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Learning and Reasoning in Cognitive Radio
Networks

Liljana Gavrilovska, Vladimir Atanasovski, Irene Macaluso, and Luiz DaSilva

Abstract—Cognitive radio networks challenge the traditional
wireless networking paradigm by introducing concepts firmly
stemmed into the Artificial Intelligence (AI) field, i.e., learning
and reasoning. This fosters optimal resource usage and manage-
ment allowing a plethora of potential applications such as sec-
ondary spectrum access, cognitive wireless backbones, cognitive
machine-to-machine etc. The majority of overview works in the
field of cognitive radio networks deal with the notions of obser-
vation and adaptations, which are not a distinguished cognitive
radio networking aspect. Therefore, this paper provides insight
into the mechanisms for obtaining and inferring knowledge that
clearly set apart the cognitive radio networks from other wireless
solutions.

Index Terms—Knowledge, Learning, Reasoning, Game theory,
Reinforcement learning, Policy based reasoning.

I. I NTRODUCTION

The core idea of cognitive radios is based on the cognitive
cycle, according to which radios must be able to observe their
operating environment, then decide how to best adapt to it,
and act accordingly. As the cycle repeats, the radio should be
able to learn from its past actions. The principle rests on the
radio’s ability to observe, adapt, reason, and learn.

A little over ten years since cognitive radios have been first
proposed by Mitola [1], the research literature on cognitive
radios is vast. It has, however, tended to focus on the first two
aspects (observation, adaptation) and less so on the last two
(reasoning, learning). The ’observe’ portion of the cognitive
cycle is exemplified by work on sensing for opportunistic
access to spectrum. The ’adapt’ portion can manifest itself
when the radio, based on its sensed operating environment,
performs channel selection, power and topology control, adap-
tive modulation and coding, or some combination thereof.

In this paper, we focus on the ’reason’ and ’learn’ aspects of
cognition. Those aspects lend themselves to multi-disciplinary
analysis, taking advantage of advances made in game theory,
artificial intelligence, multi-objective reasoning, and policy
systems, among others.

We start with a brief review of the framework according to
which cognitive radios are understood. We then discuss two
alternate mathematical views of learning mechanisms. Game
theory offers us the mathematical tools to model interactions
among autonomous players (in the context of this paper,
typically cognitive radios seeking to maximize some objective
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function). Through dynamic game models, we can study how
the radio’s actions are affected by past experiences: in a way,
how the radio ’learns’ from its past actions and those of others.

Dynamic games have been applied to problems that model
the interaction among secondary users competing for oppor-
tunistic access to the spectrum, as well as those that model
interactions between primary and secondary users. Such mod-
els range from repeated games [2], [3], [4] to stochastic games
[5], [6], [7] and evolutionary games [8], [9]. We briefly define
each of those classes of games and discuss some example
applications.

We then look at reinforcement learning, both by a single
agent and by multiple agents, and how advances in that field
can be applied to cognitive radio and dynamic spectrum access
problems. Reinforcement learning has been applied to a variety
of problems in the context of the cognitive radio literature,
including dynamic channel selection [10], transmission power
adaptation for spectrum management [11], cooperative sensing
in ad hoc networks [12], and multicarrier aggregation [13].

The next portion of this survey concerns itself with reason-
ing, a fundamental aspect of every ’intelligent’ entity, regard-
less of being biological or artificial. Reasoning may be broadly
classified into beinginstinctive or cognitive [14]. Instinctive
reasoning is driven by emotions and is therefore an inherent
characteristic of biological entities (including humans). Cogni-
tive reasoning requires the power of cognition, i.e. the complex
interaction of knowledge (past and present), learning and
the associated inference mechanisms, stripping the emotions
from the entire process. This leads to an increased reasoning
time, but also to an improved reasoning result (i.e. a more
meaningful and ’intelligent’ solution). This paper refersto
the notion of cognitive reasoning in its application in wireless
networking.

The primary responsibility of the cognitive reasoning is the
choice of a set of actions that lead to efficient decision-making.
Therefore, the cognitive reasoning is often viewed as a deci-
sion process using historical as well as current knowledge of
the environmental context. Additionally, the process learning
must be powerful enough to enrich the knowledge base, to
foster increased efficiency of the subsequent reasoning. Asa
result, there is a tight coupling among knowledge, learning,
and reasoning in the cognitive sense.

Cognitive reasoning may be investigated at three levels of
abstraction:conceptual, formal and realizational [15]. The
conceptual abstraction requires models capable of capturing
the specific and possible nuances within the reasoning entity.
An example is a cognitive agent [15], which can be a living
entity, a group of living entities, or a technical system. The
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formal theory requires frameworks and logic to interpret the
interactions among the elements involved in the cognitive
reasoning. The formalism is crucial for handling the various
plausible reasoning methods. It also ensures that the reasoning
itself is self-contained and independent from the actual en-
abling technology [16]. Finally, the realizational theoryshould
encompass the envisioned application and the environmental
practical limitations of an operating cognitive engine. For
instance, in the context of cognitive radios, [17] introduces a
cognitive wrapper, envisioned as a realizable cognitive entity
with scalable intelligence and designer-specified learning and
reasoning algorithm capabilities, while [18] discusses the
aspect of reasoning robustness, which is extremely important
for practical realizations.

There are numerous applications of cognitive reasoning
in the telecommunications domain. For instance, [19] and
[20] and elaborate on the usage of reasoning for network
monitoring and management. These applications address the
problem of scalability and showcase the potential of cognitive
reasoning to handle various network incidents timely and
efficiently. Reference [21] introduces a reasoning framework
for enabling smart homes, with reasoning as an intelligent
interpreter of data coming from various electronic devices
in homes. Moreover, reasoning can provide an unambiguous
interface for the consumers to track and, possibly, intervene
in the home environment, allowing for increased intelligence
and energy-awareness. Of particular relevance to our paper, the
main application of cognitive reasoning to wireless communi-
cations has been in the area of efficient and flexible spectrum
management [22].

Cognitive reasoning is a focal aspect of cognitive radio
networks. It fosters the development and/or the extractionof
contextual and environmental awareness towards an optimal
solution to a particular problem. A reasoning output would
then be a timely and intelligent answer to a problem set based
on previous actions and consequences, current observations
and objectives, and the descriptions of the used data-types[17],
[23]. However, the reliability of the reasoning output strongly
depends on the accurate estimation of the environmental
context, which needs to be carefully analyzed in different
cognitive networking applications [24].

This paper enumerates and discusses some possible frame-
works for reasoning in cognitive radio networks, from
Bayesian networks to case-based reasoning. We give special
attention to policy-based reasoning, as it is particularlyappli-
cable to cognitive radios operating in new and dynamically
changing spectrum regimes. In the conclusions, we offer our
views on some of the open research areas in reasoning and
learning for cognitive networks.

In each section, we combine some fundamental discussion
of the principles of learning and reasoning with some examples
of how they can be applied to cognitive radios and dynamic
spectrum access.

II. COGNITIVE RADIO FRAMEWORK

Prior to the introduction of the cognitive radio network-
ing paradigm, learning and reasoning mechanisms were not

Fig. 1. General Cognitive Radio Architecture.

customarily built into wireless network architectures. Rather,
the observations and the adaptations were governed and fos-
tered by hard-coded rules inside the terminals’ firmware.
The introduction of cognitive radio networks allowed for the
incorporation of learning and reasoning mechanisms as a
distinct characteristic of the cognitive cycle within.

Learning mechanisms are responsible for building upknowl-
edgeandknowledge bases. However, the knowledge by itself
would be useless in cognitive radio networks unless there is
a form of inference that determines how various pieces of
knowledge can be translated into actionable decisions. The
inference is enabled byreasoning mechanisms, resulting in a
tight coupling between learning, knowledge and reasoning.

The aspects of learning and reasoning, knowledge and
knowledge bases, as well as observations and adaptations, are
intertwined in a general cognitive radio architecture, abstracted
in Fig. 1. The Cognitive Radio Application requires a Software
Defined Radio (SDR) in order to fulfill its functionalities.
These functionalities may include spectrum mobility, spectrum
handovers, adaptations based on perceived past and predicted
future environmental changes, etc. However, a crucial cor-
nerstone of the general cognitive radio architecture is the
need for platform independenceof the knowledge and the
application itself. Therefore, the Perception and Action Ab-
straction Layer (PAAL) is introduced as a mediator that allows
translation of the SDR observables and the actions into a
platform-independent knowledge representation. This allows
independence of the actual cognitive radio application from
the plethora of market-available SDR devices that use different
software wrappers.

On the other hand, the acquired knowledge also necessitates
independence from the potential application. As a result, the
Ontology and Rule Abstraction Layer (ORAL) is foreseen
as a presenter of knowledge (i.e. ontologies and rules) in
a platform-independent implementation manner. Finally, the
Knowledge Base (KB) stores the acquired knowledge and the
set of actions that were or are to be executed.

The general cognitive radio architecture from Fig. 1 can
be instantiated into various specific architectures [25] that
incorporate different numbers of loops in the cognitive cy-
cle, different duration of the learning process, adaptations to
different conditions and parameters, etc. Every instantiation
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may also include some specific functionalities (e.g. genetic
algorithms), but they all adhere to the common principles
elaborated in the Introduction.

The next section details the most prominent learning mech-
anisms within modern cognitive radio networking.

III. D ECISION MAKING AND LEARNING MECHANISMS

We take a broad view of learning to study the adaptations
performed by a network of cognitive radios. Our discussion en-
compasses both the application of machine learning techniques
to cognitive networks and game-theoretic analysis of simple
adaptation mechanisms that can be shown to converge to an
equilibrium (such as a Nash equilibrium or one of its variations
in cooperative and non-cooperative game theory). Recent work
[26] investigates the intersection between machine learning
and game theory.

A. Game-theoretic analysis

Game theoretic models account for multi-agent decision
making, including cases where each player decides on her
actions based on observing the history of actions selected by
other players in previous rounds of the game. This allows
us to model a learning process by each player and whether
this learning ultimately leads to a stable state for all. Games
that model competition and cooperation that evolve with time
are calleddynamic games. The parallel to cognitive networks
should be clear: in many game theoretic models of cognitive
networks, the players in the game are the cognitive radios
that form the network. These radios take actions such as
setting their transmit power or selecting a channel in whichto
operate. Such actions are based on the radio’s observationsof
its environment (e.g., channel availability, frame error rate, or
interference). As time progresses, a radio can learn from the
outcome of its past actions and from observing the actions of
other radios in the network, and modify its actions accordingly.

1) Repeated games:The simplest game theoretic model
that captures these concepts is that of a repeated game. A
repeated game is one in which each stage of the game is
repeated, usually with an infinite time horizon. LetN denote
the set of radios in a network, and the vectora

(k) denote
the N -dimensional vector of actions taken by the players
in the kth stage of the game. In each stagek, a player’s
strategy seeks to maximize her utility function, while taking
into account the history of actions collected in the vector
h

(k) = (a(1),a(2), . . . ,a(k)). In other words, a player’s
strategy can be expressed as a mapping from histories to
actions:a(k)

i
= fi(h

(k−1)). The expected utility is typically
discounted by a factor0 < δ < 1, meaning that a payoff in
future stages of the game is worth less than the same payoff
in the current stage.

The cognitive radio process is often described by the OODA
loop (observe-orient-decide-act). In Fig. 2, we map the four
steps in this reasoning process to the formalism of a repeated
game.

A simple example may be in order at this point. Consider
a number of cognitive radios competing for channels that
are available when the primary licensee for the frequency

Fig. 2. Starting at the top of the diagram, cognitive radioi observes other
radios’ actions at thekth stage: these actions are collected into a history
vector. The history vectors for all previous stages are considered during the
orientation step. The radio then decides on an action by applying a strategy
that maps from the set of histories to the radio’s action set.Finally, the radio
performs an action during the(k + 1)th stage of the repeated game, and the
cycle repeats.

band is not active. Mapping this problem into the repeated
games formulation above, the radios are the players in the
game, their action is the selection of one of C channels, and
these selections may depend on the history of primary user
activity, as well as on the pattern of channel utilization byother
secondary users (for example, a channel that has a history of
being frequently occupied by the primary may be avoided by
all secondary users).

The well-known concept of Nash equilibrium is readily
applied to repeated games: In a Nash equilibrium strategy
profile, no player can unilaterally increase her expected payoff
by selecting a different strategy.

In the study of economic incentives for cognitive radios and
networks, [27] considers an oligopoly spectrum market, with
license holders competing to provide services to secondary
users. This is modeled as a repeated game: with associated
incentives and punishment for deviating, the authors show that
it is possible to sustain a Nash equilibrium that maximizes the
providers’ profit.

Channel selection in opportunistic spectrum access has also
often been modeled as a repeated game. Wu et al. [2] model the
sharing of open spectrum as a repeated game; they consider a
punishment scheme and show that a more efficient equilibrium
can be reached when autonomous radios interact repeatedly,
as opposed to when they interact in a single stage game (in
general, a well known result in game theory, an example of
which is the repeated Prisoner’s Dilemma). They go further
and also consider incentives for cognitive radios to truthfully
report their operating conditions in negotiating access to
spectrum: relying on mechanism design, the authors of [2]
design cheat-proof strategies for dynamic spectrum sharing.
The selection of the best spectrum opportunities by secondary
users of some spectrum band is modeled as a repeated game
in [3]. In that model, secondary users will have to vacate their
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current channel whenever a primary user becomes active, and
the authors consider a cost associated with switching channels.
A subgame perfect equilibrium [28], a Nash Equilibrium that
is also an equilibrium for every proper subgame of the original
game, is one way to characterize the likely outcome of such
a game.

In [4], the authors use repeated games to model the evolu-
tion of reputation among secondary users, when one of them is
chosen to manage the spectrum made available by the primary
user. In several of the applications above, repeated interactions
among a set of cognitive radios allow for the design of
incentive mechanisms that lead to a more efficient equilibrium.
A different question is whether there are simple ways for
radios, by observing others’ actions and the utility resulting
from its own actions, to converge to a Nash equilibrium. We
treat that question next.

2) Potential games:The class of games calledpotential
gamesis of particular interest in the context of learning. If a
dynamic adaptation problem can be modeled as a potential
game, then if radios follow a simple adaptation algorithm
(which we will discuss in more detail shortly) they are
guaranteed to reach a solution that is stable from the point
of view of the entire network.

To introduce potential games, let us start with the concept
of a potential function. A potential functionV maps from the
action set of all players,A = A1 × ... × AN, into the real
numbers:V : A → R. A unilateral change in action by one
player has the same effect on that player’s utilityui(a) as it
has on the potential function. Formally, for all playersi ∈ N

and allai, bi ∈ Ai:

V (ai,a−i) − V (bi,a−i) = ui(ai,a−i) − ui(ai,a−i).

(Here, we adopt standard notation in game theory, with
a−i = (a1, . . . , ai−1, ai+1, . . . , aN ) representing the vector
of all players’ actions, except playeri.) A game for which a
potential function can be found is called anexact potential
game.

A weaker concept of potential function is that of anordinal
potential function. That function also maps the action set of all
players to the real numbers, but with the following property:

V (ai,a−i)−V (bi,a−i) > 0 ⇐⇒ u(ai,a−i)−u(ai,a−i) > 0.

A game for which such a function can be found is called
an ordinal potential game. It is easy to see that every po-
tential game is an ordinal potential game, but also that the
converse is not true. But how are potential games relevant to
our discussion of learning in networks of cognitive radios?
Because potential games have desirable properties in terms
of the existence of a Nash equilibrium and the convergence
to that equilibrium through simple adaptations. For instance,
all finite potential games have at least one Nash equilibrium
in pure strategies (a finite game is a game where the player
and action sets are finite). More generally, if the strategy space
for the game is compact and the potential function continuous,
then the game has at least one pure strategy Nash equilibrium.
Just as importantly, from the point of view of learning, is that
the players are guaranteed to reach these equilibria through
best reply and better reply dynamics.

To introduce better and best reply dynamics, let us consider
a repeated game where at each stage exactly one player is
offered the opportunity to take action. A player is said to
follow a best reply strategy if her selected action maximizes
her utility, given the other players’ current actions. Witha
better reply strategy, the player will always select an action
that provides an improvement in utility with respect to her
previous action, again given the other players’ current actions.

Some of the seminal work in applying potential games to
cognitive radio problems was done by Neel [29]. A number
of problems in multi-channel communications can be modeled
as potential games. For example, when the utility function of
each radio considers the social welfare of the network (e.g.,
by attributing a cost to the radio from interference caused to
others, as well as interference suffered from others) a potential
function naturally emerges. This is the case in the work on
channel selection by [30].

Even when players have utility functions that reflect their
own selfish interests, rather than those of the network, in a
number of cases of interest to dynamic spectrum access and
cognitive network games the model results in a potential game.

Thomas et al. [31], for example, model the topology control
problem for an ad hoc network where nodes can select a
channel to operate on from a finite set of available channels.
This topology control mechanism consists of two phases:
in the first phase, radios select a transmit power level with
energy efficiency and network connectivity in mind; in the
second, they select channels, with interference minimization
objectives. The authors are able to show that both problems
(power control and channel selection) can be formulated
as ordinal potential games, and best-response dynamics are
guaranteed to converge to an equilibrium.

3) Other dynamic games:More general formulations of
dynamic games have also been applied to cognitive radio and
dynamic spectrum access problems.

The dynamic game model in [32], for example, is used to
model uncertainty about observed strategies adopted by other
players. A primary and multiple secondary users (SUs) inter-
act, with the former setting prices for access to the spectrum
and the latter selecting how large a portion of spectrum to use.
Since each secondary user only interacts with the primary, it
cannot get a complete picture of the strategies and payoffs of
other secondary users. Each SU therefore gradually adapts its
selection of how much of the spectrum to occupy based on the
marginal benefit it can observe from this selection. A learning
rate parameter adjusts the speed with which adaptations can
be made. This parameter will impact the stability region of the
learning algorithm, as well as its sensitivity to the selection of
the initial strategy.

A particular class of dynamic games that has found recent
applications to the dynamic spectrum access problem is that
of stochastic games. In stochastic games, the environment
changes in response to the actions of all players. This is
captured by the introduction of a state space and a stochastic
process that models the game’s transitions among states. Each
player’s stage payoff depends on the current state of the game
as well as on all players’ actions.

The work in [5] considers a set of radios performing
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distributed and opportunistic access to the channel, wherein in
each time slot one radio can be scheduled per spectrum hole
(and, when the primary user is present, none of the secondaries
is allowed to transmit). The authors model this problem as a
switching control game, a type of stochastic game where the
state space can be partitioned into disjoint subsets such that,
whenever the game is in stateSi, the transition probabilities
depend only on player i’s actions. The decisions of each of the
radios can be then described by a finite sequence of Markov
decision processes.

Both centralized and distributed stochastic games are formu-
lated in [6], where radios compete for spectrum opportunities
with and without help from a central spectrum moderator,
respectively. In [7], the same authors model bidding policies
for secondary users competing for spectrum controlled by
a spectrum broker, again using the formalism of stochastic
games and considering that each secondary user can only
observe a partial history of previous usage of spectrum.

Another variation of stochastic games gives rise to evolu-
tionary game theory. This is inspired by evolutionary biology
and the idea that an organism’s genes largely determine its
fitness to the environment in which they exist. The more fit
the organism, the higher the likelihood that it will produce
offspring, increasing the representation of its genes in the
overall population. The process of mutation is also modeled
through random changes to the players’ strategies over time.

An evolutionary game is proposed in [8] to study behav-
ioral dynamics in cooperative spectrum sensing, where each
sensing agent (possibly belonging to different providers)must
decide whether to contribute to the overall picture of spectrum
availability. Reference [9] applies evolutionary games tothe
problem of network selection by radios facing the choice of
multiple wireless access technologies.

After having briefly summarized some of the game theoretic
models used to analyze multi-agent decision making and the
process of arriving at stable outcomes (critical for cognitive
radios operating in a network), we turn our attention to the
application of reinforcement learning to cognitive radios.

B. Reinforcement-learning techniques

Reinforcement learning (RL) plays a key role in the litera-
ture on multi-agent learning. In fact the nature of the task itself,
i.e. learning a mapping between situations and actions while
interacting with other agents, makes the use of supervised
learning techniques quite difficult. In a dynamic and non-
stationary environment it would be challenging, sometimes
even impossible, to provide the agents with the correct actions
associated with the current situation. The RL paradigm is more
versatile in the multi-agent domain, as it allows the agentsto
autonomously discover the situation-action mapping through a
mechanism of trial and error. An RL agent learns by exploring
the available actions and refining its behavior using only an
evaluative feedback, referred to as thereward. In other words,
in the RL paradigm an agent learns by interacting with its
environment, which in the multi-agent domain also includes
other agents. The learning mechanism is driven by the rewards.
Generally an agent is expected not just to take into account

the immediate reward, but also to evaluate the consequences
of its actions on the future in order to maximize its long-term
performance. Delayed reward and trial-and-error constitute the
two most significant features of RL.

1) Single-agent RL:Multi-agent reinforcement learning
(MARL) evolved from the single-agent RL setting. In the
single agent case, RL is usually performed in the context of
Markov decision processes (MDP). In a typical RL scenario
the agent represents its perception at timek as a statexk ∈ X,
where X is the finite set of environment states. The agent
interacts with the environment by performing actions. Each
actionak ∈ A, whereA is the finite set of actions of the agent,
could trigger a transition to a new state. The agent will receive
a reward as a result of the transition, according to the reward
function ρ : X × A × X → R. The agent’s task is to devise
a policy, i.e. a sequence of (state, action) pairs, to maximize
the expected discounted reward. In the context of MDP, it has
been proved that an optimal deterministic and stationary policy
exists [33]. The problem of learning the optimal policy for
the single-agent RL scenario has been addressed both in the
case where the state transition and reward functions are known
(model-based learning) and in the case where they are not
(model-free learning). Most MARL algorithms are based on Q-
learning [34], a model-free algorithm that estimates an optimal
action-value function. An action-value function, named Q-
function, is the expected return of a state-action pair for agiven
policy. The optimal action-value function,Q∗, corresponds to
the maximum expected return for a state-action pair. Once it
estimatedQ∗, the agent can select the optimal actions by using
a greedy policy, i.e. the policy that for every state the agent
selects the action with the corresponding highest Q-value.The
updating rule of the Q-function is:

Qk+1(xk, ak) = (1 − αk)Qk(xk, ak) +

αk

[

rk+1 + γ max
a′

Qk+1(xk+1, a
′)
]

whereγ is the discount factor,αk ∈ [0, 1] is the learning factor,
andrk+1 = ρ(xk, ak,xk+1). As it can be noted, the updating
rule of Q-learning does not require knowledge about the
reward or the transition functions: only the observed reward
is used to update the Q-values. In a stationary environment
the learned Q-function converges toQ∗ if all the state-action
pairs are visited an infinite number of times and under the
stochastic approximation conditions on the sequence of the
learning factorsαk [34].

Incidentally, there are clear connections between MDPs
and game theoretic models, in particular stochastic games.A
stochastic game is a dynamic game for which state transitions
are probabilistic, allowing us to model uncertainty in the
players’ operating environment. While an MDP models a
single agent’s decisions, in a stochastic game there are multiple
agents, and their actions, the next state, and rewards depend
on the vector of all players’ actions ([35] offers a good
treatment of stochastic games and their relationship to MDP).
Fig. 3 provides one way to position reinforcement learning and
game theoretic models with respect to the number of agents
considered and to the cardinality of the state space.
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Fig. 3. The relationship between repeated games, stochastic games, MDPs,
and multi-armed bandit problems is illustrated by this matrix, with N

indicating the number of players andX the state space.

In the next sub-section, we will treat reinforcement learning
from a multi-agent point of view.

2) MARL: A possibility that has been extensively explored
in the MARL domain is the straightforward use of the Q-
learning algorithm while ignoring the presence of the other
agents acting in the same environment and considering the
results of this interaction as noise. In the following we will use
the term ”independent Q-learning” to refer to this approach.
However, because of the non-stationarity of the environment
caused by the presence of other agents, the theoretical result
on convergence no longer holds. This means that for some
games the agents may exhibit cyclic behavior. Despite its
limitations, the independent Q-learning approach has been
widely adopted in the cognitive radio literature. In some cases
(e.g., [36]), the issues related to convergence are acknowledged
and simulation results are presented to show that the agents
achieve an equilibrium. In other cases (e.g., [37]), the question
of convergence is not discussed.

An intuitive extension of the independent Q-learners ap-
proach is to maintain a Q-value for each combination of
the states and actions of all agents. However this approach
requires that the other agents’ actions be observable. Most
importantly, the curse of dimensionality, which already poses
serious challenges in the single-agent domain, raises even
more important issues in this case.

Furthermore, the main issue with the use of independent
Q-learners is that the update is based on the agent’s own
maximum payoff in the next state. This is hardly justified in
the multi-agent domain, as the agent’s payoff in the next state
depends on the other agents’ actions [38].

Various attempts have been made to find a different update
rule, more suitable to the multi-agent case. A useful example
to better understand the strong relationship between MARL
and game theory is the Nash Q-learning algorithm [35]. This
approach clearly acknowledges the interactive nature of the
learning involved in the multi-agent domain by modeling the
MARL problem as a stochastic game. In particular, a modified
version of the Q-learning rule is proposed. Each agent updates
its Q-table using the expected return corresponding to the
NE of the stage games corresponding to the states of the
stochastic game. This approach, however, requires that each
agent be able to compute an NE in every stage game given

by all the agents’ Q-tables. This means that each agent has
to maintain the Q-tables for all the other agents, i.e. it hasto
observe the other agents’ actions and rewards. Moreover, all
agents have to agree on using the same NE. This requires a
coordination mechanism for all but a restricted class of games
where all the agents achieve the maximum expected return
in correspondence to the same NE. It is unclear how strong
a role this or similar approaches based on game theoretic
analysis will play in the context of cognitive radio applications,
due to their strict requirements and their sensitivity to noisy
observations. More recent models for games of imperfect
private or public monitoring can be used to model such noisy
observations, but they come at the cost of significant increased
complexity.

A common feature of most MARL algorithms is the use
of a discrete state-action space. This is a heritage from the
classic single-agent approach. Moreover, generally algorithms
derived from Q-learning algorithm can only learn deterministic
policies. A notable exception to the above observations is
Hyper-Q [39], where the agent state includes an estimate of
the other agents’ strategies. As the Q-function evaluates the
other agents’ mixed strategy, Hyper-Q employs a function
approximator.

A possible solution to these limitations is provided by direct
policy search methods. This class of algorithms tries to directly
learn the optimal policy, without attempting to approximate
the value function. In other words, the learning problem is
modeled as an optimization problem with unknown objective
function. The policy is generally represented as a parametric
function, and different approaches can be adopted to explore
the strategy space (see [40] and references therein).

Some of the solutions proposed in the MARL literature
use an opponent-independent closed-form solution for the
matrix games (see for example [41]). In cognitive network
applications this class of approaches is unlikely to play a key
role but for a limited set of scenarios. In fact cognitive network
applications are characterized by the intrinsic heterogeneity of
the radios’ behavior, due for example to hardware limitations.
This feature will favor agents that are aware of and therefore
can exploit other players’ strategies. In this respect a class of
approaches that learn a model of the other agents’ strategies
is of particular interest. Typically an agent chooses the best
response based on its current model of the other agents’
strategies. It then refines this model after observing the other
agents’ play. Examples of this class of approaches are fictitious
play [42] and Joint Action Players [35]. In some cases the
model of the other agents’ strategy is simply based on a
frequentist approach: an agent counts the number of times
that another agent has selected a certain action. A simple but
effective extension in the case of non-stationary strategies is
the Exponential Moving Average, which assigns greater weight
to the most recent observations and allows each player to
react more quickly to the dynamics of the other players. More
sophisticated techniques, based on a Bayesian approach, can
also be used.

A number of MARL algorithms have been proposed that can
only deal with repeated stateless games (see [40] and refer-
ences therein). In the CR literature independent Q-learning has
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also been used in this fashion [43]. It should be noted that the
delayed reward, which is an essential feature of RL in general
and Q-learning in particular, is no longer part of this simplified
scenario. In the case of repeated games, more suitable RL
schemes, such as learning automata [44], should be adopted.A
learning automaton is a reinforcement learning scheme where
each agent is a policy iterator, i.e. it directly updates its
action probabilities based on the environment response. We
have recently applied learning automata to the problem of
distributed channel selection in the context of frequency-agile
radios that are able to operate in multiple frequency bands
simultaneously [13].

The general update rule is [44]:

pi(t + 1) = pi(t) − (1 − βt)fi(p(t)) + βtgi(p(t)) ∀a(t) 6= ai

pi(t + 1) = pi(t) + (1 − βt)
∑

j 6=i

fj(p(t))

−βt

∑

j 6=i

gj(p(t)) a(t) = ai

where the functionsf and g are the reward and the penalty
function, respectively, andβt ∈ [0, 1] is the reward received by
the agent at timet (with β = 0 corresponding to a favorable
outcome). Different choices of the reward and penalty func-
tions lead to different reinforcement schemes. Among them,
the linear reward inaction scheme is of particular interestin
that it has been proved to converge to a pure NE for special
types of finite stochastic games, such as two-player zero sum
games, N-player games with common payoff, and particular
general sum N-player games [45]. For a review on the use of
learning automata for adaptive wireless networks the reader is
referred to [46].

When using the linear reward inaction scheme, the agent
modifies its policy only when it receives a favorable feedback
from the environment. In particular the penalty function isnull,
while the reward function is a linear function of the action
probabilities. It should be noted that a linear reward inaction
scheme can only converge to pure Nash equilibria [45].

Among the learning schemes that can only converge to a
pure Nash equilibrium, the trial-and-error learning algorithm
[47] is concise and of simple implementation. In fact, each
player only maintains the last selected action and the corre-
sponding perceived utility. At each time, each player decides
to either perform the last selected action with probability1−ǫ

or to randomly select another action with probabilityǫ. If the
player observes a strict increase in the payoff, the new strategy
is adopted. If all players adopt trial-and-error learning,a pure
Nash equilibrium is played at least1− ǫ fraction of the times,
for any ǫ > 0 [47]. In [48], the authors applied this result to
the discrete power allocation problem, and observed that the
number of iterations required to be close to a Nash equilibrium
depends onǫ and on the structure of the observed payoffs.

In general, RL algorithms select an action with probability
proportional to the total reward received in the past as a
result of choosing that action. In order to achieve a balance
between exploration and exploitation, whilst avoiding the
most unsatisfactory actions, a softmax action selection rule
is generally adopted, where actions are ranked and weighted

according to their estimated utility. The most commonly used
softmax action selection rule is based on the Boltzmann-
Gibbs distribution. In this case, the exploration/exploitation
tradeoff is controlled by the temperature parameterτ . High
values ofτ determine a random action selection; low values
of τ favour the selection of actions corresponding to higher
rewards;τ → 0 corresponds to the greedy action selection
scheme. A congestion game is a game where resources are
limited and the utility of a player depends on which resources
she chooses and how many other players chose the same
resource. In [48] it is shown that, for congestion games, a
learning scheme using the Boltzmann-Gibbs distribution to
update the players’ strategy almost surely converges to Nash
equilibria.

A different approach, namely regret matching [49], also
considers the hypothetical rewards the agent would have
received by selecting actions it did not play. The agent
associates to each action a regret, i.e. the difference between
the average reward the agent would have received by always
playing that action and the actual average reward. The agent
then selects an action with probability proportional to the
corresponding regret. Only actions with positive regret are
considered. Although regret matching has been proved to
converge to correlated equilibria in self-play, it makes strong
assumptions on the agents’ inputs. In fact, in order to compute
the regret, each agent has to be able to observe all the other
agents’ actions.

The concept of regret is also used as an alternative evalua-
tion criterion for learning algorithms. The no-regret criterion
is verified when the average regret is less than or equal to
zero against all other agents’ strategies. For example in [50]
the authors examine the performance of two algorithms for
distributed channel selection providing bounds on the regret
experienced by the secondary users while learning a channel
access policy.

3) Pros and cons of different learning techniques:In [26]
the authors present an interesting and useful comparison of
some of the learning techniques discussed above with respect
to the algorithms’ requirements (computational complexity and
assumptions on the agents’ inputs) and to the convergence
properties. However the analysis of RL is not conclusive, as
RL is family of algorithms whose convergence properties and
requirements depend on the particular implementation.

One of the fundamental issues common to all RL ap-
proaches is the convergence time when the dimension of the
state-action space is beyond that of a toy problem. This aspect
has not received sufficient attention in the CR literature. One
exception is [10], where the spectrum pool, which corresponds
to the action space, is randomly partitioned into different
subsets in order to expedite the exploration stage. Although
successful in facilitating the exploration, the obvious risk of
this approach is that the CRs might converge to a subop-
timal, and potentially inefficient, policy, as the exploration
stage is blindly limited to a subset of the available actions.
The problem of scaling up reinforcement learning has been
well studied in the machine learning community. A possible
solution is to use function approximation [51]. This approach
allows an agent to generalize from previously observed states
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and actions to an approximation of the action-value function
for state-action pairs that have never been observed by the
agent. This approach has been adopted in [11], where CRs
use function approximation to determine channel assignment
and transmission powers for large state problems.

As a final comment, the application of learning techniques
to cognitive network problems should include an assessment
of whether there is sufficient structure in the observation of
the changing wireless environment (e.g., spectrum utilization
patterns of a primary user) to justify trying to learn from these
observations. We have tackled this question in [52], where we
show the correlation between the Lempel-Ziv complexity of
observed spectrum use and the benefits of a reinforcement
learning approach in the secondary users’ selection of a
channel for opportunistic use.

IV. REASONING MECHANISMS

After the previous section’s discussion of the relevant learn-
ing mechanisms within the cognitive networking context, this
section will focus on the inference mechanisms needed to
relate the acquired and the learned knowledge. These inference
mechanisms are represented byreasoning mechanisms, which
are also a quintessential part of the cognition process.

The field of reasoning is popular among psychologists,
philosophers, and cognitive scientists. The development of
cognitive networking imposes reasoning as a challenge for
technologists and networking scientists as well. It is expected
that a simple mapping of the reasoning process from other
science fields will also fit the cognitive networking world.
While this may seem mostly true, there are clear differences
in the cognitive networking context that must be taken into
account when analyzing the reasoning mechanisms and their
associated aspects. We focus on those differences.

A. Cognitive frameworks and associated reasoning

As already discussed in section II, the general cognitive
radio architecture depicted in Fig. 1 may be instantiated in
various specific realizations. This proves to have a profound
effect on the process of reasoning, since different cognitive
architectures incorporate various approaches within the cogni-
tive cycle.

Cognitive frameworks are generally classified into being
basic or stemming from theunified theory of cognition[25],
[53]. The basic ones can be symbolic, connectionist or hybrid.
The frameworks stemming from the unified theory of cognition
can be either simple, e.g. Observe-Orient-Decide-Act (OODA)
and Critique-Explore-Compare-Adapt (CECA), or complex,
e.g. SOAR, Storm and ACT-R [25].

The implementation of a specific cognitive framework re-
flects on the associated reasoning within. For instance, the
OODA framework relies on a feedback loop to model adapta-
tions to changing environmental conditions. The reasoning, i.e.
the decision-making, involves identification of the available
hardware configuration changes, identification of the best
option to meet the new situation and implementation of the
reconfiguration changes on the hardware in a constant feed-
back loop. This framework was originally developed by the US

Department of Defense in order to describe the methodology
that fighter pilots utilize during aerial combat and is applicable
to reactive situations. The CECA framework expands the
OODA framework to adequately describe a proactive decision-
making process. The reasoning here is based on social cogni-
tion, i.e. multiple entities working on complex problems. This
framework does not rely on reactive external observations,but
focuses on proactive goal-oriented situations. Both OODA and
CECA frameworks are applicable in cognitive radio networks.

The SOAR framework is a complex and powerful software
suite designed to approximate rational behavior. Its complexity
limits its application in cognitive radio networks. The Storm
framework extends SOAR towards the development of Bio-
logically Inspired Cognitive Architectures (BICA) and maybe
suitable for applications in cognitive radio networks. Finally,
the ACT-R framework theorizes the way human cognition
functions. It allows users to represent tasks and measure the
time to perform a task and the accuracy of a task. This has
potential application to decision-making in cognitive radio
networks.

This section focuses on the reasoning and its possible types,
methods, and realizations. Specific practical implementations
within a complete cognitive framework will also be mentioned
whenever applicable.

B. Reasoning types

There is a lack of straightforward logical categorization
of the reasoning types in the cognitive networking world,
as a result of the technical implementation peculiarities of a
particular cognitive networking solution and the corresponding
limitations, as well as of the potential applications and the cor-
responding requirements. Therefore, Table I briefly elaborates
the most prominent reasoning types used within the field of
cognitive networking today.

TABLE I
CLASSIFICATION OF RELEVANT REASONING TYPES FOR COGNITIVE

NETWORKING

Reasoning type Explanation
Proactive Takes actions only when there is an indication of an

impending problem; used where time constraints are
more relaxed

Reactive Prepares actions based on expected necessities for im-
mediate actions and is more suitable for dynamic envi-
ronments

Inductive Forms hypotheses that seem likely based on detected
patterns (conducive for cognitive radios)

Deductive Forgoes hypotheses and only draws conclusions based
on logical connections

One-shot Selects a final action based on immediately available
information

Sequential Chooses intermediate actions and observes the response
of the system following each action

Centralized Higher degree of relationship between the inputs (ac-
tions) and the outputs (observations)

Distributed Lower degree of relationship between the inputs (ac-
tions) and the outputs (observations)

C. Reasoning methods

The process of reasoning necessitates enablers (i.e. meth-
ods) of the inference goals. The most relevant ones within the
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cognitive networking context are [54]:

• Distributed constraint reasoning - further classified as
Distributed Constraint Satisfaction Problem (DisCSP) or
Distributed Constraint Optimization Problem (DCOP).
The former attempts to find any of a set of solutions that
meets a set of constraints, whereas the latter attempts to
find an optimal solution to a set of cost functions.

• Bayesian networks- a method of reasoning under uncer-
tainty that can be a result of limited observations, noisy
observations, unobservable states, or uncertain relation-
ships between inputs, states, and outputs within a system.

• Metaheuristics - an optimization method that teams
simpler search mechanisms with a higher-level strategy
that guides the search. This method commonly employs
randomized algorithms as part of the search process
and, as a result, may arrive at a different solution each
time it runs. Metaheuristics are a powerful method for
tackling Non-deterministic Polynomial-time hard (NP-
hard) problems.

• Heuristics - a method that exploits problem-specific at-
tributes and may lead to increased performance of certain
heuristic techniques. This method is not generic as the
previous three.

A special form of a reasoning method is represented by
multi-objective reasoning, which is used when there are mul-
tiple, potentially competing goals in the inference process.
Therefore, multi-objective reasoning is essentially a multi-
objective optimization problem and, as such, follows the char-
acteristics of multi-objective optimizations. Recently,there are
attempts to combine this approach with the DCOP.

D. Some specific reasoning realizations

Combining a specific reasoning type with a specific reason-
ing method (along with the inevitable and intertwined learning
mechanisms) instantiates a specific reasoning realizationthat
can be effectively deployed in a cognitive networking context.
Some of the most relevant reasoning realizations are elaborated
below.

Case-Based Reasoning (CBR). CBR [55] is a combination
of reasoning and learning. The knowledge base is termed as the
case base, where cases are representations of past experiences
and their outcomes. The case base possesses a structured
content in order to be easily shared among different entities
within the cognition process and the cognitive network itself
(termed agents). The sharing allows usage of past experiences
and makes the network more robust and resilient. Usually,
CBR involves 4-stage cycle:retrieve, reuse, reviseandretain.
CBR was used in a practical realization of the cognitive
radio architecture for IEEE 802.22 applications [56]. The
CBR engine is the focal point allowing decision-making in
situations when secondary users must vacate a spectrum for a
primary incumbent user.

Subsumption reasoning. Subsumption reasoning [57] es-
sentially represents a decomposition of the target goal into
smaller sub-goals and ideally with regard to their complexity.
The decomposition leads to a set of layered modules operating
in parallel that build upon each other, i.e. a hierarchical

approach. Higher-level behaviors are assumed to function at a
longer time scale and take advantage of complex optimization
and learning functions such as partial plan generation and time
series learning. Lower-level behaviors provide a tight coupling
between the sensory input data and the actuation and often
employ reactive learning algorithms with little to no state, such
as self-organizing maps, decision trees, or hard codes input to
output mappings. As a result, each layer realizes a sub-goal
of the more complex overall goal.

Fuzzy logic reasoning. Fuzzy logic reasoning [58] relies
on Fuzzy Logic (FL), which is a multivalued logic that allows
intermediate values to be defined between conventional eval-
uations like true/false, yes/no, high/low, etc. In an FL system,
the knowledge of a restricted domain is captured in the form
of linguistic rules, i.e. the relationships between two goals are
defined usingfuzzy inclusionand non-inclusionbetween the
supporting and hindering sets of the corresponding goals. FL
is helpful in very complex processes and is already applied
in various telecommunications domains (e.g. QoS routing,
caching, RRM, etc.). Lately, it has become popular for efficient
reasoning (i.e. decision-making) in cognitive networks.

One of the most promising approaches to providing FL-
assisted reasoning in cognitive radio networks is the usageof
Fuzzy Cognitive Maps (FCMs) [59]. FCMs represent a means
for modeling systems through the causal relationships that
characterize them. Graphically, they are rendered as directed
graphs in which a node represents a generic concept (e.g.
an event or a process) and edges between any two nodes
indicate that there is a causal relation between them. Their
advantage lies in the power to handle feedback loops (unlike
Bayesian networks), the straightforward inference method
(simple multiplication and thresholding), and the abilityto
merge into a combined FCM that can smoothen discrepant
biases stemming from the merging FCMs. However, there may
be some disadvantages in practical cognitive network applica-
tions, since the inference of causality between events based
only on observational data (without any a priori knowledge)
is not immediate. Additionally, the abductive reasoning, i.e.
the process of stating which causes are responsible for a given
effect, is an NP-hard problem.

FCMs can be very useful in cognitive networks, facilitating
cross-layering and using this information for reasoning within
the cognition cycle. Reference [60] introduces a mathemat-
ical methodology able to represent the complex interactions
among various protocol stack layers based on FCMs. The
methodology is then applied to a sample test case of a VoIP
WiFi system. The authors investigated the number of system-
supported VoIP calls using given specific quality constraints on
different protocol stack layers. The FCM framework was used
to represent the correlation among the operating parameters on
different layers and increase the overall system performance.
Reference [61] extends the work in [60] by analyzing the
scalability issues within the FCM framework when there exists
a high number of cross-layer interactions. The authors discuss
and propose a method for distinction among the cross-layer
interactions that carry valuable information for the cognitive
process. This should ensure that the reasoning in cognitivenet-
works could converge to a solution before the environmental
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conditions change, thus minimizing the reasoning time.
Relational reasoning. Relational reasoning [62] relies on

the relational structureof propositional knowledge and the
semantic features of objects and relational roles. It is enabled
by the notion ofsimilarity, which is a fundamental construct
in cognitive science and inherently possesses featural andre-
lational aspects. These aspects may allow for the development
of relational analogies, which is common in human reasoning.
However, [63] argues that these relational analogies may be
modeled using sound scientific models capable of increasing
the scientific literacy for the cognitive reasoning process.

A special reasoning realization that has attracted increased
attention within the cognitive networking world ispolicy
based reasoning[64]. It relies on the concept of dynamically
derivable and interchangeable policies that surpass the tradi-
tional hardcoded firmware in current devices, offering higher
flexibility and efficiency for the cognition process. The policies
are expressed using a specific policy language consisting ofa
set of clearly definedontologies. An ontology language defines
the meaning of terms in vocabularies and their relationships
[65]. Policy based reasoning is starting to be adopted by
academia, industry and standardization [66] and regulatory
bodies and may become a cornerstone of future efficient
cognitive networking. Therefore, the following sub-sections
will focus on a specific, already developed and operating,
architectural realization of the policy based reasoning concept,
along with its potential applications.

E. Case study: policy based reasoning

Fig. 4 depicts a fully functional architectural instantiation
of the policy based reasoning concept [67]. The architecture
embraces policies, expressed in CoRaL [64], coming from
various stakeholders (e.g. operators, regulators, and users),
offering options for each of them to express their specific
goals. Moreover, the architecture supports dynamic resource
management through dynamic policy changes that reflect the
different behavior of the terminals. The full set of policies is
efficiently reasoned and the reasoning output is presented to
the resource management system (represented by the Cognitive
Resource Manager - CRM) as an available solution set.

1) Architectural components and interfaces:The proposed
policy system architecture comprises three main elements:a
policy server, a Policy Engine (PE)and aPolicy Handling
Toolbox (PHT). The first one is located on the network
side, while the other two are terminal-based policy elements
(Fig. 4).

Policy Server. The policy server is the central policy reposi-
tory in the network, storing policies coming from the operator
and regulator sides. It comprises:

• Policy Server Database (PSD)- for keeping track of all
active users and active policies in the network and the
user/policies associations.

• Policy Server Database Handler (PSDH)- for man-
aging the database (storing policies and registering users
into the database), disseminating the policies to the users,
and informing them about policy changes.

• Policy Manager (PM) - for extracting the policies
from the database, making the appropriate changes

Fig. 4. Policy system architecture.

(add/change/delete policies) and reflecting the changes
back in the PSD.

Policy Engine (PE). The PE is thepolicy decision pointin
the proposed policy architecture. It is located in the terminal
and is responsible of reasoning on the set of active policies
and presenting the reasoned result to the CRM. In order to be
capable of performing the previously mentioned assignments,
the policy engine consists of three components:

• Policy Engine Database (PED)- for local storage of the
operator and regulator policies dedicated to the host user,
as well as the locally derived user policies.

• Policy Engine Manager (PEM) - for handling the
communication of the PE with the other policy network
entities.

• Policy Reasoner (PR)- for performing the reasoning
process on the set of policies in PED after every received
policy query, thus providing the solution space to the
CRM. The PR used in the proposed policy framework
is the XG Prolog PR [68] with modified and extended
functionalities. The crucial improvement to the XG PR
is the support of ”why not permitted?” response from the
reasoning process. This is important because it highly
improves the conformance checking process and, as a
result, it minimizes the time required to converge to a
permitted solution.

Policy Handling Toolbox (PHT). The PHT is an integral
part of the CRM which is thepolicy enforcing point in
the architecture. The CRM is responsible for optimization,
learning and decision making. The PHT creates and sends
policy language-specific requests to the PE. In the opposite
direction, the policy replies are received and provided in CRM-
understandable fashion.

Interfaces. As illustrated on Fig. 4, the policy architecture
yields two key interfaces, thepolicy interface (supporting
the local communication between the PE and the CRM) and
the control channel interface (handling the communications
between the policy server and the PEs of the nodes).

The policy architecture also includes the specification of a
custompolicy protocol[67], which defines the communication
between the policy components via the defined policy and
control channel interfaces.
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Fig. 5. User registration and policy checking process.

2) Policy architecture functionalities:The elaborated policy
architecture incorporates many functionalities [67]. This sub-
section briefly describes some of them that are crucial for the
subsequent understanding and elaboration of the policy-based
reasoning applications.

User and/or terminal classification. The organization of the
PSD provides a feature for policy classification and dissemina-
tion based on the users’ class and device type. Each terminal
registers to the policy server at start up, announcing its user
class and device type. As a response, the relevant policies are
received from the policy server (Fig. 5).

Efficient policy checking mechanism. The policy architec-
ture has an efficient and flexible policy conformance checking
mechanism. When the policy request is not permitted, a
list of alternative solutions is formed utilizing the ”why not
permitted?” response (Fig. 5).

Dynamic policy management. The proposed architecture
offers a framework for dynamic network resource management
utilizing policies. When there is a policy change in the PSD
(either manually input or emergency-triggered), the changes
are immediately distributed to the users (terminals) of interest,
so the changes can be reflected in their behavior instantly
(Fig. 6).

For more extensive details on the elaborated policy archi-
tecture and its functionalities, the reader is referred to [67].

F. Applications of policy-based reasoning

The potential applications of the policy-based reasoning
concept and the previously elaborated policy architecture
are firmly stemmed in the cognitive networking context.
They allow crucial cognitive networking operations such as
spectrum opportunity detection, spectrum mobility, spectrum
management, etc. This sub-section discusses some of the
possible applications, along with results obtained on a testbed
implementation of the policy-based architecture.

1) Spectrum handover:The ability to perform spectrum
handover (i.e. switching between different channels or spec-
trum bands) is an essential cognitive networking concept. The
policy-based reasoning can significantly facilitate fast and ac-
curate spectrum handover, fostering the cognitive networking
viability and wide range deployment in various scenarios.
Fig. 7 depicts testbed results on the throughput of an RTP over

Fig. 6. Reporting of policy changes.

UDP based streaming application while performing policy
controlled channel switching in an IEEE 802.11 ISM environ-
ment (WiFi). The testbed consists of a central PS performing
channel and policy management for two USRP2 [69] enabled
laptops aiming to establish communication using the following
storyboard:

1) The PS sends both USRP2 nodes predefined policies
specifying the allowed WiFi channels.

2) The source USRP2 forms a spectrum map (top-down
power ranking of available channels) and chooses the
best solution for the RTP over UDP streaming (in this
case WiFi channel 3).

3) A policy that forbids WiFi channel 3 is manually input
in the PSD.

4) The policy change is immediately sent to the USRP2
nodes, enforcing their reconfiguration in order to change
the channel and perform appropriate spectrum handover.

5) The PR calculates a new solution and passes it to
the USRP2s. The source USRP2 repeats step 2 and
combines both pieces of information to select the best
channel solution (in this case, WiFi channel 1).

Fig. 7. RTP over UDP streaming throughput.
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The application handover delayis around 1.5s including
all actions performed during the channel switching. However,
thesystem reaction time to policy changes(exchange of policy
related messages and performing the reasoning) is only around
200ms. The rest of the handover time is due to the actual
USRP2 characteristics.

2) Spectrum opportunity detection:The policy-based rea-
soning architecture can be used to efficiently detect spectrum
opportunities and translate them into policies, which will
easily govern the cognitive network behaviour afterwards
[70]. Figs. 8-10 depict 2.4GHz ISM band channel occupancy
measurements in an indoor scenario in a time period between
9:30 and 21:30 for typical working days. The results show that
channel 10 (2457 MHz) experiences the highest utilization
during the day and is not suitable for potential secondary
usage. The frequency ranges 2400-2408 MHz and 2470-
2480MHz are practically underutilized and are subject to
potential secondary usage. The frequencies in the range 2408-
2430 MHz can also be used for secondary access, because
of relatively low utilization. However, one should be cautious
not to harm potential primary users in this range, and therefore
a CSMA/CA medium access should be used with a backoff
slot higher than the standard IEEE 802.11 MAC. Finally, the
frequency range 2426-2448 MHz is available only after 17:00,
with lower transmission power levels in order not to violate
the SINR requirements of potential primary users.

Fig. 8. Duty cycle (%) measurements on the 2.4GHz ISM band (x-axis) in
time period between 9:30 and 21:30 hours (y-axis).

Fig. 9. Received signal power readings (intensity in dB) on the 2.4GHz ISM
(x-axis) band before 17:00 (y-axis).

The previous elaboration can be translated into CoRaL

Fig. 10. Received signal power readings (intensity in dB) onthe 2.4GHz
ISM band (x-axis) after 17:00 (y-axis).

policies specifying the secondary spectrum access conditions:

policy specOpp1 is
use requestparams;
defconst loc1 : Location = loc(42.004, 21.408, 0.0);
allow if
distance(onLocation(reqtransmission),loc1)=<20 //20m
from the loc1 point
{centreFrequency(reqtransmission) in{2401..2407} or //in
MHz
centreFrequency(reqtransmission) in{2471..2479}} and //in
MHz
meanEIRP(reqtransmission)=<30 and
bandwidth(reqtransmission)=<2.5; //in MHz
end

policy specOpp2 is
use requestparams;
defconst loc1 : Location = loc(42.004, 21.408, 0.0);
allow if
distance(onLocation(reqtransmission),loc1)=<20 //20m
from the loc1 point
centreFrequency(reqtransmission) in{2409..2429} and //in
MHz
meanEIRP(reqtransmission)=<30 and
bandwidth(reqtransmission)=<2.5 and
//in MHz macType(reqdatalink) == csmaca and
backoff(reqdatalink)>=10 //in ms
end

policy specOpp3 is
use requestparams;
defconst loc1 : Location = loc(42.004, 21.408, 0.0);
defconstallowedPeriod : TimePeriod;
startTime(allowedPeriod,”T17:00:00”);
endTime(allowedPeriod,”T08:00:00”);
allow if
distance(onLocation(reqtransmission),loc1)=<10 and //10m
from the loc1 point
inTimePeriod(onTime(reqtransmission), allowedPeriod) and
centreFrequency(reqtransmission) in{2427..2447} and //in
MHz
meanEIRP(reqtransmission)=<30 and
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bandwidth(reqtransmission)=<2.5 and //in MHz
macType(reqdatalink) == csmaca and
backoff(reqdatalink)>= 10 //in ms
end

The first policy (i.e.specOpp1) specifies that transmissions
are allowed within 20m of the defined location ”loc1”, on
central frequencies in the ranges 2401-2407MHz and 2471-
2479MHz using a mean Equivalent Isotropically Radiated
Power (EIRP) of 30dBm and a bandwidth of 2.5MHz. The
second policy (i.e.specOpp2) specifies that transmissions be
allowed within 20m of the defined location ”loc1”, on central
frequencies in the range 2409-2429MHz using a mean EIRP of
30dBm and a bandwidth of 2.5MHz. Additionally, this policy
specifies that the nodes use CSMA/CA as a MAC procedure
with backoff time slot duration of 10ms. Finally, the third
policy (i.e.specOpp3) allows transmissions within 10m of the
defined location ”loc1” in the time period 17:00-08:00, on
central frequencies in the range 2427-2447MHz using a mean
EIRP of 30dBm, a bandwidth of 2.5MHz and a CSMA/CA
MAC procedure with a backoff time slot duration of 10ms.

The policy system can afterwards use these CoRaL spectrum
policies in order to regulate the secondary access to the 2.4
GHz ISM band for multiple secondary users. The following
sub-section elaborates this aspect in more detail.

3) Spectrum sharing:The derived policies can be effi-
ciently used to share the available spectrum among multiple
secondary users. The potential of the policy-assisted spectrum
sharing application is investigated with a laboratory testbed
comprising several unaware secondary USRP2 based users
that try to access and use the 2.4 GHz ISM band. The usage
of this band is regulated according to the rules of the active
secondary system policies specified in the PS residing on a
desktop computer. The desktop computer is also enabled with
a sensing capability so that it can dynamically derive and
changesecondary spectrum policies. Furthermore, the desktop
computer is enabled with reasoning capabilities and performs
the policy reasoning, resulting in the secondary USRP2 based
users getting already reasoned information in the form of
an available solutions set. Whenever a policy change occurs
(because of a change in the environment, manual change, etc.),
the new solution set is calculated (reasoned) and the secondary
users are informed about the changes and the new solutions.

The secondary users’ policies are dynamically planned
considering spectrum occupancy history (similar graphs asin
Figs. 8-10). The policy server keeps two tables, i.e. ashort
term occupancy decisions table, saving the channel vacancy
decisions in the last several minutes, and amedium term
history reflecting the spectrum availabilities in the last couple
of hours. Then, a channel is considered as an opportunity if
the duty cycle of the channel activity is below a predefined
threshold for 10% of the time in the short term history.
However, the entire frequency band in the short term history
is divided into 1 and 2 MHz non-overlapping channels, in
proportion 30% (at most) and 70% (at least if possible) of the
available spectrum. The 1 MHz channels are the ones that,
although unoccupied in the short term table, were detected as
used in the medium term history. Therefore, from a spectrum

opportunity detection point of view, these channels are treated
as riskier than the 2 MHz channels. Furthermore, when the
targeted 70% for the spectrum assigned to 2 MHz channels
is not fulfilled, i.e. some of the channels are repossessed by
the primary system, secondary users can occupy the bands
already assigned to non-priority 1 MHz channels. The testbed
comprises two priority classes of USRP2 based secondary
users, i.e. a higher priority class (aiming to establish real-
time video streaming communication) and a lower priority
class (targeting file transfer communication). The first class is
allowed to use 2 MHz and 1 MHz channels, while the second
class is only allowed to use 1 MHz channels.

Fig. 11 depicts the assigned bandwidth through time for the
two types of channels, the priority and non-priority channels,
as well as the detected available bandwidth through time [71].
It can be concluded that the priority channel assignment is
more static through time and, therefore, the higher priority
class would experience fewer forced terminations by the
primary system. This is due to the fact that the priority users
have the ”exclusive right” to the medium term history of the
duty cycle in the bands of interest. Another reason is that
whenever the targeted number of priority channels falls below
the current assigned (due to environment changes, 70% of the
current available bandwidth), the exceeding number of priority
channels are not released, in order not to force termination
on the priority users. In contrast, the assigned non-priority
bandwidth through time follows the available bandwidth curve,
i.e. is more dynamic through time and adapts to more dynamic
environment changes.

The results from the policy-assisted secondary sharing show
that the proposed scheme is flexible and efficient, since it
enables dynamic secondary system channel allocation and
classification using policies. The channel classification into
priority and non-priority secondary channels ensures thatpri-
ority users (or applications) will experience higher QoS than
the non-priority ones.

Fig. 11. Available bandwidth vs. assigned bandwidth for thepriority and
non-priority channels through time.

G. Pros and cons of different reasoning mechanisms

Different reasoning mechanisms exhibit different behavior
in ’intelligent’ wireless networks. There is no single reasoning
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approach that can suit and accommodate the plethora of possi-
ble applications of cognition in wireless networks. Therefore,
it is often extremely important to have as much as possible
a priori knowledge of the environment (i.e. observations) so
that proper actions (i.e. outputs) are inferred.

Proactive reasoning is applicable to wireless environments
that have relaxed time constraints. This implies that the
channel characteristics are not rapidly changing, allowing for
increased reasoning time and more reliable reasoning results.
The proactive reasoning schemes are often combined with
sequential and centralized reasoning mechanisms in order
to use the available time for several intermediate reasoning
results and relying on more closely related inputs/outputs
of the system. This ensures that the system’s reaction upon
every intermediate reasoning result is carefully scrutinized
and used in the process of converging towards an optimal
reasoning solution. Examples of such reasoning approaches
include cognitive wireless backhauling or secondary spectrum
access in TV white spaces. These scenarios assume a more
static environmental context in the spatial locations of interest
and application, thus allowing for proactive, sequential and
centralized reasoning.

In contrast to that, dynamic wireless environments exhibit
fast changes, leading to time restrictions when it comes to
cognitive reasoning. In this case, reactive reasoning is more
suitable, as it can shorten the reasoning time and perform
the reasoning within the specified time constraints. Reactive
reasoning does not rely on past knowledge, but forms im-
minent actions based on immediately available information
or on the expected need for immediate actions. This form
of reasoning is often combined with one-shot and distributed
reasoning schemes and is expected to become a major cogni-
tive reasoning mechanism for future dynamic cognitive radio
networks. Examples of these types of reasoning can be found
in cognitive ad-hoc networks and cognitive cellular networks.
These scenarios assume very dynamic wireless environments
imposing serious time limitations on the reasoning part of the
cognitive cycle.

Table II summarizes the main advantages and disadvantages
of the specific reasoning realizations in cognitive radio net-
works today.

V. CONCLUSIONS

The focal point of cognitive radio networks that clearly
distinguishes them from other wireless networking solutions is
their ability to learn, build knowledge bases, and reason upon
stored knowledge. They tightly integrate these concepts into
a unified networking framework able to ’learn’ its environ-
mental surrounding and taken actions and efficiently ’reason’
in order to infer knowledge and perform optimal decision-
making. Additionally, the cognitive framework also comprises
the characteristics of autonomous ’observation’ of the radio
environment and optimal ’adaptation’ to current conditions
based on past perceived or maybe even future predicted
actions. Therefore, cognitive radio networks are envisioned as
a multidisciplinary engineering challenge integrating concepts
from artificial intelligence and wireless networking sciences.

TABLE II
SUMMARY OF REASONING REALIZATIONS IN COGNITIVE RADIO

NETWORKS

Reasoning realization Advantages Disadvanatages
CBR Robust and resilient; Inductive;

Allows distributed
sharing of knowledge

Not suitable for
highly dynamic
environments

FL reasoning Application in com-
plex systems;

Need for a priori
knowledge;

Fosters easier cross-
layer optimizations

Abductive

Subsumption reason-
ing

Decomposition of the
decision-making pro-
cess;

Requires more imple-
mentation resources

Ability to handle
complex optimization
tasks

Relational reasoning Close to human cog-
nition;

Requires sound scien-
tific models for analy-
sis;

Easy expression of
analogies

Analogies can be mis-
leading

Policy-based Easy expression of
various environmental
limitations;

Not suitable for dy-
namic environments;

Easy management
of environmental
context expressed in
policies;

Reasoning time can
be long if many poli-
cies exist in the sys-
tem

Very scalable;
Simple reasoning en-
gine (comparisons of
policies in a database)

This paper focuses on the learning and reasoning chal-
lenges within cognitive radio networks. It discusses prominent
learning mechanisms able to efficiently model the behavior
of cognitive radio nodes. Furthermore, the paper gives a
broad overview of the notion of reasoning, discusses the most
relevant reasoning mechanisms and frameworks today, and in
particular focuses on policy based reasoning as an efficientand
implementable mechanism for deploying cognitive behaviorin
wireless networks.

A. Future Directions

The introduction of learning and reasoning into cognitive
radio networks still faces some challenges. Some of the
theoretical algorithms have high implementation complexity,
limiting their practical implementation. This also gives rise to
the problem of real-time algorithm convergence, of upmost
importance for practical deployments.

Game theory has proven to be a powerful tool to model
adaptations by cognitive radios, as well as emerging market
mechanisms to support dynamic sharing of spectrum. Some of
the challenges include translating the theoretical results about
stability of adaptations and convergence to an equilibrium
into practical and scalable adaptation mechanisms and an en-
forceable spectrum sharing etiquette. The field of mechanism
design, so successful in the design of auction rules, may
hold the key to broader protocol design for cognitive radios
coexisting and competing for scarce resources, even in the
absence of monetary incentives. Our research community has
also only scratched the surface in the analysis of the impact
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of partial or even inaccurate information on the actions taken
by these radios. Relatively recent developments in games of
imperfect public and private information have the potential
to yield new insight into what we have termed the price of
ignorance [72].

In terms of machine learning, one interesting aspect that
requires further investigation in a cognitive network scenario
is the concept of delayed reward. Most of the cognitive
radio literature focuses on the maximization of the immediate
reward, whereas the RL paradigm aims at optimizing the long
term performance by taking into account the consequences of
the agent’s actions into the future. An important factor which
needs further attention is the convergence time of many of
the RL learning algorithms discussed in the paper. This aspect
will become more and more significant with the increase of
the degrees of freedom of a CR, i.e. of the cardinality of
the action space of a CR. For example, if we consider the
combined channel and power selection problem, the dimension
of the action space for a realistic scenario does not allow
the use of the traditional look-up table approach to store the
value function. It is not unrealistic to envisage a scenario
where a cognitive network will be required to dynamically
perform carrier aggregation and, therefore, to decide how
many and which channels it should access, thus further (in
a combinatorial manner) increasing the number of decision
variables.

There are several cautionary perspectives when discussing
practical applications of cognitive reasoning in wirelessnet-
works. As already mentioned, the implementation complex-
ity may seriously limit the entire solution, thus an optimal
tradeoff between resources and expected outcomes is a must.
Furthermore, the process of cognitive reasoning is inevitably
time consuming, giving rise to the aspect ofreasoning time.
It is common to think that longer reasoning times yield better
results, but this may become problematic in dynamic envi-
ronments (especially in wireless networks). Namely, longer
reasoning time may result in environmental changes that would
need to be taken into account anew, thus leading to an ever
increasing delay and, sometimes, even non-convergence of the
reasoning process. In this sense, it is extremely importantto
address the number of reasoning inputs that will be used for
the process. An efficient reasoning engine assumes careful
selection of important and unimportant knowledge within the
cognitive cycle, making the reasoning closely intertwinedwith
the learning. Finally, the choice of the reasoning framework
and approach requires accurate estimation of the environmen-
tal context and is strongly affected by and dependent on the
precision of the other cognitive cycle elements.

As the field of cognitive radio networks attracts increased
academic and industry interest, new standards must foster
platform independence and cover the plethora of currently
envisioned scenarios and potential applications of the cognitive
radio paradigm. The IEEE DySPAN Standards Committee
[73] is intensively working on these challenges, attempting
to provide a common terminology, provide coexistence and
conformance mechanisms, and propose efficient policing of
cognitive radio networks along with appropriate policy lan-
guages and necessary ontologies. All these aspects provide

a broad foundation for research in the area of cognitive
radio networks, especially in the distinct sub-areas of learning
and reasoning,. The end-goal is to provide autonomous and
cognitive behavior of wireless networks in the future wireless
interconnected world.

ACKNOWLEDGMENT

This work was partially supported by COST Action IC0902,
on Cognitive Radio and Networking for Cooperative Coexis-
tence of Heterogeneous Wireless Networks and the EC FP7
ICT-257626 NoE ACROPOLIS. It is also based upon works
supported by the Science Foundation Ireland under Grant
No. 10/CE/I1853. Authors V. Atanasovski and L. Gavrilovska
express their gratitude to Mr. D. Denkovski for his fruitful
collaboration in the development of and the experimentation
with the policy testbed.

REFERENCES

[1] J. Mitola, “Cognitive Radio An Integrated Agent Architecture for
Software Defined Radio,” Ph.D. dissertation, KTH Royal Institute of
Technology, Stockholm, Sweden, 2000.

[2] Y. Wu, B. Wang, K. Liu, and T. Clancy, “Repeated open spectrum shar-
ing game with cheat-proof strategies,”IEEE Transactions on Wireless
Communications, vol. 8, no. 4, pp. 1922–1933, 2009.

[3] I. Malanchini, M. Cesana, and N. Gatti, “On spectrum selection games
in cognitive radio networks,” inIEEE Global Telecommunications Con-
ference (GLOBECOM), 2009, pp. 1–7.

[4] O. Raoof, Z. Al-Banna, and H. Al-Raweshidy, “Competitive spectrum
sharing in wireless networks: a dynamic non-cooperative game ap-
proach,”Wireless and Mobile Networking, pp. 197–207, 2009.

[5] J. Huang and V. Krishnamurthy, “Transmission control incognitive radio
as a markovian dynamic game: Structural result on randomized threshold
policies,” IEEE Transactions on Communications, vol. 58, no. 1, pp.
301–310, 2010.

[6] M. van der Schaar and F. Fu, “Spectrum access games and strategic
learning in cognitive radio networks for delay-critical applications,”
Proceedings of the IEEE, vol. 97, no. 4, pp. 720–740, 2009.

[7] F. Fu and M. van der Schaar, “Learning to compete for resources in
wireless stochastic games,”IEEE Transactions on Vehicular Technology,
vol. 58, no. 4, pp. 1904–1919, 2009.

[8] B. Wang, K. Liu, and T. Clancy, “Evolutionary game framework for
behavior dynamics in cooperative spectrum sensing,” inIEEE Global
Telecommunications Conference (GLOBECOM), 2008, pp. 1–5.

[9] D. Niyato and E. Hossain, “Dynamics of network selectionin het-
erogeneous wireless networks: an evolutionary game approach,” IEEE
Transactions on Vehicular Technology, vol. 58, no. 4, pp. 2008–2017,
2009.

[10] T. Jiang, D. Grace, and P. Mitchell, “Efficient exploration in reinforce-
ment learning-based cognitive radio spectrum sharing,”Communica-
tions, IET, vol. 5, no. 10, pp. 1309–1317, 2011.

[11] C. Wu, K. Chowdhury, M. Di Felice, and W. Meleis, “Spectrum man-
agement of cognitive radio using multi-agent reinforcement learning,”
in 9th International Conference on Autonomous Agents and Multiagent
Systems: Industry track, 2010, pp. 1705–1712.

[12] B. Lo and I. Akyildiz, “Reinforcement learning-based cooperative sens-
ing in cognitive radio ad hoc networks,” inIEEE 21st International
Symposium on Personal Indoor and Mobile Radio Communications
(PIMRC), 2010, pp. 2244–2249.

[13] I. Macaluso, L. DaSilva, and L. Doyle, “Learning Nash Equilibria in
Distributed Channel Selection for Frequency-agile Radios,” in Workshop
on Artificial Intelligence for Telecommunications and Sensor Networks,
2012.

[14] A. Rubinstein, “Instinctive and cognitive reasoning:A study of response
times,” EconPapers, no. 2006.36, 2006.

[15] O. M. Anshakov and T. Gergely,Cognitive Reasoning. Springer, 2010.
[16] L. Bass, J. Ivers, M. Klein, and P. Merson, “Reasoning frameworks,”

Carnegie Mellon, Software Engineering Institute, Tech. Rep. CMU/SEI-
2005-TR-007, 2005.



16

[17] K. E. Nolan, P. Sutton, and L. Doyle, “An encapsulation for reasoning,
learning, knowledge representation and reconfiguration cognitive radio
elements,” in International Conference on Cognitive Radio Oriented
Wireless Networks and Communications (CROWNCOM), 2006.

[18] E. Adamapoulou, K. Demestichas, P. Demestichas, and M.Theologou,
“Enhancing cognitive radio systems with robust reasoning,” Interna-
tional Journal of Communications Systems, vol. 21, no. 3, 2008.

[19] N. Samaan and A. Karmouch, “Circumscriptive context reasoning for
automated network management operations,” inIEEE Global Telecom-
munications Conference (GLOBECOM), 2006.

[20] S. Musman, “Using parallel distributed reasoning for monitoring com-
puter networks,” inIEEE Military Communications Conference (MIL-
COM), 2010.

[21] Y.-G. Cheong, Y.-J. Kim, S. Y. Yoo, H. Lee, S. Lee, S. C. Chae, and H.-
J. Choi, “An ontology-based reasoning approach towards energy-aware
smart homes,” inIEEE Consumer Communications and Networking
Conference (CCNC), 2011.

[22] B. Bahrak, A. Deshpande, M. Whitaker, and J.-M. Park, “Bresap: A
policy reasoner for processing spectrum access policies represented by
binary decision diagrams,” inIEEE Intl. Symp. on New Frontiers in
Dynamic Spectrum Access Networks (DySPAN), 2010.

[23] Q. Mahmoud,Cognitive Networks: Towards Self-Aware Networks. Wi-
ley, 2007.

[24] X. Y. Wang, A. Wong, and P.-H. Ho, “Extended knowledge-based
reasoning approach to spectrum sensing for cognitive radio,” IEEE
Transactions on Mobile Computing, vol. 9, no. 4, 2010.

[25] A. Amanna and J. H. Reed, “Survey of cognitive radio architectures,”
in IEEE SoutheastCon, 2010.

[26] L. Rose, S. Lasaulce, S. Perlaza, and M. Debbah, “Learning equilibria
with partial information in decentralized wireless networks,” IEEE
Communications Magazine, vol. 49, no. 8, pp. 136–142, 2011.

[27] D. Niyato and E. Hossain, “Competitive pricing for spectrum sharing in
cognitive radio networks: Dynamic game, inefficiency of nash equilib-
rium, and collusion,”IEEE Journal on Selected Areas in Communica-
tions, vol. 26, no. 1, pp. 192–202, 2008.

[28] A. MacKenzie and L. DaSilva, “Game theory for wireless engineers
(synthesis lectures on communications),” 2006.

[29] J. Neel, J. Reed, and R. Gilles, “Convergence of cognitive radio net-
works,” in IEEE Wireless Communications and Networking Conference
(WCNC), vol. 4, 2004, pp. 2250–2255.

[30] N. Nie and C. Comaniciu, “Adaptive channel allocation spectrum
etiquette for cognitive radio networks,” inIEEE Intl. Symp. on New
Frontiers in Dynamic Spectrum Access Networks (DySPAN), 2005, pp.
269–278.

[31] R. Thomas, R. Komali, A. MacKenzie, and L. DaSilva, “Joint power
and channel minimization in topology control: A cognitive network
approach,” inIEEE Intl. Conf. on Communications (ICC), 2007, pp.
6538–6543.

[32] D. Niyato and E. Hossain, “Competitive spectrum sharing in cognitive
radio networks: a dynamic game approach,”IEEE Transactions on
Wireless Communications, vol. 7, no. 7, pp. 2651–2660, 2008.

[33] R. Sutton and A. Barto,Reinforcement learning: An introduction. The
MIT press, 1998.

[34] C. Watkins and P. Dayan, “Q-learning,”Machine learning, vol. 8, no. 3,
pp. 279–292, 1992.

[35] M. Bowling and M. Veloso, “An Analysis of Stochastic Game Theory for
Multiagent Reinforcement Learning,” inTechnical report CMU-CS-00-
165, Computer Science Department, Carnegie Mellon University, 2000.

[36] A. Galindo-Serrano and L. Giupponi, “Distributed Q-learning for aggre-
gated interference control in cognitive radio networks,”IEEE Transac-
tions on Vehicular Technology, vol. 59, no. 4, pp. 1823–1834, 2010.

[37] K. Yau, P. Komisarczuk, and P. Teal, “A context-aware and intelligent
dynamic channel selection scheme for cognitive radio networks,” in
4th International Conference on Cognitive Radio Oriented Wireless
Networks and Communications (CROWNCOM), 2009.

[38] Y. Shoham, R. Powers, and T. Grenager, “Multi-agent reinforcement
learning: a critical survey,” inTech. Rep. Comput. Sci. Dept., Stanford
University, Stanford, CA, 2003.

[39] G. Tesauro, “Extending Q-learning to general adaptivemulti-agent
systems,” inAdvances in neural information processing systems 16,
2004.

[40] L. Busoniu, R. Babuska, and B. De Schutter, “A comprehensive survey
of multiagent reinforcement learning,”IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and Reviews, vol. 38, no. 2,
pp. 156–172, 2008.

[41] J. Hu and M. Wellman, “Nash Q-learning for general-sum stochastic
games,”The Journal of Machine Learning Research, vol. 4, pp. 1039–
1069, 2003.

[42] D. Fudenberg and D. Levine,The theory of learning in games. MIT
press, 1998.

[43] K. Yau, P. Komisarczuk, and P. Teal, “Performance Analysis of Rein-
forcement Learning for Achieving Context Awareness and Intelligence
in Mobile Cognitive Radio Networks,” inIEEE International Conference
on Advanced Information Networking and Applications (AINA), 2011.

[44] K. Narendra and M. Thathachar,Learning automata: an introduction.
Prentice-Hall, Inc., 1989.

[45] P. Sastry, V. Phansalkar, and M. Thathachar, “Decentralized learning
of Nash equilibria in multi-person stochastic games with incomplete
information,” IEEE Transactions on Systems, Man and Cybernetics,
vol. 24, no. 5, pp. 769–777, 1994.

[46] P. Nicopolitidis, G. Papadimitriou, A. Pomportsis, P.Sarigiannidis, and
M. Obaidat, “Adaptive wireless networks using learning automata,”
IEEE Wireless Communications, vol. 18, no. 2, pp. 75–81, 2011.

[47] H. Young, “Learning by trial and error,”Games and economic behavior,
vol. 65, no. 2, pp. 626–643, 2009.

[48] S. Lasaulce and H. Tembine,Game Theory and Learning for Wireless
Networks: Fundamentals and Applications. Academic Press, 2011.

[49] S. Hart and A. Mas-Colell, “A simple adaptive procedureleading to
correlated equilibrium,”Econometrica, vol. 68, no. 5, pp. 1127–1150,
2000.

[50] A. Anandkumar, N. Michael, A. Tang, and A. Swami, “Distributed
algorithms for learning and cognitive medium access with logarithmic
regret,” IEEE Journal on Selected Areas in Communications, vol. 29,
no. 4, pp. 731–745, 2011.

[51] L. Baird, “Residual Algorithms: Reinforcement Learning with Function
Approximation,” in12th International Conference on Machine Learning,
1995, pp. 30–37.

[52] I. Macaluso, T. Forde, L. DaSilva, and L. Doyle, “Impactof cognitive
radio: Recognition and informed exploitation of grey spectrum opportu-
nities,” IEEE Vehicular Technology Magazine, vol. 7, no. 2, pp. 85–90,
2012.

[53] A. Newell, Unified Theory of Cognition. Harvard University Press,
1994.

[54] D. H. Friend, “Cognitive networks: Foundations to applications,” Ph.D.
dissertation, PhD Thesis, VirginiaTech, 2009.

[55] A. Aamodt and E. Plaza, “Case-based reasoning: foundational issues,
methodological variations and system approaches,”AI Communications,
vol. 7, no. 1, 1994.

[56] A. He, J. Gaeddert, K. K. Bae, T. R. Newman, J. H. Reed, L. Morales,
and C.-H. Park, “Development of a case-based reasoning cognitive
engine for ieee 802.22 wran applications,”ACM SIGMOBILE Mobile
Computing and Communications Review, vol. 13, no. 2, 2009.

[57] R. A. Brooks, “Intelligence without representation,”Artificial Intelli-
gence, vol. 47, 1991.

[58] M. J. Kaur, M. Uddin, and H. K. Verma, “Analysis of decision making
operation in cognitive radio using fuzzy logic system,”International
Journal of Computer Applications, vol. 4, no. 10, 2010.

[59] B. Kosko, “Fuzzy cognitive maps,”Int. J. Man-Mach. Stud., vol. 24,
no. 1, pp. 65–75, 1986.

[60] C. Facchini and F. Granelli, “Towards a model for quantitative reasoning
in cognitive nodes,” inIEEE Global Telecommunications Conference
(GLOBECOM), 2009.

[61] C. Facchini, F. Granelli, and N. L. S. da Fonseca, “Identifying rele-
vant cross-layer interactions in cognitive processes,” inIEEE Global
Telecommunications Conference (GLOBECOM), 2010.

[62] E. Taylor and J. E. Hummel, “Finding similarity in a model of relational
reasoning,”Elsevier Cognitive Systems Research, 2009.

[63] D. F. Sibley, “A cognitive framework for reasoning withscientific
models,”Journal of Geoscience Education, vol. 57, no. 4, 2009.

[64] D. Elenius and et al., “Coral - policy language and reasoning techniques
for spectrum policies,” in8th IEEE International Workshop on Policies
for Distributed Systems and Networks, 2007.

[65] B. Chandrasekaran and et al., “What are ontologies, andwhy do we
need them?”IEEE Intelligent Systems, vol. 14, no. 1, 1999.

[66] “IEEE 1900.5 working group on policy language and policy
architectures for managing cognitive radio for dynamic
spectrum access applications,” Information available at:
http://grouper.ieee.org/groups/dyspan/5/index.htm.

[67] D. Denkovski, V. Pavlovska, V. Atanasovski, and L. Gavrilovska, “Novel
policy reasoning architecture for cognitive radio environments,” inIEEE
Global Telecommunications Conference (GLOBECOM), 2010.



17

[68] “XG Prolog Policy Engine,” Available at:
http://xg.csl.sri.com/prolog.php.

[69] “Universal Software Radio Peripheral 2 (USRP2),” Information available
at: http://www.ettus.com.

[70] D. Denkovski, V. Atanasovski, and L. Gavrilovska, “Policy enforced
spectrum sharing for unaware secondary systems,” in4th International
Conference on Cognitive Radio and Advanced Spectrum Management
(CogART), 2011.

[71] “EC FP7 QUASAR (248303) project. Deliverable D2.2: Methodology
for assessing secondary spectrum usage opportunities,” 2010.

[72] R. Komali, R. Thomas, L. DaSilva, and A. MacKenzie, “Theprice of
ignorance: distributed topology control in cognitive networks,” IEEE
Transactions on Wireless Communications, vol. 9, no. 4, pp. 1434–1445,
2010.

[73] “IEEE DySPAN Standards Committee (DySPAN-SC),” Information
available at: http://grouper.ieee.org/groups/dyspan.

Liljana Gavrilovska currently holds the position of
full professor and Head of the Institute of Telecom-
munications at the Faculty of Electrical Engineering
and Information Technologies, Ss Cyril and Method-
ius University in Skopje. She is also Head of the
Center for Wireless and Mobile Communications
(CWMC) working in the area of telecommunication
networks and wireless and mobile communications.
She has received her B.Sc, M.Sc and Ph.D. from
Ss Cyril and Methodius University in Skopje, Uni-
versity of Belgrade and Ss Cyril and Methodius

University in Skopje, respectively. Prof. Gavrilovska participated in numerous
EU funded projects such as ASAP, PACWOMAN, MAGNET, MAGNET
Beyond, ARAGORN, ProSense, FARAMIR, QUASAR and ACROPOLIS,
NATO funded projects such as RIWCoS and ORCA and several domestic
research and applicative projects. Her major research interest is concentrated
on cognitive radio networks, future mobile systems, wireless and personal area
networks, cross-layer optimizations, broadband wirelessaccess technologies,
ad hoc networking, traffic analysis and heterogeneous wireless networks.
Dr. Gavrilovska is author/co-author of more than 150 research journal and
conference publications and technical papers and several books. She is a senior
member of IEEE.

Vladimir Atanasovski currently holds the position
of assistant professor at the Institute of Telecommu-
nications at the Faculty of Electrical Engineering and
Information Technologies, Ss Cyril and Methodius
University in Skopje. He has received his B.Sc, M.Sc
and Ph.D. from Ss Cyril and Methodius Univer-
sity in Skopje, in 2004, 2006 and 2010, respec-
tively. Dr. Atanasovski participated in numerous EU
funded projects such as PACWOMAN, MAGNET,
ARAGORN, ProSense, FARAMIR, QUASAR and
ACROPOLIS, NATO funded projects such as RI-

WCoS and ORCA and several domestic research and applicativeprojects.
Dr. Atanasovski is an author/co-author of more than 90 research journal and
conference publications and technical papers. His major research interests
lie in the areas of cognitive radio networks, resource management for
heterogeneous wireless networks, traffic analysis and modeling, cross-layer
optimizations, ad-hoc networking and nanonetworks.

Irene Macaluso is a Research Fellow at CTVR -
The Telecommunications Research Centre based at
Trinity College, Dublin. Dr. Macaluso received her
Ph.D. in Robotics from the University of Palermo in
2007. Dr. Macaluso’s current research interests are in
the area of cognitive radio networks, with particular
focus on the application of machine learning to
wireless resource management and reconfigurable
wireless networks.

Luiz A. DaSilva holds the Stokes Professorship in
Telecommunications in the Department of Electronic
and Electrical Engineering at Trinity College Dublin.
He is also a Professor in the Bradley Department
of Electrical and Computer Engineering at Virginia
Tech, USA. His research focuses on distributed and
adaptive resource management in wireless networks,
and in particular cognitive radio networks, dynamic
spectrum access, and the application of game theory
to wireless networks. Prof. DaSilva is currently a
principal investigator on research projects funded by

the National Science Foundation in the United States, the Science Foundation
Ireland, and the European Commission under Framework Programme 7. He is
a co-principal investigator of CTVR, the Telecommunications Research Centre
in Ireland. He has co-authored two books on wireless communications and in
2006 was named a College of Engineering Faculty Fellow at Virginia Tech.


