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Abstract—Cognitive radio networks challenge the traditional
wireless networking paradigm by introducing concepts firmly
stemmed into the Artificial Intelligence (Al) field, i.e., learning
and reasoning. This fosters optimal resource usage and mage-
ment allowing a plethora of potential applications such as ec-
ondary spectrum access, cognitive wireless backbones, oitiye
machine-to-machine etc. The majority of overview works in he
field of cognitive radio networks deal with the notions of obsr-
vation and adaptations, which are not a distinguished cogtive
radio networking aspect. Therefore, this paper provides isight
into the mechanisms for obtaining and inferring knowledge hat
clearly set apart the cognitive radio networks from other wreless
solutions.

Index Terms—Knowledge, Learning, Reasoning, Game theory,
Reinforcement learning, Policy based reasoning.

I. INTRODUCTION

function). Through dynamic game models, we can study how
the radio’s actions are affected by past experiences: inya wa
how the radio 'learns’ from its past actions and those of igthe

Dynamic games have been applied to problems that model
the interaction among secondary users competing for oppor-
tunistic access to the spectrum, as well as those that model
interactions between primary and secondary users. Such mod
els range from repeated games [2], [3], [4] to stochasticegam
[5], [6], [7] and evolutionary games [8], [9]. We briefly dedin
each of those classes of games and discuss some example
applications.

We then look at reinforcement learning, both by a single
agent and by multiple agents, and how advances in that field
can be applied to cognitive radio and dynamic spectrum acces
problems. Reinforcement learning has been applied to atyari
of problems in the context of the cognitive radio literature

The core id_ea of co_gnitive _radios is based on the CognitiYﬁcluding dynamic channel selection [10], transmission@o
cycle, according to which radios must be able to observe thﬁ_blaptation for spectrum management [11], cooperativerggns

operating environment, then decide how to best adapt to

ift ad hoc networks [12], and multicarrier aggregation [13].

and act accordingly. As the cycle repeats, the radio shoeild b g next portion of this survey concerns itself with reason-
able to learn from its past actions. The principle rests @n tkﬂhg, a fundamental aspect of every 'intelligent’ entitygaed-

radio’s ability to observe, adapt, reason, and learn.

less of being biological or artificial. Reasoning may be kigpa

A little over ten years since cognitive radios have been firgfyssified into beingnstinctive or cognitive [14]. Instinctive

proposed by Mitola [1], the research literature on cogaitiy,

radios is vast. It has, however, tended to focus on the first

(reasoning, learning). The 'observe’ portion of the cogait

easoning is driven by emotions and is therefore an inherent

° , Mharacteristic of biological entities (including humar@ygni-
aspects (observation, adaptation) and less so on the last {yy

e reasoning requires the power of cognition, i.e. the plem
interaction of knowledge (past and present), learning and

cycle is exemplified by work on sensing for opportunistighe associated inference mechanisms, stripping the ensotio
access to spectrum. The "adapt’ portion can manifest itsglfm, the entire process. This leads to an increased reagonin

when the radio, based on its sensed operating environmgite 1yt also to an improved reasoning result (i.e. a more
performs channel selection, power and topology contrapad meaningful and ‘intelligent’ solution). This paper refers

tive modulation and coding, or some combination thereof. he notion of cognitive reasoning in its application in s
In this paper, we focus on the reason’ and ’learn’ aspects Hétworking.
cognition. Those aspects lend themselves to multi-diS@pf  1he primary responsibility of the cognitive reasoning i th
analysis, taking advantage of advances made in game the@pgice of a set of actions that lead to efficient decision-imgk
artificial intelligence, multi-objective reasoning, andlipy Therefore, the cognitive reasoning is often viewed as a-deci
systems, among others. _ sion process using historical as well as current knowledge o
We start with a brief review of the framework according t¢,e environmental context. Additionally, the process ey
which cognitive radios are understood. We then discuss WA st be powerful enough to enrich the knowledge base, to

alternate mathematical views of learning mechanisms. Gaggyer increased efficiency of the subsequent reasoning As
theory offers us the mathematical tools to model 'merm'oresult, there is a tight coupling among knowledge, learning

among autonomous players (in the context of this papegf,q reasoning in the cognitive sense.
typically cognitive radios seeking to maximize some obj&Ct  cqgnitive reasoning may be investigated at three levels of

abstraction:conceptual formal and realizational [15]. The
conceptual abstraction requires models capable of cagturi
the specific and possible nuances within the reasoningyentit
An example is a cognitive agent [15], which can be a living
entity, a group of living entities, or a technical system.eTh
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formal theory requires frameworks and logic to interpred th

interactions among the elements involved in the cognitive . _ S

. . R K . . Perception & Action /" Cognitive ™\ Ontology & Rule
reasoning. The formalism is crucial for handling the vasiou | Abstraction Layer ra— Radic  -a# Abstraction Layer
plausible reasoning methods. It also ensures that themeaso (PAAL) . Application (ORAL)
itself is self-contained and independent from the actual en A Perceptions A 4
abling technology [16]. Finally, the realizational theatyould A4
encompass the envisioned application and the environienta nf‘;ii%’:'s';fs
practical limitations of an operating cognitive engine.r Fo :
instance, in the context of cognitive radios, [17] introdsi@ ceaming
cognitive wrapper, envisioned as a realizable cognitiviigyen y Actions R |
with scalable intelligence and designer-specified leayind SOFf{t;VjLe(ggf'%ed ’é’;‘;‘g'(e}gg?

reasoning algorithm capabilities, while [18] discusses th
aspect of reasoning robustness, which is extremely impbrta. __ _ _
. T Fig. 1. General Cognitive Radio Architecture.
for practical realizations.
There are numerous applications of cognitive reasoning

in the telecommunications domain. For instance, [19] ancciléstomarily built into wireless network architectures thrs,

[20] and elaborate on the usage of reasoning for netwog : .
o S e observations and the adaptations were governed and fos-
monitoring and management. These applications address thé

. . .~~~ teréd by hard-coded rules inside the terminals’ firmware.
problem of scalability and showcase the potential of cogmit . . - )
. . P : The introduction of cognitive radio networks allowed foeth
reasoning to handle various network incidents timely an

efficiently. Reference [21] introduces a reasoning fran‘rkwom.cc.)rporatlon of .'e‘f’“”'”g and reasoning mgchanlsms as a
d%stmct characteristic of the cognitive cycle within.

for enabling smart homes, with reasoning as an intelligen L ) hani ible for buildi |
interpreter of data coming from various electronic devices earning mechanisms are responsible for buildingupw-

in homes. Moreover, reasoning can provide an unambiguo‘?%geand knowledg_e base$_-|_owever_, the knowledge by itself )
interface for the consumers to track and, possibly intwveWOUId be useless in cognitive radio networks unless there is
in the home environment, allowing for increased intelligen a form of inferencethat determines how various pieces of

and energy-awareness. Of particular relevance to our peger knowledge can be translated into actionable decisions. The

main application of cognitive reasoning to wireless com'murfnference is enabled beasoning mechanismeesulting in a

cations has been in the area of efficient and flexible spectrﬂiilgfllht coupling between Igarning, knOW|8dge and reasoning.
management [22]. The aspects of learning and reasoning, knowledge and

Cognitive reasoning is a focal aspect of cognitive radig’owledge bases, as well as observations and adaptatrens, a

networks. It fosters the development and/or the extraation intertwined in a general cognitive radio architecture tatded
contextual and environmental awareness towards an optiffafi9- 1. The Cognitive Radio Application requires a Softea
solution to a particular problem. A reasoning output woulf€fined Radio (SDR) in order to fulfill its functionalities.
then be a timely and intelligent answer to a problem set basEese functionalities may include spectrum mobility, spea
on previous actions and consequences, current observatid@ndovers, adaptations based on perceived past and predict
and objectives, and the descriptions of the used data-fgs future environmental changes,. _etc. quever, a crucw}l cor-
[23]. However, the reliability of the reasoning output sty nerstone of the general cognitive radio architecture is the
depends on the accurate estimation of the environmerft§€d for platform independenas the knowledge and the
context, which needs to be carefully analyzed in differefPplication itself. Therefore, the Perception and Actiob- A
cognitive networking applications [24]. straction Layer (PAAL) is introduced as a mediator that@#io

This paper enumerates and discusses some possible frafidisiation of the SDR observables and the actions into a
works for reasoning in cognitive radio networks, fronplatform—lndependent knowledge representatidhis allows

Bayesian networks to case-based reasoning. We give spelldfpendence of the actual cognitive radio applicatiomfro
attention to policy-based reasoning, as it is particulappli- the plethora of market-available SDR devices that useréiffe

cable to cognitive radios operating in new and dynamicalfPftware wrappers. . _
Changing Spectrum regimes' In the Conc'usionS, we offer Quron the other hand, the acqu|red knOWIedge also necessitates

views on some of the open research areas in reasoning Hi¢pendence from the potential application. As a resh, t
learning for cognitive networks. Ontology and Rule Abstraction Layer (ORAL) is foreseen

In each section, we combine some fundamental discussfh @ presenter of knowledge (i.e. ontologies and rules) in
of the principles of learning and reasoning with some exasipl@ Platform-independent implementation mannenally, the

spectrum access. set of actions that were or are to be executed.

The general cognitive radio architecture from Fig. 1 can
be instantiated into various specific architectures [25t th
incorporate different numbers of loops in the cognitive cy-

Prior to the introduction of the cognitive radio network<cle, different duration of the learning process, adaptetitm
ing paradigm, learning and reasoning mechanisms were ddterent conditions and parameters, etc. Every instéotia

II. COGNITIVE RADIO FRAMEWORK



may also include some specific functionalities (e.g. geneti
algorithms), but they all adhere to the common principles
elaborated in the Introduction.
The next section details the most prominent learning mech- h® = (0,®, ..., ay™)
anisms within modern cognitive radio networking. observe

k™1
I1l. DECISION MAKING AND LEARNING MECHANISMS al a ﬁ

We take a broad view of learning to study the adaptations
performed by a network of cognitive radios. Our discussion e
compasses both the application of machine learning teabsiq
to cognitive networks and game-theoretic analysis of ssmpl ‘ ! o, .
adaptation mechanisms that can be shown to converge to ar h®, k..., A
equilibrium (such as a Nash equilibrium or one of its vaoa$ decide
in cooperative and non-cooperative game theory). Recerit wo
[26] investigates the intersection between machine legrni
and game theory.

fii H >4,

Fig. 2. Starting at the top of the diagram, cognitive radliobserves other

radios’ actions at thek*” stage: these actions are collected into a history
. . vector. The history vectors for all previous stages are idensd during the

A. Game-theoretic analy3|s orientation step. The radio then decides on an action byyegph strategy

Game theoretic models account for multi-agent decisiditat maps from the set of histories to the radio’s action Beetlly, the radio

; ; ] ] rforms an action during thgk + 1)*" stage of the repeated game, and the
making, including cases where each player decides on ﬁfﬁ’le repeats.
actions based on observing the history of actions selegted
other players in previous rounds of the game. This allows
us to model a learning process by each player and whether ) ) ) )
this learning ultimately leads to a stable state for all. @mPand is not active. Mapping this problem into the repeated
that model competition and cooperation that evolve witheting@mes formulation above, the radios are the players in the
are calleddynamic gamesThe parallel to cognitive networks 9@Me, their action is the selection of one of C channels, and
should be clear: in many game theoretic models of cognitif@ese selections may depend on the history of primary user
networks, the players in the game are the cognitive radigstivity, as well as on the pattern of channel utilizatioroblyer
that form the network. These radios take actions such g&condary users (for example, a channel that has a history of
setting their transmit power or selecting a channel in whéch 0eing frequently occupied by the primary may be avoided by
operate. Such actions are based on the radio’s observationdll secondary users).
its environment (e.g., channel availability, frame errate; or ~ The well-known concept of Nash equilibrium is readily
interference). As time progresses, a radio can learn fram tpplied to repeated games: In a Nash equilibrium strategy
outcome of its past actions and from observing the actions @file, no player can unilaterally increase her expectgafia
other radios in the network, and modify its actions accagljin by selecting a different strategy.

1) Repeated gamesThe simplest game theoretic model In the study of economic incentives for cognitive radios and
that captures these concepts is that of a repeated gamenetworks, [27] considers an oligopoly spectrum markethwit
repeated game is one in which each stage of the gamdidense holders competing to provide services to secondary
repeated, usually with an infinite time horizon. Itdenote users. This is modeled as a repeated game: with associated
the set of radios in a network, and the vectdF) denote incentives and punishment for deviating, the authors siai t
the N-dimensional vector of actions taken by the playeiiis possible to sustain a Nash equilibrium that maximizes t
in the k" stage of the game. In each stage a player's providers’ profit.
strategy seeks to maximize her utility function, while taki ~ Channel selection in opportunistic spectrum access has als
into account the history of actions collected in the vect@ften been modeled as a repeated game. Wu et al. [2] model the
h® = (a® a® . a®) In other words, a player's sharing of open spectrum as a repeated game; they consider a
strategy can be expressed as a mapping from historiespttishment scheme and show that a more efficient equilibrium
actions:agk) = f;(h®=1)), The expected utility is typically can be reached when autonomous radios interact repeatedly,
discounted by a factod < § < 1, meaning that a payoff in as opposed to when they interact in a single stage game (in
future stages of the game is worth less than the same paygdheral, a well known result in game theory, an example of
in the current stage. which is the repeated Prisoner’s Dilemma). They go further

The cognitive radio process is often described by the OODs#d also consider incentives for cognitive radios to tnuitif
loop (observe-orient-decide-act). In Fig. 2, we map the foveport their operating conditions in negotiating access to
steps in this reasoning process to the formalism of a regeagpectrum: relying on mechanism design, the authors of [2]
game. design cheat-proof strategies for dynamic spectrum sharin

A simple example may be in order at this point. Considdrhe selection of the best spectrum opportunities by seagnda
a number of cognitive radios competing for channels thasers of some spectrum band is modeled as a repeated game
are available when the primary licensee for the frequenay|[3]. In that model, secondary users will have to vacatérthe



current channel whenever a primary user becomes active, ando introduce better and best reply dynamics, let us consider
the authors consider a cost associated with switching éienna repeated game where at each stage exactly one player is
A subgame perfect equilibrium [28], a Nash Equilibrium thatffered the opportunity to take action. A player is said to
is also an equilibrium for every proper subgame of the ogginfollow a best reply strategy if her selected action maximize
game, is one way to characterize the likely outcome of subler utility, given the other players’ current actions. Wih
a game. better reply strategythe player will always select an action
In [4], the authors use repeated games to model the evallmat provides an improvement in utility with respect to her
tion of reputation among secondary users, when one of thenpigvious action, again given the other players’ curreribast
chosen to manage the spectrum made available by the primar$gome of the seminal work in applying potential games to
user. In several of the applications above, repeated ttterss cognitive radio problems was done by Neel [29]. A number
among a set of cognitive radios allow for the design aif problems in multi-channel communications can be modeled
incentive mechanisms that lead to a more efficient equilibri as potential games. For example, when the utility functibn o
A different question is whether there are simple ways faach radio considers the social welfare of the network (e.g.
radios, by observing others’ actions and the utility réeglt by attributing a cost to the radio from interference caused t
from its own actions, to converge to a Nash equilibrium. Wethers, as well as interference suffered from others) anpiate
treat that question next. function naturally emerges. This is the case in the work on
2) Potential games:The class of games callegotential channel selection by [30].
gamesis of particular interest in the context of learning. If a Even when players have utility functions that reflect their
dynamic adaptation problem can be modeled as a potentan selfish interests, rather than those of the network, in a
game, then if radios follow a simple adaptation algorithmumber of cases of interest to dynamic spectrum access and
(which we will discuss in more detail shortly) they arecognitive network games the model results in a potentialegam
guaranteed to reach a solution that is stable from the pointThomas et al. [31], for example, model the topology control
of view of the entire network. problem for an ad hoc network where nodes can select a
To introduce potential games, let us start with the concegtiannel to operate on from a finite set of available channels.
of a potential function A potential functiont” maps from the This topology control mechanism consists of two phases:
action set of all playersA = A; x ... x A, into the real in the first phase, radios select a transmit power level with
numbers:V: A — R. A unilateral change in action by oneenergy efficiency and network connectivity in mind; in the
player has the same effect on that player’s utilitfa) as it second, they select channels, with interference mininazat
has on the potential function. Formally, for all playérs N  objectives. The authors are able to show that both problems
and alla;, b; € A;: (power control and channel selection) can be formulated
as ordinal potential games, and best-response dynamics are
Viai,a—) = Vibi, az) = ui(a;, a) = ui(ai, a). guaranteed to converge to an equilibrium.
(Here, we adopt standard notation in game theory, with3) Other dynamic gamesMore general formulations of
a_; = (a1,...,a;-1,a,11,...,an) representing the vectordynamic games have also been applied to cognitive radio and
of all players’ actions, except playeén A game for which a dynamic spectrum access problems.
potential function can be found is called amact potential  The dynamic game model in [32], for example, is used to
game model uncertainty about observed strategies adopted ley oth
A weaker concept of potential function is that of arinal players. A primary and multiple secondary users (SUs) inter
potential function That function also maps the action set of alact, with the former setting prices for access to the specttru
players to the real numbers, but with the following propertyand the latter selecting how large a portion of spectrum & us
Since each secondary user only interacts with the primary, i
cannot get a complete picture of the strategies and paybffs o
A game for which such a function can be found is calledther secondary users. Each SU therefore gradually adapts i
an ordinal potential gamelt is easy to see that every po-selection of how much of the spectrum to occupy based on the
tential game is an ordinal potential game, but also that thgarginal benefit it can observe from this selection. A leagni
converse is not true. But how are potential games relevantredge parameter adjusts the speed with which adaptations can
our discussion of learning in networks of cognitive radios®e made. This parameter will impact the stability regionhaf t
Because potential games have desirable properties in tetg@ning algorithm, as well as its sensitivity to the satatf
of the existence of a Nash equilibrium and the convergenite initial strategy.
to that equilibrium through simple adaptations. For inegn A particular class of dynamic games that has found recent
all finite potential games have at least one Nash equilibrivapplications to the dynamic spectrum access problem is that
in pure strategies (a finite game is a game where the plapérstochastic games. In stochastic games, the environment
and action sets are finite). More generally, if the stratggace changes in response to the actions of all players. This is
for the game is compact and the potential function contisuowaptured by the introduction of a state space and a stochasti
then the game has at least one pure strategy Nash equilibrignocess that models the game’s transitions among statel. Ea
Just as importantly, from the point of view of learning, isth player’s stage payoff depends on the current state of theegam
the players are guaranteed to reach these equilibria throwg well as on all players’ actions.
best reply and better reply dynamics. The work in [5] considers a set of radios performing

V(ai,a—i)—V(bj,a_;) >0 <= u(a;,a_j)—ula;,a_;) > 0.



distributed and opportunistic access to the channel, vilnére the immediate reward, but also to evaluate the consequences
each time slot one radio can be scheduled per spectrum haoléts actions on the future in order to maximize its longater
(and, when the primary user is present, none of the secasdagerformance. Delayed reward and trial-and-error cortetitue

is allowed to transmit). The authors model this problem ast&o most significant features of RL.

switching control game, a type of stochastic game where the1) Single-agent RL:Multi-agent reinforcement learning
state space can be partitioned into disjoint subsets swath tiMARL) evolved from the single-agent RL setting. In the
whenever the game is in statg, the transition probabilities single agent case, RL is usually performed in the context of
depend only on player i's actions. The decisions of each®f tiyarkov decision processes (MDP). In a typical RL scenario
radios can be then described by a finite sequence of Markgye agent represents its perception at thaes a state, € X,
decision processes. where X is the finite set of environment states. The agent

Both centralized and distributed stochastic games aredforninteracts with the environment by performing actions. Each
lated in [6], where radios compete for spectrum opportesitiactiona;, € A, whereA is the finite set of actions of the agent,
with and without help from a central spectrum moderatogould trigger a transition to a new state. The agent will rece
respectively. In [7], the same authors model bidding petici a reward as a result of the transition, according to the réwar
for secondary users competing for spectrum controlled lynction p: X x A x X — R. The agent’s task is to devise
a spectrum broker, again using the formalism of stochasticpolicy, i.e. a sequence of (state, action) pairs, to maemi
games and considering that each secondary user can QA expected discounted reward. In the context of MDP, it has
observe a partial history of previous usage of spectrum.  been proved that an optimal deterministic and stationaligyo

Another variation of stochastic games gives rise to evolexists [33]. The problem of learning the optimal policy for
tionary game theory. This is inspired by evolutionary biplo the single-agent RL scenario has been addressed both in the
and the idea that an organism’'s genes largely determine di&se where the state transition and reward functions anerkno
fitness to the environment in which they exist. The more f{inodel-based learning) and in the case where they are not
the organism, the higher the likelihood that it will producgmodel-free learning). Most MARL algorithms are based on Q-
offspring, increasing the representation of its genes @ tlearning [34], a model-free algorithm that estimates ainogit
overall population. The process of mutation is also modeledtion-value function. An action-value function, named Q-
through random changes to the players’ strategies over tinf@nction, is the expected return of a state-action pair fgivan

An evolutionary game is proposed in [8] to study behawolicy. The optimal action-value functior@*, corresponds to
ioral dynamics in cooperative spectrum sensing, where eable maximum expected return for a state-action pair. Once it
sensing agent (possibly belonging to different providemalt estimated)*, the agent can select the optimal actions by using
decide whether to contribute to the overall picture of speat a greedy policy, i.e. the policy that for every state the agen
availability. Reference [9] applies evolutionary gamesthite selects the action with the corresponding highest Q-valbe.
problem of network selection by radios facing the choice efpdating rule of the Q-function is:
multiple wireless access technologies.

After having briefly summarized some of the game theoretic Q.1 (xx,ar) = (1 — ar)Qwr(Xk,ar) +
models used to analyze multi-agent decision making and the
process of arriving at stable outcomes (critical for cagait
radios operating in a network), we turn our attention to the

application of reinforcement learning to cognitive radios ~ Wherey is the discount facton;. € [0, 1] is the learning factor,
andri41 = p(xx, ar, Xk+1). As it can be noted, the updating

) _ _ rule of Q-learning does not require knowledge about the

B. Reinforcement-learning techniques reward or the transition functions: only the observed rewar

Reinforcement learning (RL) plays a key role in the literds used to update the Q-values. In a stationary environment
ture on multi-agent learning. In fact the nature of the tasidi, the learned Q-function convergesdy if all the state-action
i.e. learning a mapping between situations and actionsewhjiairs are visited an infinite number of times and under the
interacting with other agents, makes the use of supervisgi@chastic approximation conditions on the sequence of the
learning techniques quite difficult. In a dynamic and norearning factorsy, [34].
stationary environment it would be challenging, sometimesIncidentally, there are clear connections between MDPs
even impossible, to provide the agents with the correcbasti and game theoretic models, in particular stochastic gaes.
associated with the current situation. The RL paradigm isemcstochastic game is a dynamic game for which state transition
versatile in the multi-agent domain, as it allows the agémts are probabilistic, allowing us to model uncertainty in the
autonomously discover the situation-action mapping thhoa: players’ operating environment. While an MDP models a
mechanism of trial and error. An RL agent learns by explorirgingle agent’s decisions, in a stochastic game there artgeul
the available actions and refining its behavior using only agents, and their actions, the next state, and rewards depen
evaluative feedback, referred to as teevard In other words, on the vector of all players’ actions ([35] offers a good
in the RL paradigm an agent learns by interacting with itseatment of stochastic games and their relationship to MDP
environment, which in the multi-agent domain also includdsig. 3 provides one way to position reinforcement learnind a
other agents. The learning mechanism is driven by the resvargame theoretic models with respect to the number of agents
Generally an agent is expected not just to take into accouwansidered and to the cardinality of the state space.

Qg [Tk+1 + 7y max Qk-ﬁ-l(xk—ﬁ-ha/)}



by all the agents’ Q-tables. This means that each agent has
to maintain the Q-tables for all the other agents, i.e. it foas
N>1 | Repeated Game | Stochastic Game observe the other agents’ actions and rewards. Moreover, al
agents have to agree on using the same NE. This requires a
coordination mechanism for all but a restricted class of gam

| Markov Decision yvhere all the agents achieve the maxi_mum expected return
N=1 k-armed bandit in correspondence to the same NE. It is unclear how strong

Process - . ;
a role this or similar approaches based on game theoretic
analysis will play in the context of cognitive radio applicas,
IX|=1 IX[>1 due to their strict requirements and their sensitivity taspo

observations. More recent models for games of imperfect

Fig. 3. The relationship between repeated games, stoctgamies, MDPs, Private or public monitoring can be used to model such noisy
and multi-armed bandit problems is illustrated by this imatwith N observations, but they come at the cost of significant irraéa
indicating the number of players aX the state space. complexity.
A common feature of most MARL algorithms is the use
, , , . of a discrete state-action space. This is a heritage from the
In the next sub—sect}on, we will treat reinforcement leagni |4ssic single-agent approach. Moreover, generally ihgos
from a multi-agent point of view. derived from Q-learning algorithm can only learn deterstii
2) MARL: A possibility that has been extensively explore@olicies. A notable exception to the above observations is
in the MARL domain is the straightforward use of the QHyper—Q [39], where the agent state includes an estimate of
learning algorithm while ignoring the presence of the othghe other agents’ strategies. As the Q-function evaludtes t
agents acting in the same environment and considering th@er agents’ mixed strategy, Hyper-Q employs a function
results of this interaction as noise. In the following welwde approximator.
the term "independent Q-learning” to refer to this approach A possible solution to these limitations is provided by dire
However, because of the non-stationarity of the environm%|icy search methods. This class of algorithms tries teatlly
caused by the presence of other agents, the theoreticdl reglam the optimal policy, without attempting to approximat
on convergence no longer holds. This means that for sogg value function. In other words, the learning problem is
games the agents may exhibit cyclic behavior. Despite {igodeled as an optimization problem with unknown objective
limitations, the independent Q-learning approach has begfction. The policy is generally represented as a paraenetr
widely adopted in the cognitive radio literature. In somee= fynction, and different approaches can be adopted to explor
(e.g., [36]), the issues related to convergence are ackaugell the strategy space (see [40] and references therein).
and simulation results are presented to show that the agent§ome of the solutions proposed in the MARL literature
achieve an equilibrium. In other cases (e.g., [37]), thestioe  yse an opponent-independent closed-form solution for the
of convergence is not discussed. matrix games (see for example [41]). In cognitive network
An intuitive extension of the independent Q-learners agpplications this class of approaches is unlikely to playesp k
proach is to maintain a Q-value for each combination @ble but for a limited set of scenarios. In fact cognitivewaitk
the states and actions of all agents. However this approagiplications are characterized by the intrinsic hetereijgiof
requires that the other agents’ actions be observable. M@sé radios’ behavior, due for example to hardware limitagio
importantly, the curse of dimensionality, which alreadys@® This feature will favor agents that are aware of and thegefor
serious challenges in the single-agent domain, raises evgih exploit other players’ strategies. In this respect asct#
more important issues in this case. approaches that learn a model of the other agents’ strategie
Furthermore, the main issue with the use of independdstof particular interest. Typically an agent chooses thst be
Q-learners is that the update is based on the agent's opg8ponse based on its current model of the other agents’
maximum payoff in the next state. This is hardly justified istrategies. It then refines this model after observing therot
the multi-agent domain, as the agent's payoff in the nexestagents’ play. Examples of this class of approaches aredicit
depends on the other agents’ actions [38]. play [42] and Joint Action Players [35]. In some cases the
Various attempts have been made to find a different updatedel of the other agents’ strategy is simply based on a
rule, more suitable to the multi-agent case. A useful examgtequentist approach: an agent counts the number of times
to better understand the strong relationship between MARhat another agent has selected a certain action. A simple bu
and game theory is the Nash Q-learning algorithm [35]. Theffective extension in the case of non-stationary stratedg
approach clearly acknowledges the interactive nature ef tthe Exponential Moving Average, which assigns greater fateig
learning involved in the multi-agent domain by modeling théeo the most recent observations and allows each player to
MARL problem as a stochastic game. In particular, a modifiedact more quickly to the dynamics of the other players. More
version of the Q-learning rule is proposed. Each agent @gdasophisticated techniques, based on a Bayesian approath, ca
its Q-table using the expected return corresponding to thkso be used.
NE of the stage games corresponding to the states of theA number of MARL algorithms have been proposed that can
stochastic game. This approach, however, requires thdt eaaly deal with repeated stateless games (see [40] and refer-
agent be able to compute an NE in every stage game givarces therein). In the CR literature independent Q-legrnas



also been used in this fashion [43]. It should be noted that thccording to their estimated utility. The most commonlydise
delayed reward, which is an essential feature of RL in génesmftmax action selection rule is based on the Boltzmann-
and Q-learning in particular, is no longer part of this siifigdl Gibbs distribution. In this case, the exploration/ex@tdn
scenario. In the case of repeated games, more suitable tRideoff is controlled by the temperature parameteHigh
schemes, such as learning automata [44], should be addptedalues ofr determine a random action selection; low values
learning automaton is a reinforcement learning schemeavhef 7 favour the selection of actions corresponding to higher
each agent is a policy iterator, i.e. it directly updates it®wards;r — 0 corresponds to the greedy action selection
action probabilities based on the environment response. ¥&heme. A congestion game is a game where resources are
have recently applied learning automata to the problem lihited and the utility of a player depends on which resoarce
distributed channel selection in the context of frequeagife she chooses and how many other players chose the same
radios that are able to operate in multiple frequency bandssource. In [48] it is shown that, for congestion games, a
simultaneously [13]. learning scheme using the Boltzmann-Gibbs distribution to
The general update rule is [44]: update the players’ strategy almost surely converges tt Nas
equilibria.
pilt £ 1) = pilt) = (1 = B)fi(p(®) + Bri(p(t))  Valt) # a qA different approach, namely regret matching [49], also
considers the hypothetical rewards the agent would have
pilt+1) = pi(t)Jr(l_ﬁt)ij(p(t)) received by selgsting actions it did not glay. The agent
7 associates to each action a regret, i.e. the differenceeleetw
B Zgj (p(®)) a(t) = ai the average reward the agent would have received by always
7 playing that action and the actual average reward. The agent
where the functiong and g are the reward and the penaltythen selects an action with probability proportional to the
function, respectively, angd; € [0, 1] is the reward received by corresponding regret. Only actions with positive regre ar
the agent at timé (with 3 = 0 corresponding to a favorableconsidered. Although regret matching has been proved to
outcome). Different choices of the reward and penalty fungenverge to correlated equilibria in self-play, it make®ist
tions lead to different reinforcement schemes. Among thegissumptions on the agents’ inputs. In fact, in order to cdampu
the linear reward inaction scheme is of particular intemest the regret, each agent has to be able to observe all the other
that it has been proved to converge to a pure NE for specigjents’ actions.
types of finite stochastic games, such as two-player zero sunThe concept of regret is also used as an alternative evalua-
games, N-player games with common payoff, and particuléen criterion for learning algorithms. The no-regret eribn
general sum N-player games [45]. For a review on the useisfverified when the average regret is less than or equal to
learning automata for adaptive wireless networks the reiadezero against all other agents’ strategies. For example Oh [5
referred to [46]. the authors examine the performance of two algorithms for
When using the linear reward inaction scheme, the agefistributed channel selection providing bounds on theategr
modifies its policy only when it receives a favorable feedbaexperienced by the secondary users while learning a channel
from the environment. In particular the penalty functionigl, access policy.
while the reward function is a linear function of the action 3) Pros and cons of different learning techniques:[26]
probabilities. It should be noted that a linear reward iimact the authors present an interesting and useful comparison of
scheme can only converge to pure Nash equilibria [45].  some of the learning techniques discussed above with respec
Among the learning schemes that can only converge tot@the algorithms’ requirements (computational compieaitd
pure Nash equilibrium, the trial-and-error learning alfon assumptions on the agents’ inputs) and to the convergence
[47] is concise and of simple implementation. In fact, eagbroperties. However the analysis of RL is not conclusive, as
player only maintains the last selected action and the €orRL is family of algorithms whose convergence properties and
sponding perceived utility. At each time, each player desidrequirements depend on the particular implementation.
to either perform the last selected action with probabilitye One of the fundamental issues common to all RL ap-
or to randomly select another action with probabilityf the proaches is the convergence time when the dimension of the
player observes a strict increase in the payoff, the neveglya state-action space is beyond that of a toy problem. Thiscaspe
is adopted. If all players adopt trial-and-error learniagaure has not received sufficient attention in the CR literaturee O
Nash equilibrium is played at least- € fraction of the times, exception is [10], where the spectrum pool, which corresigson
for any e > 0 [47]. In [48], the authors applied this result toto the action space, is randomly partitioned into different
the discrete power allocation problem, and observed that thubsets in order to expedite the exploration stage. Althoug
number of iterations required to be close to a Nash equilibri successful in facilitating the exploration, the obviouskriof
depends ore and on the structure of the observed payoffs. this approach is that the CRs might converge to a subop-
In general, RL algorithms select an action with probabilittimal, and potentially inefficient, policy, as the explooat
proportional to the total reward received in the past asstage is blindly limited to a subset of the available actions
result of choosing that action. In order to achieve a balangtde problem of scaling up reinforcement learning has been
between exploration and exploitation, whilst avoiding theell studied in the machine learning community. A possible
most unsatisfactory actions, a softmax action selectida risolution is to use function approximation [51]. This appioa
is generally adopted, where actions are ranked and weighs#ldws an agent to generalize from previously observe@stat



and actions to an approximation of the action-value fumctiddepartment of Defense in order to describe the methodology
for state-action pairs that have never been observed by that fighter pilots utilize during aerial combat and is apgtile
agent. This approach has been adopted in [11], where Cisreactive situations. The CECA framework expands the
use function approximation to determine channel assighm&ODA framework to adequately describe a proactive decision
and transmission powers for large state problems. making process. The reasoning here is based on social cogni-
As a final comment, the application of learning techniqud®n, i.e. multiple entities working on complex problemig
to cognitive network problems should include an assessmémmework does not rely on reactive external observatibus,
of whether there is sufficient structure in the observatibn ocuses on proactive goal-oriented situations. Both OODbé a
the changing wireless environment (e.g., spectrum utitima CECA frameworks are applicable in cognitive radio networks
patterns of a primary user) to justify trying to learn fronese The SOAR framework is a complex and powerful software
observations. We have tackled this question in [52], wheze 8uite designed to approximate rational behavior. Its cexipl
show the correlation between the Lempel-Ziv complexity dimits its application in cognitive radio networks. The 8to
observed spectrum use and the benefits of a reinforcemiatnework extends SOAR towards the development of Bio-
learning approach in the secondary users’ selection oflagically Inspired Cognitive Architectures (BICA) and mbg

channel for opportunistic use. suitable for applications in cognitive radio networks. &y,
the ACT-R framework theorizes the way human cognition
IV. REASONING MECHANISMS functions. It allows users to represent tasks and measere th

time to perform a task and the accuracy of a task. This has
potential application to decision-making in cognitive itad
8tworks.

This section focuses on the reasoning and its possible types
methods, and realizations. Specific practical implemanat
within a complete cognitive framework will also be mentidne
t\g/'henever applicable.

After the previous section’s discussion of the relevantriea
ing mechanisms within the cognitive networking contexis th
section will focus on the inference mechanisms needed 't
relate the acquired and the learned knowledge. These ntfere
mechanisms are representedrbgsoning mechanismehich
are also a quintessential part of the cognition process.

The field of reasoning is popular among psychologis
philosophers, and cognitive scientists. The developmént _

- L ; 1% Reasoning types
cognitive networking imposes reasoning as a challenge for
technologists and networking scientists as well. It is expe ~ There is a lack of straightforward logical categorization
that a simple mapping of the reasoning process from otH&r the reasoning types in the cognitive networking world,
science fields will also fit the cognitive networking worldas a result of the technical implementation peculiarities o
While this may seem mostly true, there are clear differencearticular cognitive networking solution and the corresgiog
in the cognitive networking context that must be taken intémitations, as well as of the potential applications anel ¢br-
account when analyzing the reasoning mechanisms and thiggponding requirements. Therefore, Table | briefly elatssr

associated aspects. We focus on those differences. the most prominent reasoning types used within the field of
cognitive networking today.

A. Cognitive frameworks and associated reasoning

TABLE |

As already discussed in section Il, the general cognitive CLASSIFICATION OF RELEVANT REASONING TYPES FOR COGNITIVE
radio architecture depicted in Fig. 1 may be instantiated in NETWORKING
various specific realizations. This proves to have a praoufTReasoning type Explanation
effect on the process of reasoning, since different cogniti| Proactive Takes actions only when there is an indication of jan
architectures incorporate various approaches within tiymie Qg‘znggieﬁmb'em; used where time constraints are
tive CyC!Q. o _ [ Reactive Prepares actions based on expected necessities fof im-

Cognitive frameworks are generally classified into being mediate actions and is more suitable for dynamic envi-
basic or stemming from theunified theory of cognitiori25 ronments

. 9 . y .g . rﬁ ]' Inductive Forms hypotheses that seem likely based on detegted

[53]. The basic ones can be symbohc,_c_onnectlonlst or Idybr patterns (conducive for cognitive radios)
The frameworks stemming from the unified theory of cognitighDeductive Forgoes hypotheses and only draws conclusions based
can be either simple, e.g. Observe-Orient-Decide-Act (@D on logical connections , _ _

d Critique-Explore-Compare-Adapt (CECA), or comple One-shot Selects a final action based on immediately availaple
an a p p p ! plex, information
e.g. SOAR, Storm and ACT-R [25]. Sequential Chooses intermediate actions and observes the resgonse

The implementation of a specific cognitive framework re _ of the system following each action _
h(éentrallzed Higher degree of relationship between the inputs (hc-

flects on the associgted reasoning within. For instance, tions) and the outputs (observations)
OODA framework relies on a feedback loop to model adaptabistributed Lower degree of relationship between the inputs (Ac-
tions to changing environmental conditions. The reasqgniag tions) and the outputs (observations)
the decision-making, involves identification of the avaiéa

hardware configuration changes, identification of the best _

option to meet the new situation and implementation of tfe: Reasoning methods

reconfiguration changes on the hardware in a constant feedThe process of reasoning necessitates enablers (i.e. meth-
back loop. This framework was originally developed by the U8ds) of the inference goals. The most relevant ones withén th




cognitive networking context are [54]: approach. Higher-level behaviors are assumed to functian a

« Distributed constraint reasoning - further classified as longer time scale and take advantage of complex optimizatio
Distributed Constraint Satisfaction Problem (DisCSP) éind learning functions such as partial plan generation iame t
Distributed Constraint Optimization Problem (DCOP)series learning. Lower-level behaviors provide a tightpiimg
The former attempts to find any of a set of solutions th&€tween the sensory input data and the actuation and often
meets a set of constraints, whereas the latter attempt£fgploy reactive learning algorithms with little to no staech
find an optimal solution to a set of cost functions. ~ as self-organizing maps, decision trees, or hard codes topu

« Bayesian networks- a method of reasoning under unceroutput mappings. As a result, each layer realizes a sub-goal

tainty that can be a result of limited observations, nois§f the more complex overall goal.

observations, unobservable states, or uncertain relationFuzzy logic reasoning Fuzzy logic reasoning [58] relies

ships between inputs, states, and outputs within a syste®fi. Fuzzy Logic (FL), which is a multivalued logic that allows

Metaheuristics - an optimization method that teamgntermediate values to be defined between conventional eval

simpler search mechanisms with a higher-level strategtions like true/false, yes/no, high/low, etc. In an FLteys

that guides the search. This method commonly emplof¢ knowledge of a restricted domain is captured in the form

randomized algorithms as part of the search proce@klinguistic rules i.e. the relationships between two goals are

and, as a resu|t, may arrive at a different solution eaﬁ@fined usinguzzy inclusionand non-inclusionbetween the

time it runs. Metaheuristics are a powerful method fosupporting and hindering sets of the corresponding godls. F

tackling Non-deterministic Polynomial-time hard (NPis helpful in very complex processes and is already applied

hard) problems. in various telecommunications domains (e.g. QoS routing,
« Heuristics - a method that exploits problem-specific atcaching, RRM, etc.). Lately, it has become popular for effici
tributes and may lead to increased performance of certdfigsoning (i.e. decision-making) in cognitive networks.
heuristic techniques. This method is not generic as theOne of the most promising approaches to providing FL-
previous three. assisted reasoning in cognitive radio networks is the usége
A special form of a reasoning method is represented by'Z2Y Cognitive Maps (FCMs) [59]. FCMs represent a means
multi-objective reasoningwhich is used when there are mul10" modeling systems through the causal relationships that
tiple, potentially competing goals in the inference prmescharactgnze them. Graphically, they are rend(_ared astditec

Therefore, multi-objective reasoning is essentially a tmul 9r@Phs in which a node represents a generic concept (e.g.

objective optimization problem and, as such, follows thareh an _event ora proc_ess) and edges_ between any two nod_es

acteristics of multi-objective optimizations. Recenthere are ndicate that there is a causal relation between them. Their

attempts to combine this approach with the DCOP. advantage lies in the power to handle feedback loops (unlike
Bayesian networks), the straightforward inference method

- ) o (simple multiplication and thresholding), and the ability

D. Some specific reasoning realizations merge into a combined FCM that can smoothen discrepant

Combining a specific reasoning type with a specific reasobiases stemming from the merging FCMs. However, there may
ing method (along with the inevitable and intertwined léagn be some disadvantages in practical cognitive network egpli
mechanisms) instantiates a specific reasoning realiz#ti@in tions, since the inference of causality between eventsdbase
can be effectively deployed in a cognitive networking cahte only on observational data (without any a priori knowledge)
Some of the most relevant reasoning realizations are edédubr is not immediate. Additionally, the abductive reasoning, i
below. the process of stating which causes are responsible forea giv

Case-Based Reasoning (CBREBR [55] is a combination effect, is an NP-hard problem.
of reasoning and learning. The knowledge base is termeaas thFCMs can be very useful in cognitive networks, facilitating
case base, where cases are representations of past egpsriamoss-layering and using this information for reasoninthimi
and their outcomes. The case base possesses a structtiredcognition cycle. Reference [60] introduces a mathemat-
content in order to be easily shared among different estitical methodology able to represent the complex interastion
within the cognition process and the cognitive networklitseamong various protocol stack layers based on FCMs. The
(termed agents). The sharing allows usage of past expesenmethodology is then applied to a sample test case of a VoIP
and makes the network more robust and resilient. UsualliFi system. The authors investigated the number of system-
CBR involves 4-stage cycleetrieve reuse reviseandretain.  supported VoIP calls using given specific quality constsagm
CBR was used in a practical realization of the cognitivdifferent protocol stack layers. The FCM framework was used
radio architecture for IEEE 802.22 applications [56]. Theo represent the correlation among the operating parameiter
CBR engine is the focal point allowing decision-making imifferent layers and increase the overall system perfoo@an
situations when secondary users must vacate a spectrum fétederence [61] extends the work in [60] by analyzing the
primary incumbent user. scalability issues within the FCM framework when there &xis

Subsumption reasoning Subsumption reasoning [57] es-a high number of cross-layer interactions. The authoraudsc
sentially represents a decomposition of the target goal irind propose a method for distinction among the cross-layer
smaller sub-goals and ideally with regard to their comgjexi interactions that carry valuable information for the cdiyei
The decomposition leads to a set of layered modules opgratprocess. This should ensure that the reasoning in cognigitre
in parallel that build upon each other, i.e. a hierarchicalorks could converge to a solution before the environmental
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conditions change, thus minimizing the reasoning time.

Relational reasoning Relational reasoning [62] relies on user deived
. . olicies
the relational structureof propositional knowledge and the 2
. . . . I Contral
semantic features of objects and relational roles. It idkmh [Foliey | o | Ghannb | Policy Engine F_
by the notion ofsimilarity, which is a fundamental construct poticy | | Manager [ Database ! Manager

. .. . . Admin,|
in cognitive science and inherently possesses featural@nd operato

and regulator

lational aspects. These aspects may allow for the developmeoices
of relational analogies, which is common in human reasaning

Policy Engine
Database

[ Policy
Policy Server Reasoner
Database

. . Policy Server Policy Engine
However, [63] argues that these relational analogies may be
modeled using sound scientific models capable of increasing
the scientific literacy for the cognitive reasoning process s Policy
A special reasoning realization that has attracted inegkas ( caley \<—' el Intertace/
attention within the cognitive networking world ipolicy CEMERNE Channel

based reasonind64]. It relies on the concept of dynamically _ _
derivable and interchangeable policies that surpass - tr 719~ 4 Policy system architecture.
tional hardcoded firmware in current devices, offering leigh
flexibility and efficiency for the cognition process. Theipts (add/change/delete policies) and reflecting the changes
are expressed using a specific policy language consistiag of 5.k in the PSD.
set of clearly definedntologies An ontology language defines . : . . - .
the meaning of terms in vocabularies and their relatiorsshi Policy Engine (.PE) Thg PE Is thepphcy deC|s.|on pointn .
e proposed policy architecture. It is located in the teahi

[65]. Policy based reasoning is starting to be adopted . . ) . .
academia, industry and standardization [66] and regtyatoa}%d is responsible of reasoning on the set of active policies

bodies and may become a cornerstone of future eﬁiciefmd %rleseptlngfthe_reatsr:)ned re_sultlto thet(_:RMd In o_rder to :)e
cognitive networking. Therefore, the following sub-sent capable of performing the previously mentioned assigh&men

will focus on a specific, already developed and operatin{f,e pol|(.:y englr_le consists of three components:
architectural realization of the policy based reasonimcept,  * Policy Engine Database (PED} for local storage of the

along with its potential applications. operator and regulator policies dedicated to the host user,
as well as the locally derived user policies.
E. Case study: policy based reasoning « Policy Engine Manager (PEM) - for handling the
Fig. 4 depicts a fully functional architectural instanitiat communication of the PE with the other policy network

of the policy based reasoning concept [67]. The architectur ~ €ntities. _ .
embraces policies, expressed in CoRaL [64], coming frome Policy Reasoner (PR)- for performing the reasoning
various stakeholders (e.g. operators, regulators, ands)yse ~ Process on the set of policies in PED after every received
offering options for each of them to express their specific Policy guery, thus providing the solution space to the
goals. Moreover, the architecture supports dynamic resour ~CRM. The PR used in the proposed policy framework
management through dynamic policy changes that reflect the IS the XG Prolog PR [68] with modified and extended
different behavior of the terminals. The full set of poliiis functionalities. The crucial improvement to the XG PR
efficiently reasoned and the reasoning output is presented t 1S the support of "why not permitted?” response from the
the resource management system (represented by the @egniti  '€asening process. This is important because it highly
Resource Manager - CRM) as an available solution set. improves the conformance checking process and, as a
1) Architectural components and interfaceBhe proposed result_, It minimizes the time required to converge to a
policy system architecture comprises three main elements; ~ Permitted solution.
policy server a Policy Engine (PE)and aPolicy Handling Policy Handling Toolbox (PHT) The PHT is an integral
Toolbox (PHT) The first one is located on the networkpart of the CRM which is thepolicy enforcing pointin
side, while the other two are terminal-based policy elemerthe architecture. The CRM is responsible for optimization,
(Fig. 4). learning and decision making. The PHT creates and sends
Policy Server The policy server is the central policy reposipolicy language-specific requests to the PE. In the opposite
tory in the network, storing policies coming from the operat direction, the policy replies are received and providedRIMz

and regulator sides. It comprises: understandable fashion.
« Policy Server Database (PSD) for keeping track of all  Interfaces As illustrated on Fig. 4, the policy architecture
active users and active policies in the network and thgelds two key interfaces, theolicy interface (supporting
user/policies associations. the local communication between the PE and the CRM) and

« Policy Server Database Handler (PSDH) for man- the control channel interface (handling the communications
aging the database (storing policies and registering usbetween the policy server and the PEs of the nodes).
into the database), disseminating the policies to the pusersThe policy architecture also includes the specification of a
and informing them about policy changes. custompolicy protocol[67], which defines the communication

« Policy Manager (PM) - for extracting the policies between the policy components via the defined policy and
from the database, making the appropriate changesntrol channel interfaces.
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Policy Server (PS)

Policy Handling| | Policy Reasoner| | Policy Engine Policy Server Database| Policy Server Policy Handling| | Policy Reasoner| | Policy Engine Policy Server Database| Policy Server
Toolbox (PHT) | |+ PED database | | Manager (PEM) Handler (PSDH) Database (PSD) Toolbox (PHT) | | + PED database | | Manager (PEM) Handler (PSDH) Database (PSD)
NewPolicyMsg's
UserRegisterMsg (new/changed policies
(UserClass&DeviceType) registerUser, from Policy Manager)
- PolicyMsg's
i g getPolicies
PolicyMsg's (new/changed pqlicies for
(policies for UserClass & UserClass&DeviceType)
- DeviceType) load new /
Load policies changed policies
PolicyQueryMsg l’.él|cychangeMsg
notification about policy

. changes)
PolicyReplyMsg PolicyChangeMsg|

(allowed solutions) forwarded

PolicyQueryMsi

Fig. 5. User registration and policy checking process. PolicyReplyMsg

(new allowed
solutions set)
Reevduate connections

if needed

2) Policy architecture functionalitiesThe elaborated policy
architecture incorporates many functionalities [67]. SThub-
section briefly describes some of them that are crucial fer th
subsequent understanding and elaboration of the polisgeébaFig. 6. Reporting of policy changes.
reasoning applications.

User and/or terminal classificationThe organization of the
PSD prOVideS a feature for pOllcy classification and dissemi UDP based Streaming app"cation while performing po“cy
tion based on the users’ class and device type. Each termigghtrolled channel switching in an IEEE 802.11 ISM environ-
registers to the policy server at start up, announcing i Usnent (WiFi). The testbed consists of a central PS performing
class and device type. As a response, the relevant policges ghannel and policy management for two USRP2 [69] enabled

received from the policy server (Fig. 5). laptops aiming to establish communication using the faithayv
Efficient policy checking mechanismThe policy architec- storyboard:

ture has an efficient and flexible policy conformance chagkin

mechanism. When the policy request is not permitted, al) The PS sends both USRP2 nodes predefined policies

list of alternative solutions is formed utilizing the "whyon specifying the allowed WiFi channels.

permitted?” response (Fig. 5). 2) The source USRP2 forms a spectrum map (top-down
Dynamic policy managementThe proposed architecture power ranking of available channels) and chooses the

offers a framework for dynamic network resource management ~ best solution for the RTP over UDP streaming (in this

utilizing policies. When there is a policy change in the PSD  case WiFi channel 3). _ _

(either manually input or emergency-triggered), the cleang 3) A policy that forbids WiFi channel 3 is manually input

are immediately distributed to the users (terminals) cériest, in the PSD.

so the changes can be reflected in their behavior instantly?) The policy change is immediately sent to the USRP2
(Fig. 6). nodes, enforcing their reconfiguration in order to change

For more extensive details on the elaborated policy archi- the channel and perform appropriate spectrum handover.

tecture and its functionalities, the reader is referredstd.[ ) The PR calculates a new solution and passes it to
the USRP2s. The source USRP2 repeats step 2 and

combines both pieces of information to select the best
channel solution (in this case, WiFi channel 1).

y, channel ...)

Trigd (location, té:

E TriggerMsg
forwarded to PM

F. Applications of policy-based reasoning

The potential applications of the policy-based reasoning
concept and the previously elaborated policy architecture
are firmly stemmed in the cognitive networking context.
They allow crucial cognitive networking operations such as .
spectrum opportunity detection, spectrum mobility, speuat ol WA
management, etc. This sub-section discusses some of the
possible applications, along with results obtained on tbées
implementation of the policy-based architecture.

1) Spectrum handoverThe ability to perform spectrum
handover (i.e. switching between different channels ocspe
trum bands) is an essential cognitive networking concelpe. T
policy-based reasoning can significantly facilitate fastl ac- 0
curate spectrum handover, fostering the cognitive netingrk
viability and wide range deployment in various scenarios.
Fig. 7 depicts testbed results on the throughput of an RTP o¥&@. 7. RTP over UDP streaming throughput.
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Intenaity (48]

The application handover delays around 1.5s including =« « . s —
all actions performed during the channel switching. Howgeve
the system reaction time to policy chandegchange of policy
related messages and performing the reasoning) is onlydrol
200ms. The rest of the handover time is due to the actt
USRP2 characteristics.

2) Spectrum opportunity detectiorthe policy-based rea-
soning architecture can be used to efficiently detect spectr
opportunities and translate them into policies, which wi
easily govern the cognitive network behaviour aftervvarc |
[70]. Figs. 8-10 depict 2.4GHz ISM band channel occupancy™ -
measurements in an indoor scenario in a time period betwe®n 10. Received signal power readings (intensity in dB)toa 2.4GHz
9:30 and 21:30 for typical working days. The results show th&M band (x-axis) after 17:00 (y-axis).
channel 10 (2457 MHz) experiences the highest utilization
during the day and is not suitable for potential secondary = . .
usage. The frequency ranges 2400-2408 MHz and 24 Rlicies specifying the secondary spectrum access conditi
2480MHz are practically underutilized and are subject to _
potential secondary usage. The frequencies in the rangg 24@0licy specOppl is
2430 MHz can also be used for secondary access, becatg@ requesparams;
of relatively low utilization. However, one should be cauts defconst locl : Location = loc(42.004, 21.408, 0.0);
not to harm potential primary users in this range, and tioeeef allow if
a CSMA/CA medium access should be used with a backdéfstance(onLocation(regransmission),loc1)=20 1120m
slot higher than the standard IEEE 802.11 MAC. Finally, tH&m the loc1 point
frequency range 2426-2448 MHz is available only after 17:0fcentreFrequency(regransmission) in{2401..240% or //in
with lower transmission power levels in order not to violatMHz

the SINR requirements of potential primary users. centreFrequency(redransmission) in{2471..2479} and //in
MHz
byt , meanEIRP(regransmission)=30 and
bandwidth(regtransmission)=2.5; //in MHz
end

policy specOpp2 is

use requesparams;

defconst locl : Location = loc(42.004, 21.408, 0.0);
allow if

distance(onLocation(redqransmission),loc1)=20 //20m
from the locl point

centreFrequency(redransmission) in{2409..2429 and //in
MHz

meanEIRP(regransmission)=30 and

Eig. 8. !Duty cycle (%) measurements on the 2._46Hz ISM bandx(g} in bandwidth(regtransmission)z2.5 and

time period between 9:30 and 21:30 hours (y-axis). /lin MHz macType(regiatalink) == csmaca and
backoff(regdatalinky>=10 //in ms

end

policy specOpp3 is

use requesparams;

defconst locl : Location = loc(42.004, 21.408, 0.0);
defconstallowedPeriod : TimePeriod;
startTime(allowedPeriod,"T17:00:00");
endTime(allowedPeriod,"T08:00:00");

allow if

distance(onLocation(redgransmission),loc1)=10 and //10m
from the locl point

! . . o L inTimePeriod(onTime(redransmission), allowedPeriod) and
(Fx'i;x?g) T)Zﬁf,'vfffcﬁ?”l";';ggvzﬁfaﬁ?f ings (intensity In dB)lon2.4GHz ISM centreFrequency(redqransmission) in{2427..244% and //in
MHz
The previous elaboration can be translated into CoRaheanEIRP(regransmission)=30 and
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bandwidth(regtransmission)=:2.5 and //in MHz opportunity detection point of view, these channels aratée

macType(regdatalink) == csmaca and as riskier than the 2 MHz channels. Furthermore, when the
backoff(regdatalink)>= 10 //in ms targeted 70% for the spectrum assigned to 2 MHz channels
end is not fulfilled, i.e. some of the channels are repossessed by

the primary system, secondary users can occupy the bands
The first policy (i.e.specOppl specifies that transmissionsalready assigned to non-priority 1 MHz channels. The tektbe
are allowed within 20m of the defined location "locl”, orcomprises two priority classes of USRP2 based secondary
central frequencies in the ranges 2401-2407MHz and 247isers, i.e. a higher priority class (aiming to establish-rea
2479MHz using a mean Equivalent Isotropically Radiateiime video streaming communication) and a lower priority
Power (EIRP) of 30dBm and a bandwidth of 2.5MHz. Thelass (targeting file transfer communication). The firsssles
second policy (i.especOpp? specifies that transmissions beallowed to use 2 MHz and 1 MHz channels, while the second
allowed within 20m of the defined location "locl”, on centratlass is only allowed to use 1 MHz channels.
frequencies in the range 2409-2429MHz using a mean EIRP ofFig. 11 depicts the assigned bandwidth through time for the
30dBm and a bandwidth of 2.5MHz. Additionally, this policytwo types of channels, the priority and non-priority chdane
specifies that the nodes use CSMA/CA as a MAC proceduas well as the detected available bandwidth through timg [71
with backoff time slot duration of 10ms. Finally, the thirdit can be concluded that the priority channel assignment is
policy (i.e.specOpp3Ballows transmissions within 10m of themore static through time and, therefore, the higher psiorit
defined location "locl” in the time period 17:00-08:00, orlass would experience fewer forced terminations by the
central frequencies in the range 2427-2447MHz using a meatimary system. This is due to the fact that the priority aser
EIRP of 30dBm, a bandwidth of 2.5MHz and a CSMA/CAhave the "exclusive right” to the medium term history of the
MAC procedure with a backoff time slot duration of 10ms. duty cycle in the bands of interest. Another reason is that
The policy system can afterwards use these CoRaL spectrumenever the targeted number of priority channels fallswel
policies in order to regulate the secondary access to the thé current assigned (due to environment changes, 70% of the
GHz ISM band for multiple secondary users. The followingurrent available bandwidth), the exceeding number ofrtyio
sub-section elaborates this aspect in more detail. channels are not released, in order not to force termination
3) Spectrum sharing:The derived policies can be effi-on the priority users. In contrast, the assigned non-gyiori
ciently used to share the available spectrum among multifdandwidth through time follows the available bandwidthveyr
secondary users. The potential of the policy-assistedtigpac i.e. is more dynamic through time and adapts to more dynamic
sharing application is investigated with a laboratoryldedt environment changes.
comprising several unaware secondary USRP2 based usefBhe results from the policy-assisted secondary sharingy sho
that try to access and use the 2.4 GHz ISM band. The usapget the proposed scheme is flexible and efficient, since it
of this band is regulated according to the rules of the actiemables dynamic secondary system channel allocation and
secondary system policies specified in the PS residing orclassification using policies. The channel classificatioto i
desktop computer. The desktop computer is also enabled wtfiority and non-priority secondary channels ensures phiat
a sensing capability so that it can dynamically derive aratity users (or applications) will experience higher Qo&rth
changesecondary spectrum policieBurthermore, the desktopthe non-priority ones.
computer is enabled with reasoning capabilities and per$or
the policy reasoning, resulting in the secondary USRP2das .
users getting already reasoned information in the form 80000 T
an available solutions set. Whenever a policy change occi —— Priority BW
(because of a change in the environment, manual changk, e
the new solution set is calculated (reasoned) and the saopnc
users are informed about the changes and the new solutio
The secondary users’ policies are dynamically planne
considering spectrum occupancy history (similar graphmas
Figs. 8-10). The policy server keeps two tables, i.eshart 20000
term occupancy decisions tablsaving the channel vacancy
decisions in the last several minutes, andnadium term 0 _ . _ :
history reflecting the spectrum availabilities in the last coupl 11 12 13 14 15 16 17
of hours. Then, a channel is considered as an opportunity Time(h]
the duty cycle of the channel activity is below a predefined
threshold for 10% of the time in the short term histor)).:ig' 11. Available bandwidth vs. assigned bandwidth for firity and
; . .~ Znon-priority channels through time.
However, the entire frequency band in the short term history
is divided into 1 and 2 MHz non-overlapping channels, in
proportion 30% (at most) and 70% (at least if possible) of the . ) )
available spectrum. The 1 MHz channels are the ones that, Pr0s and cons of different reasoning mechanisms
although unoccupied in the short term table, were detected aDifferent reasoning mechanisms exhibit different behavio
used in the medium term history. Therefore, from a spectrum’intelligent’ wireless networks. There is no single reasg

Non-priority BW

40000 W‘*W

Ve " —

(=]
]
[=]
o

Bandwidth [KHz]




approach that can suit and accommodate the plethora of possi

ble applications of cognition in wireless networks. Theref

TABLE Il
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SUMMARY OF REASONING REALIZATIONS IN COGNITIVE RADIO

it is often extremely important to have as much as possible

a priori knowledge of the environment (i.e. observatiors) §

that proper actions (i.e. outputs) are inferred.
Proactive reasoning is applicable to wireless environme

that have relaxed time constraints. This implies that the

channel characteristics are not rapidly changing, allgwWor

increased reasoning time and more reliable reasoningtsestul

The proactive reasoning schemes are often combined with

sequential and centralized reasoning mechanisms in or|
to use the available time for several intermediate reagpn

results and relying on more closely related inputs/outputs
of the system. This ensures that the system'’s reaction ug

every intermediate reasoning result is carefully scraédi

NETWORKS
5 Reasoning realization| Advantages Disadvanatages
CBR Robust and resilient; | Inductive;
Allows distributed | Not  suitable  for
nt sharing of knowledge| highly dynamic
environments
FL reasoning Application in com-| Need for a priori
plex systems; knowledge;
Fosters easier crosg- Abductive

layer optimizations

n
ng

on

dS&gbsumption reasont

Decomposition of the
decision-making pro-
cess;
Ability to handle
complex optimization
tasks

Requires more imple-
mentation resources

Relational reasoning

and used in the process of converging towards an optimal

reasoning solution. Examples of such reasoning approac
include cognitive wireless backhauling or secondary spett

hes

Close to human cog-
nition;

Easy expression o
analogies

Requires sound scient
tific models for analy-
sis;

Analogies can be mis-
leading

access in TV white spaces. These scenarios assume a M®&cy-based

static environmental context in the spatial locations ¢¢riest
and application, thus allowing for proactive, sequentiadl a

Easy expression o
various environmental
limitations;

Not suitable for dy-
namic environments;

. . Easy management Reasoning time can

centralized reasoning. of environmental | be long if many poli-

In contrast to that, dynamic wireless environments exhibit CO?@“ expressed | tC'eS exist in the sys-
policies; em

fast changes, leading to time restrictions when it comes
cognitive reasoning. In this case, reactive reasoning isemg
suitable, as it can shorten the reasoning time and perfgrm
the reasoning within the specified time constraints. React
reasoning does not rely on past knowledge, but forms im-

minent actions based on immediately available information g paper focuses on the learning and reasoning chal-

or on the expected need for immediate actions. This forj,4es within cognitive radio networks. It discusses prent
of reasoning is often combined with one-shot and distributgyning mechanisms able to efficiently model the behavior

reasoning schemes and is expected to become a major cogfivqgnitive radio nodes. Furthermore, the paper gives a

tive reasoning mechanism for future dynamic cognitive 6adjy o4 overview of the notion of reasoning, discusses thet mos

networks. Examples of these types of reasoning can be foyaghyant reasoning mechanisms and frameworks today, and in
in cognitive ad-hoc networks and cognitive cellular netkgor particular focuses on policy based reasoning as an effiafeht

These scenarios assume very dynamic wireless environmegiSiementable mechanism for deploying cognitive behaior
imposing serious time limitations on the reasoning parhef t, . o1ass networks

cognitive cycle.

Table Il summarizes the main advantages and disadvantages L
of the specific reasoning realizations in cognitive radi¢- n€™ Future Directions
works today. The introduction of learning and reasoning into cognitive
radio networks still faces some challenges. Some of the
theoretical algorithms have high implementation comjexi
limiting their practical implementation. This also givése to

The focal point of cognitive radio networks that clearlythe problem of real-time algorithm convergence, of upmost
distinguishes them from other wireless networking sohgis importance for practical deployments.
their ability to learn, build knowledge bases, and reasamup Game theory has proven to be a powerful tool to model
stored knowledge. They tightly integrate these concepts iradaptations by cognitive radios, as well as emerging market
a unified networking framework able to ’learn’ its environmechanisms to support dynamic sharing of spectrum. Some of
mental surrounding and taken actions and efficiently 'reasahe challenges include translating the theoretical resaliout
in order to infer knowledge and perform optimal decisionstability of adaptations and convergence to an equilibrium
making. Additionally, the cognitive framework also congws into practical and scalable adaptation mechanisms and -an en
the characteristics of autonomous 'observation’ of thdoradforceable spectrum sharing etiquette. The field of mechanis
environment and optimal 'adaptation’ to current conditondesign, so successful in the design of auction rules, may
based on past perceived or maybe even future predicteald the key to broader protocol design for cognitive radios
actions. Therefore, cognitive radio networks are envisibas coexisting and competing for scarce resources, even in the
a multidisciplinary engineering challenge integratingnoepts absence of monetary incentives. Our research community has
from artificial intelligence and wireless networking sates. also only scratched the surface in the analysis of the impact

Very scalable;

Simple reasoning en
gine (comparisons of
policies in a database

V. CONCLUSIONS
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of partial or even inaccurate information on the actionetaka broad foundation for research in the area of cognitive
by these radios. Relatively recent developments in gamesraflio networks, especially in the distinct sub-areas afrlieg
imperfect public and private information have the potdntiand reasoning,. The end-goal is to provide autonomous and
to yield new insight into what we have termed the price afognitive behavior of wireless networks in the future wéss
ignorance [72]. interconnected world.

In terms of machine learning, one interesting aspect that
requires further investigation in a cognitive network smém
is the concept of delayed reward. Most of the cognitive
radio literature focuses on the maximization of the immtdia This work was partially supported by COST Action 1C0902,
reward, whereas the RL paradigm aims at optimizing the loog Cognitive Radio and Networking for Cooperative Coexis-
term performance by taking into account the consequencedarice of Heterogeneous Wireless Networks and the EC FP7
the agent’s actions into the future. An important factorabhi ICT-257626 NoE ACROPOLIS. It is also based upon works
needs further attention is the convergence time of many sfipported by the Science Foundation Ireland under Grant
the RL learning algorithms discussed in the paper. Thisasp&lo. 10/CE/11853. Authors V. Atanasovski and L. Gavrilovska
will become more and more significant with the increase @xpress their gratitude to Mr. D. Denkovski for his fruitful
the degrees of freedom of a CR, i.e. of the cardinality @fllaboration in the development of and the experimentatio
the action space of a CR. For example, if we consider twéth the policy testbed.
combined channel and power selection problem, the dimensio
of the action space for a realistic scenario does not allow
the use of the traditional look-up table approach to stoee th
value function. It is not unrealistic to envisage a scenarifl] J. Mitola, “Cognitive Radio An Integrated Agent Architere for

where a cognitive network will be required to dynamically ?é’?ﬁvniﬁig';egﬁfkﬁ;?ﬂoévfehaga dz'f)%eo”at'o”’ KTH Royal il of

perform carrie_r aggregatioq and, therefore, to decide hom Y. Wu, B. Wang, K. Liu, and T. Clancy, “Repeated open speut shar-
many and which channels it should access, thus further (in ing game with cheat-proof strategiesEEE Transactions on Wireless
a combinatorial manner) increasing the number of decision Communicationsvol. 8, no. 4, pp. 1922-1933, 2009.
. ) 9 B] I. Malanchini, M. Cesana, and N. Gatti, “On spectrum sgtm games
variables. ) ) ) . in cognitive radio networks,” iIHEEE Global Telecommunications Con-
There are several cautionary perspectives when discussing ference (GLOBECOM)2009, pp. 1-7.
practical applications of cognitive reasoning in wirelegg- [41 O. Raoof, Z. Al-Banna, and H. Al-Raweshidy, “Compettispectrum

K | d . d the i | . | sharing in wireless networks: a dynamic non-cooperativenegyap-
works. As already mentioned, the implementation complex- proach,” Wireless and Mobile Networkingp. 197—207, 2009.

ity may seriously limit the entire solution, thus an optimal[5] J. Huang and V. Krishnamurthy, “Transmission controtagnitive radio

tradeoff between resources and expected outcomes is a must.252 Esa“jfl’z\’éaé‘ gygﬁgﬁigﬁ?%nsgﬁ%ﬂnﬁzg'tr?;olfagg‘“;‘?‘elsho'd
Furthermore, the process of cognitive reasoning is inkljita 201_315 2010. oneet 5%, 1o = PP

time consuming, giving rise to the aspectrefisoning time  [6] M. van der Schaar and F. Fu, “Spectrum access games amiggitr
It is common to think that Ionger reasoning times yield ette learning in cognitive radio networks for delay-critical pdipations,”

Its. but thi b bl tic in d . . Proceedings of the IEEEvol. 97, no. 4, pp. 720-740, 2009.
results, bu IS may become problematic in dynamic envi 7] F. Fu and M. van der Schaar, “Learning to compete for resesiin

ronments (especially in wireless networks). Namely, longe ~ wireless stochastic game$ZEE Transactions on Vehicular Technology
reasoning time may result in environmental changes thatdvou _ Vol- 58, no. 4, pp. 1904-1919, 2009.

. - B. Wang, K. Liu, and T. Clancy, “Evolutionary game framenk for
need to be taken into account anew, thus leadmg to an e } behavior dynamics in cooperative spectrum sensing,lEBE Global

increasing delay and, sometimes, even non-convergenbeoft  Telecommunications Conference (GLOBECQOR0S, pp. 1-5.
reasoning process. In this sense, it is extremely impoitant [9] D. Niyato and E. Hossain, “Dynamics of network selection het-

. . . erogeneous wireless networks: an evolutionary game agipfolEEE
address the number of reasoning inputs that will be used for ==~ =" “\enicular Technologyol. 58, no. 4, pp. 2008-2017,

the process. An efficient reasoning engine assumes careful 2009.
selection of important and unimportant knowledge withie th(10] T. Jiang, D. Grace, and P. Mitchell, “Efficient expldeat in reinforce-

" ; : ; P ment learning-based cognitive radio spectrum shari@ymmunica-
cognitive cycle, making the reasoning closely intertwiméth tions, IET, vol. 5, no. 10, pp. 1309-1317, 2011.

the learning. Finally, the choice of the reasoning framéwori1] c. wu, K. Chowdhury, M. Di Felice, and W. Meleis, “Spagin man-
and approach requires accurate estimation of the environme  agement of cognitive radio using multi-agent reinforcetniearning,’

; in 9th International Conference on Autonomous Agents andiageint
tal c_or_1text and is strongly gffected by and dependent on the Systems: Industry tracl010, pp. 1705-1712.
precision of the other cognitive cycle elements. [12] B. Lo and I. Akyildiz, “Reinforcement learning-basedaperative sens-
As the field of cognitive radio networks attracts increased ing in cognitive radio ad hoc networks,” ifEEE 21st International

; ; ; Symposium on Personal Indoor and Mobile Radio Communitstio
academic and industry interest, new standards must foster (PIMRC), 2010, pp. 22442249,

platform independence and cover the plethora of currentii) | macaluso, L. DaSilva, and L. Doyle, “Learning Nash (ipria in
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