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Abstract: In the continuous uniform distribution [0,N], the Maximum Likelihood estimator of N 
is known to possess high mean square error for large samples. This paper examines this issue in 
the discrete case, without replacement (extending the work of Tenenbein) and with replacement. 
Various other estimators including the Minimum Variance Unbiased estimator and Geary's 
closest estimator are compared in the continuous and two discrete cases. Recommendations are 
made for choice of estimator in each case, depending on the sample size and on imprecise 
information on N. 

I I N T R O D U C T I O N 

G i v e n a sample of n observations from a un i fo rm d i s t r i b u t i o n w i t h 
unknown upper l i m i t , N , can we determine the best estimate of N? The 

discussion of this problem can be traced back at least as far as the wr i t i ngs of 
Laplace on probabi l i ty (1812-1814). There he addressed the quest ion of 
whether i t was possible to estimate N from a random drawing from an u r n 
containing balls numbered 1 up to N . Since then the same issue has been 
referred to i n several wr i t ings as the "tramcar" (Jeffreys, 1939), Schrodinger 
(Geary, 1944), "locomotive" (Mosteller, 1965), " taxi" (Noether, 1971, Kotz and 
Johnson, 1985) "racing car" (Tenenbein, 1971), or "horse racing" (Rosenberg 
and Deely, 1976) problem. The scenario invoking these names is the problem 
faced by a spectator of est imating the tota l number, N , of t rams, taxis, etc., i n 
the town/on the race-course from an observation of n members of the set, 
knowing tha t members i n the population are numbered consecutively 1,...,N. 

The settings for these examples a l l clearly involve discrete un i form d i s t r i -



buttons. However, much work on estimation of the upper l i m i t of the un i form 
d i s t r ibu t ion has centred around the continuous case, w i t h some references to 
the discrete case being easily approximated by the continuous case i n the 
instance of large N (e.g., Rao, 1981, Geary, 1944) and often those papers 
w h i c h deal specifically w i t h the problem i n the discrete context are con
strained to the s i tua t ion where the population is sampled wi thou t replace
ment (e.g., Noether, 1971, Tenenbein, 1971, Rosenberg and Deely, 1976). 

I n th i s paper we w i l l review the results from estimation i n the continuous 
case, but the ma in emphasis w i l l be on devising and comparing estimators for 
N i n the discrete case w i t h and w i t h o u t replacement. Th i s w i l l extend the 
results i n Spencer and Largey (1993), especially i n the w i t h replacement case. 
Throughout we consider est imation using classical, non-Bayesian techniques, 
though the " taxi" problem can be treated using a Bayesian approach. For an 
example see Rosenberg and Deely ( ibid) , where Bayesian and empi r ica l 
Bayesian estimators for the zero-one, l inear and quadratic loss functions are 
applied to the discrete case wi thou t replacement. 

I I R E V I E W OF T H E CONTINUOUS CASE 

I n the: context of the continuous un i fo rm d i s t r ibu t ion U [ 0 , N ] , w i t h N 
unknown , le t x 1 ; x 2 , —, x n represent the observed sample obtained from n 
independent drawings from the population, and set max[x! , x 2 , x n ] = w, 
i.e., w represents the largest value i n the sample. Properties of th i s 
d i s t r ibu t ion and the performance of various estimators of N are examined i n 
Spencer and Largey (1993). Estimators considered are: 

W = m a x i m u m sample value, the maximum likelihood estimator ( M L E ) 
U = ( n + l ) W / n , the un ique m i n i m u m var iance unbiased es t imator 

( M V U E ) (Davis, 1951; Wasan, 1970; Rohatgi, 1976) 
J = (n+2 )W/ (n+ l ) , the m i n i m u m mean square error (MSE) est imator 

(Johnson, 1950) 
G = 2 1 / n W , Geary's estimator, the "closest" estimator following Pitman's 

def ini t ion of closeness (Geary, 1944). 

The performance of each is assessed through comparison of MSE = Variance 
+ B i a s 2 , as advocated by Johnson (1950), and results are summarised i n 
Figure 1. • 

The most s t r ik ing resul t from the analysis is the poor performance of W as 
an est imator . M S E of W is greater t han both M S E of G and M S E of U for 
n > 1. I n the l i m i t a s n - > . t » , wh i l e the MSE ratios for G and U relative to J 
tend to 1.09 and 1 respectively, t h a t for W tends to 2. 

For smal l and moderate n , G performs wel l on the basis of MSE, whi le for 
larger n , U outperforms i t . 



Figure 1: Relative Mean Square Errors for Selected Pairs of Estimators 
ofN: Continuous Case 

L.O (a) 

0.4 

1.4 

0.8 1 

. -> 1 • i , i 1 " 
0 10 10 40 • 

(a) MSE U/MSE W = (n + 1) / 2n - » 0.5 
(b) MSE U/MSE J = (n +1) 2 / n(n + 2) - » L0 
(c) MSE U/MSE G - > ( l + (ln 2 - 1 ) 2 ) " 1 = 0.913944 

The poor performance of the M L E is perhaps not surpr i s ing when we 
realise tha t the l ikelihood function does not adhere to the standard regular i ty 
conditions which are sufficient to ensure the desirable asymptotic properties 
of MLEs . For example the range of possible values of x t depends on the upper 
l i m i t of the dis t r ibut ion, N , wh ich we are a t tempt ing to estimate. Moreover, 
the l ike l ihood function, exhibi ts a d i scont inu i ty at the po in t w, and is 
therefore not differentiable at t h a t point (see Spencer and Largey, op. cit . , 
footnote 4). 



I I I DISCRETE CASE 

T u r n i n g to the case of the discrete un i fo rm d i s t r ibu t ion , we have two 
separate situations to consider, i.e., sampling w i t h and wi thou t replacement. 
Patel (1973) provides a summary of these, and the continuous case, focusing 
on completeness, sufficiency and m i n i m u m variance unbiased est imation. 
(Guenther (1978) discusses some techniques for f ind ing M V U estimators 
w h i c h are usable i n the t a x i problem.) The M L , M V U , Geary and M M S E 
estimators w i l l be considered i n each s i tuat ion. (Estimators based on the 
mean and median are h igh ly inefficient and as a resul t w i l l not be con
sidered.) To order our findings we proceed by comparing pairs of estimators 
for the two discrete situations. (References to continuous case results w i l l be 
made for clarification or where comparisons are of interest.) 

Numer ica l results for a l l estimators (i.e., values of MSE for various N , n) 
are presented i n the Appendix to Table 1 (sampling w i thou t replacement 
case) and Table 2 (sampling w i t h replacement). 

I n both, discrete cases, f(X;N) = 1/N, X = 1, 2 , N where N is the unknown 
positive integer to be estimated. 

(1) MLE vs MVUE 

(a) Sampling Wi thou t Replacement 
The jo in t pdf of X 1 ( X 2 , X n is: 

f ( X 1 , X 2 , . . . , X n ) = l / N ( N - l ) . . . ( N - n + l ) X ^ L 2 , . . . , N 
(1) 

i = L 2 , . . . , n X i ^ X j , a U i ^ j . 

Le t W = max ( X i , X 2 , X n ) . This is clearly the m a x i m u m l ike l ihood 
estimator of N since the l ikel ihood function above is a decreasing function of 
N . I t is also straightforward to show (Tenenbein, 1971) 

E W = n ( N +1) / ( n + 1 ) (2) 

Var W - n ( N + 1)(N - n) / (n + 1 ) 2 (n + 2). (3) 

I t is k n o w n t h a t W is sufficient for N and t h a t the d i s t r ibu t ion of W is 
complete (Tenenbein, op. cit.). W is therefore a complete sufficient statistic so 
i f there is a function of W tha t is unbiased, th is function must be the unique 
best unbiased estimator. Thus, 

U = W ( n + l ) / n - l (4) 



is accordingly the unique m i n i m u m variance unbiased estimator. 
This estimator can be interpreted as the "average gap" estimator (Noether, 

1971; Rohatgi, 1984; Rao, 1981) i.e., W + average gap, where the gaps are the 
gaps or spacings between successive ordered observations (Spencer and 
Largey, op. cit.). 

W h i l e U is unbiased, W is only unbiased for n = N . U has the higher 
variance, however, w i t h : 

For any N , <j> exceeds u n i t y for n = l and n > N - 2 . I f n=2, <|»1 only i f N<6 . I f 
n = N - 3 , <|)>1 only i f N<6 . Tenenbein, op. cit. , calculates (j> for various n and 
N=100, 200. 

Below we present graphs for N=10, 100 and 500. (See also Table 1 for 
numerical values of MSE.) 

I t is clear t h a t U completely outperforms W except for very low or very 
h igh n . The rap id i ty w i t h which the graph declines for low n should be noted. 
W is of l i t t l e practical value unless n = l . 

(b) Sampling W i t h Replacement 
The jo in t pdf of X ^ . - ^ X j , is: 

var U / var W = (n + 1 ) 2 / n 2 

- > ( N + 1 ) 2 / N 2 a s n - > N . 
(5) 

Relative M S E can be calculated as: 

<|> = MSE U / MSE W = (n + 1)(N + l ) / n ( 2 N - n). (6) 

f ( X 1 , X 2 , . . . , X n ) = ( l / N ) n , X j = 1 , 2 , . . . , N (7) 

Again, W = max ( X 1 , X 2 , . . . , X n ) i s t h e M L E . (8) 

The dis t r ibut ion function of W is G(w) = ( w / N ) n . 

Hence the pdf of W is: 

g(w) = ( w / N ) n - ( ( w - l ) / N ) n , w = l , 2 , . . . , N and (9) 

E W = N - I j n / N n (10) 
j=l 





E W 2 = N 2 - N 2 1 ( 2 j + l ) f / N n . ( I D 

(These expressions involve sums of powers of integers w h i c h can be cal 
culated by computer or by looking up tables. They can also be r ewr i t t en us ing 
B e r n o u l l i numbers w h i c h i n t u r n can be evaluated u s ing tables e.g., 
Abramovitz and Stegun, 1965.) 

As before, W is sufficient for N (Wasan, 1970; Rohatgi , 1976) and the 
d i s t r ibu t ion of W is complete (Wasan, op. tit.; Rohatgi, op. ci t . ) . Accordingly, 
to f ind the unique M V U E estimator of N , we look for the function of W t h a t is 
unbiased. This is: 

(Wasan, op .cit.; Rohatgi, op. tit.; Guenther, op. cit.) 

The not ion of an "average gap" i n th i s case is not s t ra ight forward and the 
M V U E above does not seem to have any such interpretat ion. 

Notice t h a t un l ike the case wi thou t replacement, n may be unboundedly 
large and V a r W w i l l r emain positive, as n - » ° ° . Notice also tha t approxi 
mations for large N are possible (see Rohatgi (1984)). 

Defining <j> = M S E U/MSE W, the results for the w i t h replacement case are 
summarised i n Figure 3. (See also Table 2 for numerical results.) 

For the case n = l , where w i t h and w i t h o u t replacement coincide, <)> = 
(2N+2)/(2N-l) which is greater than one but decreases monotonically towards 
one as N increases. 

As n increases, § decreases very sharply at f i rs t , and especially rapidly for 
large N . The graphs show <j>, after the i n i t i a l sharp decline typical ly continues 
to decline slowly (to the point n=3 for N=5, to n=4 for N=9, to n=9 for N=50, to 
n=14 for N=100, to n=30 for N=500, to n=44 for N=1000) and then slowly 
rises u l t ima te ly exceeding 1 (when n=9 for N=5, when n=56 for N=10). As 
n oo, E W —> N , and var W and var U vanish, but our calculations show <)> 
we l l below u n i t y for even quite large relative values of n . I n no case does <|> fal l 
below 0.5 (its l i m i t i n the continuous case) but for large N , i t does get ra ther 
close to i t . Some m i n i m u m <(> values are as follows: N=100, n=15, <)> = 0.578; 
N=500, n=31 , <|> = 0.533; N=1000, n=45, <)> = 0.523.) 

Note that : 

(12) 

l/<i> = v a r W / v a r U + (bias W ) 2 / var U . (13) 



Figure 3: MSE U/MSE Wfor Various N, n: Discrete Case, Sampling 
With Replacement 

N=50 

U=i00 

N=500 

<{> = MSE U/MSE W 

Calculations show t h a t var W/var U (<1) decreases as N increases, given n 
and increases w i t h n , given N . (Bias W ) 2 / v a r U appears to change i n the 
opposite way. 

For very smal l n the relat ive variance advantage of W tends to offset the 
bias disadvantage, so t h a t M L E does reasonably we l l for very low n , 
especially i f N is not too high. 

I t is in teres t ing to observe t h a t these graphs are much more similar to the 
discrete case w i t h o u t replacement t han to the continuous case — i n the sense 



that <)> is above 1 for n = l but falls below 1 for n=2 (N>7) reaches a m i n i m u m 
quickly and then rises slowly. (For N=10, <(> reached 1 at n=56; for N=20, <[» 
reached 1 at n=247; and for N=50, <|> reached 1 at n=816.) j 

I n the continuous case, <j> fell monotonically as n increased, reaching 0.5 i n 
the l i m i t . I n the discrete case wi thout replacement, i t is clear, tha t 

and, judg ing from our calculations, this seems to hold i n the w i t h replacement 
case also. 

Examina t ion of the graphs suggests t h a t the w i t h replacement case is 
closer t h a n the w i thou t replacement case to the continuous case, p r i m a r i l y 
because of the slowness w i t h which 0 increases after i ts i n i t i a l drop. A s imi lar 
conclusion holds using \|/ as the reference — see below. 

(2) The Geary Estimator vs MVUE 
G is defined to be 2 1 / n W , and i n the continuous case (and i n the discrete 

case w i t h replacement) is the "closest" estimator. 
I ts behaviour relative to the M V U E estimator i n the three cases is ra ther 

similar. 

I n the continuous case, w r i t i n g M S E U/MSE G = \|/(n), 

\|/(1) = 1, \|/(2) = 1.0928 and \(/ then steadily declines as n rises. 

I n fact: \|/(n) < 1 for n > 7 
\|/(n) -> .'913944 as n -> °°. 

I n the discrete cases, wr i te MSE U(n , N)/MSE G(n, N) = \|/(n, N) . 

<|> = (n + l ) ( N + l ) / n ( 2 N - n ) > j , a l l n , N (14) 

(a) Sampling Wi thou t Replacement 

EG = N + l f o r n = l 
(15) 

= 2 i , I N N f o r n = N 

V a r G = 2 2 / n n ( N + l ) ( N - n ) / ( n + 2 ) ( n + l ) 2 

(16) 
= 0 for n = N 

M S E G ( n = N ) = N 2 ( l - 2 1 / N ) 2 

- » ( l o g e 2 ) 2 a s N - » ° oo (17) 

=.480453. 

Since M S E U = var U = ( N + 1)(N - n) / (n + 2)(n + 1 ) 2 , i t is clear tha t G w i l l 
not do we l l for n near N . 





V|/(1,N) = ( N 2 - 1 ) / ( N 2 + 2 ) < 1 
(18) 

1)7(2, N ) > 1 i f and only i f N > 6. 

For low values of n > 2, i t is clear from the graphs (Figure 4) tha t G does 
excellently relat ive to U . Only when n exceeds about 0.4 N , does the graph 
decline significantly — though after t ha t i t does tend to decline rapidly . A t 
tha t stage, of course, MSE U and MSE G are both rather low. 

(b) Sampling W i t h Replacement 
For n = l , v a r U = ( N 2 - l ) / 3 

EG = N + 1 (19) 

V a r G = ( N 2 - l ) / 3 (20) 

M S E G = ( N 2 + 2 ) / 3 (21) 

\|/(1,N) = ( N 2 - 1 ) / ( N 2 + 2 ) < 1 . (22) 

From the graphs shown i n Figure 5, for n=2, > 1. As n increases, \|/ falls 
slowly i n i t i a l l y ( remaining above 1 for values of n quite h igh relat ive to N ) , 
bu t decreases more rapidly after reaching 1. 

G does par t icular ly we l l for N quite large (say 50 or more) and n between 2 
and about 0.9N. The advantage can be quite substantial . For example, i f 
N=50, n=3, M S E U=166.52, MSE G=153.29. The bias i n G is more t han offset 
by a low variance. 

I V M I N I M U M M E A N SQUARE ERROR 

Examin ing the general problem of f inding the m i n i m u m MSE estimator for 
9 of the form XQ + k , w i t h k constant, where 0 is an estimator of 8 w i t h finite 
mean and variance, the m i n i m u m MSE X is found from differentiation to be: 

A . * = ( 9 - k ) E 9 / E 9 2 . (23) 

The corresponding MSE is: 

MSE a*9 + k ) = X*2var 8 + (iCE9 + k - 9 ) 2 

= (9 - k ) 2 [(E9 / E 9 2 ) 2 var 9 + ((E9) 2 / E 9 2 - 1 ) 2 ] . 



Figpre 5: MSE U/MSE G for Various N, n: Discrete Case, Sampling 
With Replacement 

f 

y = M S E U/MSE G 

Clearly this diminishes as k tends towards 0, i.e., as X* - » 0 and the estimator 
tends towards 9. As 9 is u n k n o w n this fact is of l i t t l e practical significance, 
though i t is w o r t h not ing tha t when 9 is a positive integer, as i n the discrete 
t a x i problem, a negative k is worse than k = 0. I f k = 0, X* is not necessarily 
dependent on 9. 

I n the continuous t a x i problem w i t h k=0 , 9 = N and 9 set to W, X = 
N E W / E W 2 = (n+2)/(n+l) . Thus the estimator J = (n+2)W/(n+l) has m i n i m u m 
mean square error i n the class of estimators XW, X constant, and is not 
dependent on N (Johnson, 1950). For non-zero k, the estimator would be: 



(N-k) (n+2)W/N(n+l ) + k. (25) 

(a) The Discrete Case Without Replacement 
I n the discrete case wi thou t replacement, when k=0 , the m i n i m u m M S E 

estimator of the form AW is: 

J* = A*W = (n + 2 ) W / ( n + l + n / N ) 
(26) 

= W f o r n = N . 

W i t h N unknown , th i s is not available, though i t shows t h a t J = (n+2)W/ 
(n+1) w i l l have m i n i m u m M S E among estimators of the form AW i f n is small 
relat ive to N . Note also tha t i f n /N is close to one, M L E w i l l have m i n i m u m 
M S E among estimators of the form AW. 

Since the M V U E is of the form A W - 1 , we consider other estimators of the 
same form, where A depends on n . 

M e a n Square E r r o r of ( A W - 1 ) is A2 var W + [ A E W - l - N ] 2 . F r o m the 
equation for X* above, the optimal A. is: 

A * = ( n + 2)(N + l ) / ( n + N ( n + l ) ) . (27) 

The M i n i m u m Mean Square Er ror estimator i n the class AW-1 is thus: 

L ' ^ ' W - X (28) 
= (n + 2 ) ( l + l / N ) W / ( n + H - n / N ) - l 

wh ich collapses to 

L = (n + 2 ) W / ( n + l ) - l , f o r s m a l l n / N . (29) 

When n = N 

L * = ( 1 + 1 / N ) W - L (30) 

Since M S E (AW + k) increases w i t h ( N - k ) 2 , J* must have lower M S E t h a n L * . 
Accordingly, from the formulae for the estimators J and L , J must have lower 
M S E than L provided n /N is sufficiently small — see Table 1. 

Since var J and var L are equal, the relative performance of J and L turns 
on the relative biases. 

E L = E J - 1 - N for n large. (31) 



Accordingly L w i l l have lower M S E for n large. 

I n fact, the necessary and sufficient cri terion is: 

L has lower M S E than J i f and only i f 2N+l<n(n+2) . (32) 

Of course, th is cr i ter ion involves the unknown N , but i t has practical value 
given vague knowledge of N . J is better than L for only quite low values of n : 
n<3, N=10; n<13, N=100; n<43, N=1000. 

The above theory and calculations suggest tha t i f the statistician believes J 
beats L , then J should be used. I t is preferable to U and when not preferable 
to G is close to G — see Table 1. When L beats J , L has very s imilar M S E to 
tha t of U and the stat is t ician may as we l l choose between U and G as dis
cussed i n the previous section. 

(b) The Discrete Case W i t h Replacement 
Using the approximation 

l n + 2 n + . . . + ( N - l ) n ^ N n + 1 / ( n + l ) , (33) 

to f ind the M M S E estimator of the form XW, we have 

X* = N E W / E W 2 ^ ( n + 2 ) / ( n + l - ( n + 2 ) / n N ) 
(34) 

= (n + 2) / (n +1) for N large. 

N t E W / E W 2 ) collapses for large N to J also using closer approximations. 
Accordingly J should do we l l i f N is large. 
The calculations, shown i n Table 2, confirm th i s , and show the three 

leading estimators as J , G and U . 
J i n fact does best for small n , any N . For example, J is best for n as h i g h 

as 3 i f N=10, as h igh as 25 i f N=100, and as h igh as 318 i f N=1000. Beyond 
these l i m i t s , e i ther G or U emerges as best w i t h t h e i r comparat ive 
performance as described i n Section I I I . 

V CONCLUSIONS 

This paper has reviewed and fur ther considered est imat ion i n the t a x i 
problem i n the continuous case and i n the discrete cases w i t h and w i t h o u t 
replacement. The estimators discussed were W, the max imum likelihood and 
complete sufficient estimator; U , the m i n i m u m variance unbiased estimator 
(the fo rmu la for w h i c h depended on the s i tua t ion under consideration); 
Geary's est imator G = 2 1 / n W ; and various forms of M i n i m u m Mean Square 
Er ror estimator inc luding tha t of the form XW which under certain conditions 



collapsed to Johnson's estimator J=(n+2)W/(n+l) . Note tha t a l l estimators are 
based i n some way on W. 

The m a x i m u m l ike l ihood est imator W performs poorly i n a l l cases, 
especially for moderate sample sizes, us ing mean square error as the key 
c r i t e r ion . I t s poor asymptotic behaviour i n the continuous case is not 
replicated i n the discrete cases, however, bu t large samples are typ ica l ly 
required for i t to match the M V U estimator i n those cases. The odd result 
t h a t the M L E estimator does reasonably we l l for smal l samples i n the con
tinuous case is replicated i n the discrete cases, but i ts performance relative to 
M V U E falls away very rapidly at f irst as n increases, especially i f N is large. 

Are there any general recommendations wh ich can be made as regards 
choice of an estimator of N for the various classes of s i tuat ion we have dealt 
wi th? We use M S E as the key cr i te r ion , no t ing t h a t other c r i t e r ia (bias, 
closeness, etc.) could point i n different directions. 

I n the continuous case the decision is clear-cut — J should be chosen as i t 
is the M i n i m u m Mean Square Error estimator i n a wide class. I t s advantage 
is slight, however, unless n is very low (<5). The Geary estimator performs 
we l l for small and moderate n , whi le for larger n , U = ( n + l ) W / n is better t han 
G under the criterion of MSE. 

I n the discrete case both w i t h and w i t h o u t replacement, i t is no longer 
possible to use the exact M M S E estimator since this is now a function of the 
unknown N . The choice of which estimator to use is therefore no longer clear. 
However, the fol lowing tables give a rough idea of the best estimators, i n 
terms of m i n i m u m MSE, to use i n various cases. Note tha t the estimator L 
does not appear i n the w i t h o u t replacement table. L is rejected on the 
grounds tha t either J , G or U w i l l better i t when N is small , or when n /N is 
small , whereas w i t h N large, n /N not small , M S E U approximates M S E L so 
tha t l i t t l e is lost by using U i n this case. 

Use of these tables requires either some pr ior in format ion on N , or the 
ab i l i ty to deduce some information on N from the observed sample values. I n 
the wi thou t replacement case n is measured relat ive to N , whereas i n the 
w i t h replacement case n is measured i n absolute terms. S denotes small , M 
moderate and L large. 

Without Replacement With Replacement 



For the special case where n = l the ordering of J, W, U , G is clear. 
For the continuous case, the s i tuat ion is, 

J W U G 
E 3N/4 N/2 N N 
Var 3N 2 /16 NP/12 1*73 1*73 
MSE 1*74 1*73 r*73 ]SP/3 

I n the discrete case where w i t h and wi thou t replacement coincide when 
n = l , . 

J W U G 
E 3(N+l) /4 (N+l) /2 N N + l 
Var 3(N2-1)/16 (N2-D/12 ( N 2 - ! ) ^ (N2- l ) /3 
MSE (2N 2 -3N+3)/8 ( 2 N 2 - 3 N + l ) / 6 (N2- l ) /3 (N2+2)/3 

Thus M S E J < M S E W i f N > 2 
M S E W < M S E U i f N > 1 
M S E U < M S E G for a l l N . 
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A P P E N D I X 

Table 1. MSE of Various Estimators of the Parameters in the "taxi" Problem: 
Without Replacement 

N=10 U W 

1 
2 
4 
6 
8 
10 

34.0000 
9.9153 
2.7053 
1.1887 
0.6976 
0.5151 

33.0000 
11.0000 

2.7500 
0.9167 
0.2750 
0. 

21.6250 
8.7407 
2.8480 
1.4810 
1.0151 
0.8264 

26.1250 
10.1852 
2.7280 
0.9300 
0.2867 
0.0083 

28.5000 
12.0000 

3.2000 
1.0000 
0.2667 
0. 

N=100 
n 
1 
4 
10 
20 
50 
80 
100 

3334.0000 
380.9633 
74.4459 
18.0260 

2.0809 
0.6914 
0.4838 

3333.0000 
404.0000 
75.7500 
18.3636 

1.9423 
0.3079 
0. 

2462.8750 
381.5680 
74.5304 
18.8748 
2.8647 
1.2773 
0.9802 

2512.3750 
388.6480 
75.1998 
18.3329 

1.9423 
0.3081 
0. 

3283.5000 
627.2000 
129.5454 
31.1688 

2.8280 
0.3613 
0. 

N=1000 

1 333334.000 333333.000 249625.375 250124.875 332833.500 
4 39872.737 41541.500 39808.768 39887.848 66267.200 
10 8449.272 8258.250 8175.207 8190.752 14925.000 
20 2337.600 2229.500 2221.013 2224.552 4200.000 
50 • 385.716 365.750 365.847 365.617 698.529 
100 91.860 88.323 89.120 88.316 165.987 
200 20.034 19.822 20.772 19.821 35.466 
500 2.142 1.994 2.986 1.994 2.982 
800 0.692 0.312 0.309 0.312 0.374 
1000 0.481 0. 0.998 0. 0. 



Table 2: MSE of Various Estimators of the Parameters in the "taxi" Problem: 
With Replacement 

N=10 G U J L W 

1 34.0000 33.0000 21.6250 26.1250 28.5000 
2 11.0675 12.3138 10.0444 11.9778 13.6500 
4 3.7053 4.0379 3.7936 4.4736 4.9677 
6 1.8700 1.9723 2.0184 2.3976 2.4288 
8 1.1267 1.1482 1.2694 1.5523 1.3829 
10 0.7520 . 0.7378 0.8804 1.1344 0.8644 
20 0.1985 0.1520 0.2692 0.5974 0.1604 
50 0.0023 0.0052 0.0042 0.6602 0.0052 
100 0.00486 0.00003 0.00982 0.00003 0.00003 

N=100 
1 3334.0000 3333.0000 2462.8750 2512.3750 3283.5000 
4 395.3097 416.5365 395.5152 403.3232 646.9967 
10 83.1911 83.2326 81.9646 83.5448 142.7493 
20 22.8285 22.6356 22.6199 23.0607 38.8451 
50 3.7356 3.7605 3.9450 4.0869 5.8745 
80 1.4367 1.4417 1.6230 1.7748 2.0491 
100 0.9098 0.8995 1.0708 1.2462 1.2105 
200 0.2149 0.1779 0.2958 0.6106 0.2004 
500 0.0241 0.0067 0.0439 0.6580 0.0067 
1000 0.00484 4.32E-05 0.01001 0.81030 0.00004 

N=1000 
1 333334.000 333333.000 249625.375 250124.875 332833.500 
4 40020.142 41666.536 39952.320 40032.120 66466.999 
10 8542.358 8333.233 8255.677 8272.117 15060.939 
20 2392.029 2272.635 2265.396 2269.887 4281.717 
50 409.360 384.529 384.251 385.009 734.869 
80 161.800 152.354 152.430 152.736 289.095 
100 103.713 97.954 98.096 98.299 184.561 
500 3.920 3.901 4.109 4.198 6.250 
1000 0.931 na 1.093 1.258 1.254 
1500 0.3997 na 0.5129 0.7544 0.4509 




