the next, then one way of gauging which method 
provides the bet ter estimates of the r isks i n 1989 is to see w h i c h set of 
estimates provides the better prediction of the actual numbers of deaths i n 
1990. The expected number of deaths i n 1990 were therefore calculated using 
three al ternative approaches: 

(a) The expected number of deaths i n each county was calculated assum­
i n g an equal r i sk i n each area — this is equivalent to assuming t h a t 
there is no systematic var ia t ion i n r i sk and tha t the observed pat tern 
of neo-natal mor ta l i ty simply reflects stochastic variations; 

(b) The expected number of deaths i n each county was calculated assum­
i n g the relat ive r isks i n 1990 were dis t r ibuted i n the same way as the 
r aw (i.e., m a x i m u m likelihood) neo-natal morta l i ty rates i n 1989; and 

(c) The expected number o f deaths i n each county was calculated 



assuming the relative risks i n 1990 were dis t r ibuted i n the same way 
as the empirical Bayes estimates i n 1989. 

The number of deaths i n each county predicted by each method was then 
compared w i t h the actual number of deaths i n 1990. The performance of each 
method is summarised by calculat ing the mean of the absolute differences 
between the observed and expected number of deaths i n each area . 3 The 
results are shown i n Table 3. 

Table 3: Relative Accuracy of Three Predictions ofNeo-natal Deaths in 1990 

Mean Absolute Error 
Method 1 — Equal Risk 2.56 
Method 2 — Maximum Likelihood Estimates 2.75 
Method 3 — Empirical Bayes Estimates 2.45 

Comparison of the f i rs t two methods rather surprisingly indicates t h a t one 
could predict the number of deaths i n each county i n 1990 more accurately 
assuming tha t a l l counties had exactly the same r i sk ra ther t h a n us ing the 
informat ion on the m a x i m u m likel ihood estimates of the neo-natal rates i n 
1989 as a guide. This would suggest tha t most of the observed variat ions i n 
neo-natal rates i n 1989 are actually stochastic noise generated by the smal l 
numbers problem, ra ther t h a n a re l iable ind ica t ion of var ia t ions i n the 
under ly ing r isk. 

The 1989 empir ical Bayes estimates, i n contrast, provide a bet ter pre­
d ic t ion of the 1990 rates t h a n the method assuming equal r i s k . The 
improvement is admittedly quite small . However, i f one examines Figure 3, i t 
w i l l be noted tha t most of the empirical Bayes estimates have been "shrunk" 
to a value close to the nat ional mean (or, to put i t another way, close to the 
values which would per ta in under an assumption of equal r i sk) . The "signal" 
detected by the empirical Bayes estimates is s t i l l very weak, but the fact t ha t 
i t produces an improvement i n the accuracy of the predictions suggests tha t 
the technique is i n fact successfully detecting real (and persistent) variat ions 
i n the under lying r isk. 

Case Study 2 : Female Cancer Mortality 
Female deaths from mal ignant neoplasms are examined i n the second case 

study. This would appear, i n some respects, to provide a less d i f f icul t chal­
lenge t han neo-natal mor ta l i ty . There were a to ta l of 3,481 deaths amongst 

3. The performance of each of the three methods of prediction is summarised here by the 
mean absolute error. Measures based on mean squared errors are used in many statistical 
methods, but they tend to give greater weight to a small number of areas with large errors. The 
method used here provides a better indication of the average error in each area. 



women from cancer i n 1989, compared w i t h only 249 neo-natal deaths, so one 
m i g h t assume tha t the small numbers problem would be less pronounced and 
t h a t the u n d e r l y i n g spat ial var ia t ions i n r i s k wou ld be revealed by con­
vent ional m a x i m u m likel ihood methods. However, cancer mor ta l i ty provides 
a more diff icul t challenge i n other respects. Cancer is probably not a single 
disease b u t a fami ly of diseases w i t h different aetiologies and possibly 
different geographies, m a k i n g i t more d i f f icul t to ident i fy regular spatial 
variat ions i n r i sk . Also, the r i s k of mor ta l i ty from cancer increases w i t h age. 
This creates two complications. F i rs t , a h igh mor ta l i t y rate i n a par t icular 
area amongst the elderly does not necessarily indicate a heal th concern: i t 
could indicate t h a t a higher proport ion of women are l i v i n g to an old age 
before eventually succumbing to cancer (i.e., i t could i n a paradoxical sort of 
way indicate low r i sk ) . Second, i t becomes necessary to take account of 
var ia t ions i n age composition between areas, due to the fact t h a t an area 
having an elderly population would be expected, a l l other things being equal, 
to experience more fatalities from cancer t han an area w i t h a younger popu­
l a t i o n — i.e., the crude death rate does not necessarily provide a rel iable 
indicat ion of the under lying r isk. 

The f i r s t problem is c i rcumvented i n th i s s tudy by considering only 
"premature" deaths (defined here as deaths below the age of 65). This reduces 
the number of deaths under consideration from 3,481 to 1,061. This solves the 
in terpreta t ion problems caused by deaths amongst the elderly, bu t intensifies 
the difficulties caused by the small numbers problem. The second problem is 
normal ly resolved by calculat ing either age-specific rates for each age-group 
or by calcula t ing a weighted age-standardised index. Clayton and Kaldor 
(1987) out l ine a procedure for extending the simple empirical Bayes method 
used i n the f i r s t case study to take account of variations i n age composition. 
Th i s may be regarded as an empir ica l Bayes equivalent of an ind i rec t ly 
stanardised rate. The procedure requires a relat ive r i sk to be estimated for 
each age group i n addi t ion to the est imation of a relative r i sk for each area. 
The two sets of relative risks are estimated simultaneously using an i terat ive 
approach. 

F igure 5 graphs the s tandardised m o r t a l i t y ra t io (calculated by the 
indirect method) for each area against the female population aged less t h a n 
65 years. 4 I t also shows the empir ical Bayes estimate of the relative r i s k for 
each area. As before, the empi r i ca l Bayes estimates for each area are 

4. Standardised mortality ratios are conventionally multiplied by a scaling factor of 100 to 
facilitate easier interpretation. Values larger than 100 indicate above average mortality, whilst 
values lower than 100 indicate below average mortality. However, this convention is not followed 
here to facilitate direct comparisons with the empirical Bayes estimates. Values larger than 1.0 
indicate above average mortality. 



invar iab ly closer to the overall mean t han the corresponding standardised 
mor ta l i t y ra t io . The largest differences are generally i n the areas w i t h the 
smallest populations. The standardised mor ta l i ty ratios range from a low of 
0.29 (L imer ick CB) to a h igh of 1.61 (Monaghan), whereas values for the 
empirical Bayes estimates range from a low of 0.79 (Limerick CB) to a h igh of 
1.18 for D u b l i n CB (Table 4). The empirical Bayes estimates in tu i t ive ly seem 
more plausible. The Limer ick values, for example, are based on only 5 deaths 
i n 1989, whereas there were 19 deaths i n L i m e r i c k i n 1990, suggest­
i n g t h a t the exceptionally low number of deaths (and correspondingly low 
standardised mor ta l i ty ratio) i n 1989 may have been a freak occurrence. 
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Figure 5: Standardised Mortality Ratios and Empirical Bayes Estimates of Relative 
Risk For Female Cancer Deaths in 1989 Graphed Against the Population at Risk. 

The spatial d i s t r ibu t ion of the standardised mor ta l i t y rat ios is shown i n 
Figure 6. The spatial d is t r ibut ion of the empirical Bayes estimates is shown 
i n Figure 7. Ne i the r map exhibi ts a convincing degree of spat ial order, 
suggesting either t ha t more data may be required to identify the under ly ing 
spatial regulari t ies i n r i sk or else t h a t such regularit ies do not i n fact exist 
for cancer taken as a whole. 

Us ing the 1989 results to predict the expected number of cases i n 1990 



Table 4: Standardised Mortality Ratios and Empirical Bayes Estimates of 
Female Cancer Mortality in 1989 (Relative Risks) 

County Standardised Mortality Empirical Bayes 
Ratio Estimate 

Carlow 1.19 1.05 
Dublin CB 1.22 1.18 
Dublin County 0.85 0.88 
Kildare 0.75 0.89 
Kilkenny 0.79 0.93 
Laois 1.13 1.04 
Longford 1.43 1.08 
Louth 0.98 0.99 
Meath 0.96 0.98 
Offaly 0.88 0.97 
Westmeath 0.81 0.94 
Wexford 1.18 1.08 
Wicklow 1.12 1.06 
Clare 1.10 1.04 
Cork CB 1.17 1.09 
Cork County 0.85 0.90 
Kerry 1.05 1.03 
Limerick CB 0.29 0.79 
Limerick County 1.31 1.14 
Tipperary NR 0.83 0.95 
Tipperary SR 1.11 1.04 
Waterford CB 0.72 0.93 
Waterford County 1.32 1.09 
Galway 1.00 1.00 
Leitrim 1.42 1.07 
Mayo 0.73 0.88 
Roscommon 0.66 0.90 
Sligo 1.35 1.10 
Cavan 0.65 0.90 
Donegal 0.86 0.93 
Monaghan 1.61 1.17 

results i n s imi la r conclusions to the previous case study (Table 5). As before, 
the conventional method produces poorer predictions than the assumption of 
no systematic var ia t ion i n r i sk between areas, h igh l igh t ing the vulnerabi l i ty 
of conventional indices to stochastic f luc tua t ions . 5 However, the empir ical 
Bayes estimates represent a substantial improvement over each of the other 
two methods. 

5. The "equal risk" predictions assume an equal risk between areas, but do not assume an 
equal r i sk between age groups — i.e., the predicted number of deaths in 1990 takes account of 
variations in age composition between areas. 



Figure 6: Spatial Distribution of Stanardised Mortality Ratios for Female Cancer 
Deaths in 1989. 

Table 5: Relative Accuracy of Three Predictions of Female Cancer Deaths 
in 1990 

Mean Absolute Error 

Method 1 — Equal Risk 6.35 
Method 2 — Standardised Mortality Ratios 6.46 
Method 3 — Empirical Bayes Estimates 5.09 



Figure 7: Spatial Distribution of Empirical Bayes Estimates of Relative Risk for 
Female Cancer Deaths in 1989. 

V DISCUSSION 

Epidemiologists often have to estimate the r i sk of disease from l i m i t e d 
in fo rma t ion . Conventional m a x i m u m l ike l ihood methods provide rel iable 
estimates i f there are a large number of cases of the disease, but they can 
provide very misleading estimates when the number of cases is small because 
of stochastic f luc tuat ions . Several biostat is t ic ians have suggested t h a t 
empir ica l Bayes techniques may provide more reliable estimates. The two 
case studies reported here wou ld appear to support these claims: the esti­
mates der ived by empir ical Bayes methods subjectively appear to provide 
more plausible estimates t h a n the i r m a x i m u m likel ihood equivalents. More 
i m p o r t a n t l y , they objectively provide bet ter predictions of the expected 
numbers of deaths i n 1990 t h a n the method us ing m a x i m u m l ike l ihood 
estimates or the method assuming equal r i sk . Indeed, the poor performance 



of the m a x i m u m l ike l ihood estimates i n these tests h igh l igh t s j u s t how 
serious the small numbers problem can be. 

These findings suggest tha t , where possible, empir ical Bayes estimates 
should be used as an alternative (or at least as a supplement) to conventional 
m a x i m u m l ikel ihood estimates of disease r isk . A l though the present paper 
discusses the problem of es t imat ing disease r i sk i n the context of disease 
mapping, s imi la r arguments apply to estimates of disease r i sk for other 
purposes (e.g., invest igat ions of t empora l t rends) . L ikewise , Bayes ian 
approaches may provide improved estimates for non-medical data. Cressie 
(1995), for example, outlines methods for est imating the t rue rates for socio­
economic variables (e.g., unemployment rates, per capita incomes) f rom 
"noisy" observed data, paying part icular at tention to the problem of estimat­
i n g census undercounts. The major difference between these situations and 
the medical examples discussed above is t h a t the source of uncer ta in ty is 
assumed to be measurement errors ra ther t han stochastic va r i ab i l i t y : the 
uncer ta inty is therefore assumed to be Gaussian (i.e., Normal ly dis t r ibuted) 
rather than conforming to a Poisson process. 

The case studies reported above assume comparatively simple models. I t 
should perhaps be noted, however, t h a t more complex models have been 
proposed to take account of spatial structures, such as autocorrelation and/or 
regional isat ion (e.g., Clayton and Kaldor, 1987; Marsha l l , 1991). I n other 
words, they al low one to b u i l d an assumption in to the empi r ica l Bayes 
estimates tha t the disease r isks w i l l exhibit spatial autocorrelation (i.e., t h a t 
adjoining areas w i l l tend to have more s imi lar r isks t han dis tant areas) or 
t h a t areas w i t h i n defined regions w i l l t end to have s imi la r r isks . Several 
authors have also suggested ways to incorporate covariates in to the models to 
take account of suspected r i sk factors, such as pol lut ion or urbanisat ion (e.g., 
Tsutakawa et al., 1985; Clayton and Kaldor, 1987; Heisterkamp et al., 1993; 
Cressie, 1995). The usefulness of these enhancements clearly depends upon 
whether the objective is to examine the data to identify empirical regulari t ies 
or, having determined tha t these regularities exist, to model the data to make 
more accurate predictions, possibly for planning purposes. 

REFERENCES 
BAILEY, T.C., and A.C. GATRELL, 1995. Interactive Spatial Data Analysis, London: 

Longman. 
CHOYNOWSKI, M. , 1959. "Maps Based on Probabilities", Journal of the American 

Statistical Association, Vol. 54, pp. 585-588. 
CLAYTON, D., and J. KALDOR, 1987. "Empirical Bayes Estimates of Age-standard­

ized Relative Risks for Use in Disease Mapping", Biometrics, Vol. 43, pp. 671-681. 
CONGDON, P. 1990. "Issues in the Analysis of Small Area Mortality", Urban Studies, 

Vol. 27, pp. 519-536. 



CRESSIE, N . , 1993. "Regional Mapping of Incidence Rates Using Spatial Bayesian 
Models", Medical Care, Vol. 31, No. 5, Supplement, YS60-YS65. 

CRESSIE, N . , 1995. "Bayesian Smoothing of Rates in Small Geographic Areas", 
Journal of Regional Science, Vol. 35, No. 4, pp. 659-673. 

DAWSON, D.F., 1911. "The Relation Between the Geographical Distribution of 
Insanity and that of Certain Social and Other Conditions in Ireland", Journal of 
Mental Science, Vol. 57, pp. 571-597. 

DIEHR, P., 1984. "Small Area Statistics: Large Statistical Problems", American 
Journal of Public Health, Vol. 74, pp. 313-314. 

DUNCAN, C , K. JONES, and G. MOON, 1993. "Do Places Matter? A Multi-level 
Analysis of Regional Variations in Health-related Behaviour in Britain", Social 
Science and Medicine, Vol. 37, pp. 725-733. 

GIGGS, J.A., D.S. EBDON, and J.B. BOURKE, 1980. "The Epidemiology of Primary 
Acute Pancreatis in the Nottingham Defined Population Area", Transactions of the 
Institute of British Geographers, Vol. 5, pp. 229-242. 

HEISTERKAMP, S.H., G. DOORNBOS, and M . GANKEMA, 1993. "Disease Mapping 
using Empirical Bayes and Bayes Methods on Mortali ty Statistics i n The 
Netherlands", Statistics in Medicine, Vol. 12, pp. 1,895-1,913. 

HOWELL, F., M . O'MAHONY, J. DEVLIN, O. O'REILLY, C. BUTTANSHAW, 1993. 
"A Geographical Distribution of Mortality and Deprivation", Irish Medical Journal, 
Vol. 86, pp. 96-99. 

IVERSON, G.D., 1984. Bayesian Statistical Inference, Beverly Hills: Sage Publi­
cations. 

JOHNSON, Z., and P. DACK, 1989. "Small Area Mortality Patterns", Irish Medical 
Journal, Vol. 82, pp. 105-108. 

KALDOR, J., and D. CLAYTON, 1989. "Role of Advanced Statistical Techniques in 
Cancer Mapping", Recent Results in Cancer Research, Vol. 114, pp. 87-98. 

KING, P.E., 1979. "Problems of Spatial Analysis in Geographic Epidemiology", Social 
Science and Medicine, Vol. 13D, pp. 249-252. 

LANGFORD, I .H . , 1994. "Using Empirical Bayes Estimates i n the Geographical 
Analysis of Disease Risk", Area, Vol. 26, pp. 142-149. 

MANTON, K.G., E. STALLARD, M.A. WOODBURY, W.B. RIGGAN, J.P. CREASON, 
and T.J. MASON, 1987. "Statistically Adjusted Estimates of Geographic Mortality 
Profiles", Journal of the National Cancer Institute, Vol. 78, pp. 805-815. 

MARSHALL, R.J., 1991. "Mapping Disease and Mortality Rates Using Empirical 
Bayes Estimators", Applied Statistics, Vol. 40, pp. 283-294. 

MIYAWAKI, N . , and S.C. CHEN S.C., 1981. "A Statistical Consideration on the 
Mapping of Disease", Social Science and Medicine, Vol. 15, D, pp. 93-101. 

MONMONIER, M . , 1991. How To Lie With Maps, Chicago: University of Chicago 
Press. 

PRESSAT, R., 1978. Statistical Demography, London: Methuen. 
PRINGLE, D.G., 1983. "Mortality, Cause of Death and Social Class in the Belfast 

Urban Area", Ecology of Disease, Vol. 2, pp. 1-8. 
PRINGLE, D.G., 1986. "Premature Mortality i n the Republic of Ireland, 1971-1981", 

Irish Geography, Vol. 19, pp. 33-40. 
PRINGLE, D.G., 1987. "Health Inequalities i n Dublin", i n A.A. Horner and A.J. 

Parker, (eds.), Geographical Perspectives On The Dublin Region, Dublin: Geo­
graphical Society of Ireland. 



STONE, R.A., 1988, "Investigations of Excess Environmental Risks Around Putative 
Sources: Statistical Problems and a Proposed Test", Statistics in Medicine, Vol. 7, 
pp. 649-660. 

TSUTAKAWA, R.K., G.L. SHOOP, and C.J. MARIENFELD, 1985. "Empirical Bayes 
Estimation of Cancer Mortality Rates", Statistics in Medicine, Vol. 4, pp. 201-212. 

TSUTAKAWA, R.K., 1988. "Mixed Model for Analyzing Geographic Variability i n 
Mortality Rates", Journal of the American Statistical Association, Vol. 83, No. 401, 
pp. 37-42. 

WHITE, R.R., 1972. "Probability Maps of Leukaemia Mortalities i n England and 
Wales", i n N.D. McGlashan (ed.), Medical Geography: Techniques And Field 
Studies, London: Methuen. 




