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Abstract

The digital agenda in education has transformed practice with students
increasingly being taught in a technology-rich environment.
Alongside this rapid technical revolution in learning is a slower
evolution in digital assessment. Teachers can harness the positive
“affordances” of Computer-Based Assessment (CBA) to support
student learning. Through analysis of test data and reflections by
stakeholders, this paper investigates Maths Assist, a CBA where
feedback to teachers and students specifically highlighted students’
errors and misconceptions in elementary-level mathematics. The data
suggest the potential to accurately capture and analyse etrors through
automated processing with evidence that student errors expected in
relation to different mathematical skills were identified.  The
experiences of the test developers in refining the program are
highlighted in the paper.

Introduction and Purpose of Study

Competence in mathematics has for a Jong time exercised the policy agenda within
and across education systems. From the nascent international surveys of educational
achievement to the present day, mathematics ranks amongst the “core” subjects in
most education systems. Policymakers, politicians and the media routinely emphasise
mathematics in their analysis of what is right, or wrong with educational practice.
Recently, the term “PISA shock™ is used to describe the emotional reaction by the
policy community when students® performance in “core” arcas such as mathematics
as measured by the OECD survey is at variance with local expectations. After-effects
of PISA shock manifest themselves in significant reform of curricula and overall
educational structures and practices, as in the recent cases of Norway and Germany
for example. In Treland, concern with students’ mathematics achievement (Eivers et
al., 2010; Engineers Ireland, 2010) has prompted a national literacy and numeracy
strategy (DES 2011) alongside a fundamental review of mathematics curricula at
secondary level (Project Maths Development Team, nd).

What is clear from the vigorous policy debate around mathematics is that despite
continual reform of curricula and teaching methods, many students still underperform
i1 mathematics. Within the drive worldwide towards more broadly-based and skills-
based curricula (Rychen & Salganik, 2003; Partnership for 21% Century Skills, nd;

DES 2012), mathematics retains its central and separate place within curricula,



notwithstanding the policy rhetoric in relation to cross-subject skills such as critical
thinking, problem solving, communication, collaboration, personal development,
creafivity etc.

Despite the range of techniques used by teachers in mediating mathematics
curricula to students, many students fail to achieve. This suggests the need for
additional approaches and techniques aimed at providing assistance to teachers and
students. Two such approaches are the focus of this paper: Error Analysis and
Computer Based Assessment (CBA). Neither of these is particularly new in isolation.
Taken together, however, we believe that the incorporation of error analysis of
students’ mathematics responses within CBA represent the type of “affordances”
associated with computers whereby certain activites and tasks are “made easily
possible” by a medium such as a computer (Bearne & Kress, 2001: 90). The present
study describes a novel assessment programme called Maths Assist that combines the
diagnostic potential of error analysis with the administration and scoring potential of a
CBA.

Frror analysis in mathematics involves the identification and categorisation of
specific types of errors committed by students when working mathematically, whether
in class, on tests, or in conversation. It has as its premise the opportunity to use such
information to better inform teachers, students and other stakeholders so that learning
can be enhanced. However, for such an intuitively appealing approach, there are
surprisingly few operational examples of error analysis in practice within education
systems worldwide. We hypothesise that part of the reason for this centres on a
number of related issues (i) the logistical complexity of conducting the one-to-one
diagnostic interviews with learners typical of the approach, (i) difficulty in
convincing teachers that the process was worth the trouble, essentially a sense that the
approach is not practical along with (iil) concerns about inferring thought processes
from errors, especially written errors.

Here, then, is the second focus within this paper, drawing on the digital agenda in
education. There has been a marked increase in the use of information and
communications technology in teaching and learning, with students being increasingly
taught in a technology-rich environment. Alongside the rapid digital revolution in
learning is, however, a somewhat slower evolution in digital assessment. For
assessment 1o be seen by teachers and students as relevant to the digitally-oriented

pedagogical environment, greater alignment is required between stakeholder needs



and the nature of assessment. Whereas technological developments in the field of
educational assessment are “inexorable and inevitable” (Bennett, 2002) as technology
makes it possible to assess students in ways not previously envisaged, schools
frequently operate in a misaligned state where learning is mediated through digital
technologies but assessed using more traditional pencil-and-paper formats. The
present study attempts to address this anomaly.

In this paper, we contend that the recent availability of highly flexible and
sophisticated CBAs offer opportunity to reapply the principles and lessons of error
analysis within classroom settings, in keeping with the early work of Drucker &
McBride (1987) and more recent proposals from Buiffington & Clements (2011).
One of the affordances of the computer is to remove some of the inefficiencies in
procedures. The opportunities and challenges associated with the ease of testing and
scoring by computers represents the second theoretical focus of the paper.
Consequently, this paper explores the application of error analysis techniques in
mathematics within the context of a CBA programme termed Maths Assist, designed
for use with elementary grades and where feedback to teachers and students
specifically highlighted students” mathematical errors and misconceptions. The paper
investigates the implementation of the Maths Assist CBA across a broad range of
mathematics topics with a sample of students in Ireland, drawing on test data, test
developers’ experiences and a limited selection of teacher perspectives. The main

objectives underpinning the investigation are:

1. Illustrate an application of error analysis in mathematics mediated through a
computer based assessment programme.

2. Evaluate the potential role of automated error analysis in providing credible
feedback to teachers and students in relation to mathematics performance,
particularly in relation to common sources of difficulty encountered by
students across topics.

3. Explore the extent to which automated scoring algorithms could accurately
capture student responses, particularly in the context of free-response (non-

objective) items and across a range of mathematical topics



Theoretical framework

Error Analysis

This study draws on the long history of attempts to use information about student
errors in elementary mathematics to diagnose difficultics. Larly studies (Brueckner &
Flwell, 1932; Grossnickle, 1935) typically focused on specific topic areas and
emphasised the identification and classification of errors but often resulted in large
and unwieldy numbers of categories. Subsequent studies focused on identifying
smaller, more generic classifications of errors (Lankford, 1974, Newman, 1977,
Casey 1978; Clements, 1980) to reveal more fatent cognitive thought processes
leading to incorrect item 1'esponseé. This, along with other work by Confrey (1990),
Borasi (1994), Smith, diSessa and Roschelle (1993) and Leighton and Gierl (2007)
highlight the compatibility of error analysis techniques with constructivist ways of
interpreting and promoting learning through assessment.

Conceptualisation and evidence for the efficacy of such approaches draw
especially on work in Australia during the 1970s and 1980s by Anne Newman and
others who embraced her diagnostic interviewing process. Whereas there was intense
rescarch activity during that particular period, the initiative never took hold to the
extent that the positive findings suggested it should, despite some later investigations
(Ellerton & Clements, 1996; Ayers, 2001, White 2005). One sustained
implementation was initiated by the New South Wales Department of Education and
Training in the form of its Counting On and Counting On2007 programmes where
the five “Newman prompts” centrally underpin the Department’s advice to teachers
(NSW, nd). An evaluation of the 2007 programme lends continuing support to the
efficacy of the Newman procedure as a method to help determine why students make
mistakes with written mathematics questions (White 2008).

Recent iterations of error analysis methodologies are consistent with the cognitive
diagnostic assessment and classification approaches advocated by Leighton & Gierl,
(2007) and Rupp, Templin & Henson (2010). These models seek to facilitate teachers
in deriving more cognitively based inferences about what students can and cannot
understand and do, especially as this relates to possible student misconceptions. The
present study is framed within a more recent strand of rescarch seeking to develop

computer-based forms of cognitive diagnostic models as evident in the work of



Huebner (2010) and Buiffington & Clements (2011) that aims to draw on the

affordances of e-assessment

Computer Based Assessment

One rationale for applying CBAs to cognitive diagnostic assessment models is to
maximise the usability of the assessments for teachers. Whereas previous research
attests to the efficacy and usefulness of error-analysis methods in mathematics,
practical application has been relatively limited due to constraints implicit in the busy
realities of classroom life and the logistical and professional challenges of scaling up
Newman-like individual diagnostic interviews within the context of regular classroom
life. The error analysis literature offers, therefore, as-yet unrealized potential for
helping teachers better understand, and thercfore, address students’ difficulties in
mathematics. The present study is designed to overcome the logistical, cumbersome
obstacles to error analysis-oriented assessment in mathematics through building on
the affordances implicit in CBA.

CBAs encompass a broad range of digital assessment techniques that are stored,
delivered, answered and scored automatically using information and communication
technologies (Cook and Jenkins, 2010). Once development efforts and costs are
removed, the convenience and ecfficiency of CBAs have encouraged their
implementation in a wide range of settings. The literature highlights a range of
advantages associated with CBAs (Johnson & Green, 2006). Challenges remain in
relation to development issues, item design, student interface, student familiarity,
roughwork, scoring and the somewhat more intractable issues of unreliability of the
hardware, software and internet connections (Bennett and Bejar, 1998; Choi and
Tinkler, 2002; Higgins, Russell and Hoffman 2005; Scalise and Gifford, 2006;
Kingston, 2009; Eggen & Lampe, 2011).

Whereas an alluring benefit of CBA is the provision of quick feedback to
stakeholders, we argue that the nature and quality of the feedback is of greater
importance. Many CBAs provide number correct feedback to students, or variants of
number correct that depend on subsequent transformation and scaling of data based on
a range of item response models. Moving from these approaches to embracing
different forms of feedback requires both change in test developers’ habits and the
support of users, particularly teachers. Maximising the diagnostic information from

student responses is a key goal and can be achieved by analysing the examinee’s



responses to each item and drawing inferences across items about more generalised
common mathematical errors and conceptions that may underpin and undermine
student learning in mathematics.

Incorporating error analysis technigues within CBAs requires certain assumptions.
Much of the evidence for etror analysis derives from work based largely on individual
diagnostic interviews conducted with students. However, inferring thought processes
solely from errors on written tests is not unproblematic (Burke, 2011) and caution is

required in interpreting results carcfully.

Towards a combined model

The benefits of error analysis and CBA were combined in the development of an
assessment programme known as Maths Assist. This programme, aimed at the middle
elementary grades, employs software to allocate student responses to a small number
of over-arching categories that describe the mathematical action and thought
processes implicit in the observed response.

The CBA was designed in the context of the national Primary Mathematics
Curriculum (Government of Ireland, 1999), using test blueprints that reflected the
objectives of the curriculum, including three different forms of mathematical skills.
Fifteen of the topic areas from the mathematics curriculum were selected and short,
focused diagnostic tests were developed to measure student achievement on and
misconceptions about the topics. Participating students accessed the diagnostic tests
online, from their classrooms.

Student responses were automatically captured by software and analysed using
classical test theory in addition to automated error-analysis procedures. The results of
the analyses were returned to teachers by email, Processing and scoring of the tests
yielded three different forms of data. Simple polytomous raw scores were estimated
for each student based on their performance on each item where the response to an
item was judged as correct (1 point), partially correct (0.5) or incorrect (0). As such,
this facilitates the compilation of item difficulty and discrimination statistics and the
generation of item-level, topic-level and test-level feedback to teachers. Overall, this
polytomous score is used to generate item and test-level data about individuals and
the class as a whole across all the items and for specific subsets of items in relation to

content and skill Jevel.



Separate processing of the data used students’ individual item-level responses to
categorise a response into one of a small number of item-specific response options or
outcomes, termed an Jrem Code (IC). Examples include whether the response
seflected a careless slip, partial completion of a required method to find a solution,
inability to convert and mathematically frame a word problem, etror in calculation,
unable to rename in subtraction, confusion of two concepts €tc. Initial ideas for the
breadth and nature of the possible response codes were drawn from the literature
while implementation of the diagnostic testing programme over time offers empirical
evidence for these responses and for the identification of new response codes.

The Irem Codes are linked to a set of broader, over-arching Lrror Codes (EC)
applicable to the mathematics curriculum as a whole. This requires a judgement
about the best match or fit of the examinee’s (incorrect) Item Code with a list of seven
Error Codes. Drawing on the basic approach implicit in Newman’s (1977) five
categories of response (or error), our model includes seven possible categories into
which a student’s incorrect response is classified. These categories transcend topic
areas in mathematics and provide an overall picture of the outcomes of students’
engagement with test items linked, in part, to the typical errots that students make in
solving test items. The Error Codes included in Maths Assist are presented in Table 1.
These codes form the basis for deriving student profiles related to errors or
misconceptions evident in their performance as measured by the CBA. Categories in
the model are not meant to be hierarchical, reflecting, rather, different classes of
errors identifiable in students’ responses. Further details on the codes are available in

Burke (2011).



Table 1

Global Error Codes used in categorising student responses on Maths Assist

Code Category

Description

1 Concept
understanding

2 Strategy selection

3 Method execution

4 Carelessness

5 No conclusion

6 Viewed but not
attempted /
completed

7 Not reached

Understanding of the key elements or principles governing a
mathematical domain and recognising how the knowledge, elements or
principles interrelate.

Choice made by learner in converting semantic or symbolic prompt into
appropriate mathematical structure. Frequently applies to converting
problem prompts into mathematical/computational expression.
Difficulties in executing the procedures known to be required to solve
the mathematical task; frequently but not restricted to use of algorithms.
Errors that occur apparently at random and uniikely to be repeated.
Impossible to estimate the specific nature or cause of error; includes
items not attempted or not reached.

The student viewed the item but did not provide any response. This
can be interpreted as either (i) not attempting the itemn at all or (i) not
completing it to the stage of providing a response/solution.

The student did not provide a response to the item because he/she did

not view the item af all.

Accordingly, over a series of items or the entire test, individual item responses
are categorised first into Item Codes and then into global Error Codes thus facilitating
compilation of a pattern of overall errors and misconceptions. Scoring rules are
applied to identify items that proved particularly challenging for each class or group
of students; other scoring rules and parameters govern the identification and reporting
of students’ achievement and progress on mathematical content and skill areas. Once
diagnostic data are extracted from student responses, a feedback pack is generated and
returned electronically to the teachers, to aid reflection by teachers and students. The
pack contains information about the dominant errots being made by the class and by
individual students at a particular time. This provides a manageable task for the
teacher in addressing a limited number of dominant and recurring errors within a

class.

Research Framework and Methods

Data for the paper draw from an exploratory diagnostic CBA with elementary
students in Ircland. The research, in keeping with Tasakkori and Teddlie (2003), is
underpinned by a pragmatist philosophical paradigm that accepts as reality the
different ways in which students and indeed teachers perceive mathematics and is thus

consistent with the view of student conceptions as “children’s beliefs, theories,



meanings and explanations” and of student errors as frequently representing
overgeneralizations on the part of the students, rather than idiosyncratic random
mistakes (Confrey, 1990; Smith, diSessa & Roschelle, 1993).

Theory underpins the conceptual basis to this investigation. Research has
suggested a place in education for digital resources and for the analysis of students’
errors in mathematics, accumulated theory that can be bridged by applying error
analysis to CBAs. The investigative processes, encapsulated in a number of specific
research objectives highlighted earlier, reflect relevant understanding of
epistemology, theoretical perspective, methodology and methods and the vigorous
debate about the relative merits of positivist, phenomenological and pragmatist
research traditions (Cresswell, 2005; Robson, 2011). As a consequence of a pragmatic
research orientation adopted, the tendency to take sides in the “paradigm wars” with
one of either quantitative or qualitative approaches to data gathering was eschewed in
the design of the study, in keeping with the freedom and the multiple opportunities
espoused by Johnson and Onwuegbuzie (2004: 14). As such, the research can be
characterised as a pragmatic, mixed methods exploration of a developmental project
generating primarily quantitative with some limited qualitative data to inform the
rescarch objectives in a way that “seeks to combine both quantitative and qualitative
traditions on the basis that research issues in education are often so complex that the
insights of both approaches are required if we are to gain a good understanding”

Newby (2010, p. 92).

Sources and Data

The present study was conducted in the context of the national mathematics
curriculum in the Republic of Treland. The methodological framework drew on two
sources of data, comensurate with a mixed methods design.

The majority of the data are quantitative test data generated by the CBA
programme itself. The CBA was administered to 175 third and fourth grade students
in five schools during the course of the 2011-12 school year, as summarised in Table
2. Participating schools were characterised by small or medium student enrolments,
school sizes consistent with the majority of schools in the country. As such, a number
of the students were located in multi-grade classes, sitting alongside peers from lower

or higher grade levels where the teacher simultancously teaches a number of grade
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levels, typically two or three. As part of the study, separate responses were sought
from participating teachers using a questionnaire format employing scaled likert items
and more open response formats. This instrument explored teachers’ perspectives on
(i) the accessibility and user friendliness of the CBAs, (ii) the usefulness of the CBA
overall, (iii) the usefulness of the feedback and examples of ways in which they used
the feedback, and (iv) the extent to which students enjoyed and engaged with the

assessmerit process.

Table 2
Participating schools and grades

School School Size # Teachers  # Students # Students
3" Grade 4" Grade

1 Medium 3 44 33
2 Small 2 3 9
3 Small 1 7 6
4 Small 2 26 18
5 Small 1 12 12
Total 9 97 78

A series of short, unspeeded CBAs were accessed by students over the internet at
times chosen by the 9 participating teachers to suit their own groups. Five major
mathematical topics were included: Number, Algebra, Shape and space, Measures
and Data and each of these was subdivided into a smaller number of sub-topics as
presented in Table 3. Participating teachers had the freedom throughout the year to
administer the assessments as single testlets or in sets of 2 or 3 topics and to
administer as few or as many as they wished.

Test specifications incorporated three types of mathematical skills: Conceptual
Understanding; Using Procedures; and Reasoning and Problem-Solving. Each CBA
typically included 6-12 items and students entered their answers on computer using
the keyboard or mouse. A range of open and closed item types were employed,
drawing, in part, on the taxonomy by Scalise and Gifford (2006) with emphasis on
free-response items where students used the keyboard to type in numbers or other data
into answer boxes on screen, along with other open formats. Student responses were

automatically captured by software and analysed using classical test theory in addition
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to automated error-analysis procedures. The results of the analysis were returned (o

teachers by email.

Table 3
Topics assessed in CBA: Grades 3 and 4

Mathematical Topic Grade 3 G3 Grade 4 G4

Area #objectives # items # objectives  # Items

Number Place value 3 8 2 7
Addition / 2 5 1 3
subtraction
Multiplication 5 12 4 12
Division 3 10 4 8
Fractions 4 9 5 9
Decimals 4 9 6 9

Algebra Number 2 6 2 8
sentences
Number patterns 4 9 2 6
& sequences

Shape & space  2-D shapes 5 10 4 10
Lines and angles 4 8 4 8
Symmetry 2 6 2 7

Measures Time 3 6 4 7
Money 2 6 3 7
Weight 4 6 3 8

Data Representing & 5 8 3 8
interpreting data

TOTAL 52 118 51 117

Student test responses captured by the software were aggregated and analysed
using descriptive statistics and procedures associated with classical test theory.
Polytomous item scores were exiracted for each student and these were used in
deriving aggregate scores that facilitated the provision of traditional forms of
feedback to teachers. Item Codes and overall Error Codes were also generated for
cach student. The error codes were used to identify the most common sources of
errors detected in students’ responses over collections of three topics. To this end,
students were required to take tests on any three topics following from which

processing was initiated and feedback subsequently provided.
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In the context of this paper, analytic methods consist of descriptive statistics of test
scores and associated distributions of errors in relation to the test as a whole and sub-
scores based on the three mathematical skills. Reliability of the tests was estimated
using Cronbach’s Alpha. Data from the teacher questionnaires were analysed using
numeric and qualitative approaches. Given the very small number of questionnaires
returned (4), partly a function of late distribution at the end of the school year, the
questionnaires are used merely to offer additional observation and commentary in

relation to teacher perspectives.

Results

Applying scoring and analytic rubrics

The majority of assessment items required students to provide rather than select
answers, as illustrated in Figure 1. Student responses were scored automatically and

the scoring algorithms proved robust to idiosyncratic responses by students.

3kg 2509 7509

How much would all three items weigh together?

kg g

Figure 1  Sample measures item related to 3" Grade objective: solve and
complete practical tasks and problems involving the addition and
subtraction of units of weight (kg and g).

The mathematical task for students in this item involved the addition of weights and

appropriate conversion of grammes to kg. Roughwork paper was available to
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students who were required to enter the answer in the boxes on screen using the
keyboard. Given the open nature of the item, a range of responses was expected, as

highlighted in Table 4.

Table 4
Expected student responses, associated Ttem Code, polytomous scoring and Error

Code related to Figure 1.

Ttem Error

Code Bescription Sample answer Score  Code'
I Correct 4kg 1
2 Slip: Minor error 4000kg 0.5 4
3 Incorrect strategy selected 2kg, 2000g, 3250, 3750 0 2
4 Incorrect setup 1003, 1030, 1300 0 3
5 Unable to catry in addition 3900 0 3
6 Error in the procedure 9103, 1070 0 3
7 No conclusion Other response 0 5

" T'Gee error codes in Table 1

Responses to the item were expected to fall into one of seven item response
categories (item codes). For example, a response of 4000kg (Item Code 2) reflects
correct understanding of 1000g in a kg, but possible carelessness in converting the
answer back into appropriate units, with the consequent award of partial credit (0.5)
and a designation of “carelessness” in the overall error codes underpinning the
diagnostic model (Table 1). A student response of 2 kg or 2000g suggests choice of
an incorrect operation (subtraction instead of addition), thus receiving a score of zero
and suggesting, in broader model terms, a strategic error (Error Code 2). ltem Code 4
also suggests incotrect setup of the calculation, leading to answers such as 1003, 1630
and 1300 {with consequent designation as Error Code 3), as highlighted by the student
roughwork answers in Figure 2, drawn from an administration of the item with a

previous cohort.
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Figure 2 Selected illustrative student responses to weight item in Figure 1.

The automated process underlying the above illustrates the technical capacity of
the software to infer mathematical intention from free responses provided by students
and embed this in the scoring.

Another example is drawn from the topic Lines and Angles (Figure 3). This
example illustrates the capacity of the software to accommodate the inevitable and

mathematically-irrelevant mis-spellings in relation to the correct answer (acute).

Click in the box and type your answer.

Figure 3  Sample Shape & Space item related to 4" Grade objective: Draw,
discuss and describe intersecting lines and their angles

The objective called for students to “draw, discuss and describe intersecting lines
and their angles”. Part of the interpretation of this objective within the curriculum

involves students identifying acute, obtuse and right angles, the approach taken in
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Figure 3. Responses to the item were expected to align with one of 5 item codes, as

indicated in Table 5.

Table 5
Expected student responses, associated Item Code, polytomous scoring and Error
Code related to Figure 3.

Item Error
Code Description Sample answer Score  Code'
1 Correct Acute (or variants of i
spelling)
2 Slip: None allowed - 0.5 4
3 Misread diagram Straight angle, right 0 1
angle
4 Incorrect strategy: answered  Child answered using 0 2
i degrees degrees
5 No understanding of acute  Any other answer 0 1
angles

U'See error codes in Table 1

As an item designed around measuring relatively simple conceptual understanding,
it was expected that incorrect responses would Jargely reflect this skill dimension, as
represented in Item Codes 3 and 5. ltem trialling had indicated some instances of
students attempting to respond in terms of degrees, and this is reflected in Item Code
4, with a corresponding Error Code designation of strategy selection, though of course

this might also be considered a careless mistake (Error Code 4).

Overall results

Teachers had full flexibility in administering as many topics/testlets as they wished
to their students and there was considerable variation in test response patterns as a
result. All data and corresponding statistics presented in the paper, therefore, are on
the basis of the tests taken by students, where the numbers of students taking any
particular test varied. Overall statistics indicate a test programme of moderate

difficulty (full scale p-values .59 and .62 in both grades, as indicated in Table 6.
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Table 6
Descriptive statistics on tests: Overall and by Skill level. Data on % scale 1-100.

Grade 3 Grade 4
Mean  Standard  Mean Standard
Score Dev Score Dev
Total test (All items taken) 59 18 62 19
Conceptual understanding 62 I8 61 26
Using procedures 54 27 68 21
Reasoning & problem solving 56 23 56 25

The mean score on the test across all students and items in relation to Grade 3 was
59%, with a standard deviation of 18%, with broadly similar results for 4™ Grade.
Data reported are in relation to raw scores as the data scores were not normalised.
Therefore, caution is required in over interpreting mean differences in skill level p-
values as presented in Table 6. The raw score data show that items measuring
students’ conceptual understanding were relatively easier that items measuring
procedures and reasoning in 3% Grade, with a somewhat different pattern in 4" where
procedural items were easier.

Table 7 presents summary statistics for both grades by mathematical topic. Again,
caution is urged in relation to the non-standardised nature of the student scores. The
results highlight a range of student performance on the different topics, bearing in
mind that not all students took tests on all topics. From the data we see that students
performed well on some topics: division, number patterns, lines and angles, weight
and data in 3“1; place value, number sentences, lines and angles, and time in 4™ Grade.
More difficult topics were evident also: fractions in both grades, decimals and

symmelry in 3", for example.
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Table 7
Descriptive statistics on tests by Topic. Data on % scale 1-100.

Grade 3 Grade 4
Mathematical Topic Mean  Standard  Mean  Standard
Area score Dev score Dev
Number Place value 57 14 88 14
Addition & 63 25 54 28
subtraction
Multiplication 58 22 69 24
Division 71 22 52 25
Fractions 49 30 51 30
Decimals 54 17 63 24
Algebra Numbet 75 23 88 28
sentences
Number patterns 77 17 93 08
& sequences
Shape & space  2-D shapes 66 19 69 14
Lines and angles 70 17 82 19
Symmetry 50 23 79 26
Measures Time 60 16 83 22
Money 68 25 63 21
Weight 33 19 50 25
Data Representing & 77 14 75 23

interpreting data

Reliability of the tests

Students took different patterns of topics, so efforts to calculate overall reliability
estimates for the two consolidated tests are problematic.  Given the topic-by-topic
nature of the test administration, individual topic reliability is more relevant. As the
tests are not designed as speeded tests, with no suggested time limits for teachers to
apply (as verified in data presented later in Tables 9 and 10), we felt that internal
consistency reliability estimates were appropriate. Cronbach’s Alpha was used to
estimate the extent to which the items in a topic assess homogeneous content and

skills and indices are presented in Table 8 for Grades 3 and 4.
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Table §
Cronbach’s Alpha reliability estimates for topic tests

Grade 3 Grade 4
Mathematical ~ Topic Alpha  # Items Alpha # ltems
Area
Number Place value 35 6 30 5
Addition & .56 5 16 3
subtraction
Muitiplication 5 11 .84 12
Division .69 10 72 8
Fractions 19 9 .80 9
Decimals 50 9 .65 9
Algebra Number Sl ) 93 8
sentences
Number patterns 45 8 A5 3
& sequences
Shape & space  2-D shapes 65 10 20 10
Lines and angles 30 7 58 8
Symmetry 39 6 81 7
Measures Time -.06 6 7 7
Money .68 5 .62 6
Weight 48 5 .67 8
Data Representing & - 11 7 a7 8

interpreting data

The tests were aligned with the topics and objectives in the national mathematics
curriculum, with the consequence that there was not uniform length to the tests and, as
highlighted earlier in Table 3, numbers of objectives and items varied from topic to
topic. This has implications for the reliability of the scales, as demonstrated in the
data in Table 8. In estimating reliability, some items were deleted from the
calculations due to zero variance observed in the data. Many of the alpha estimates
are encouragingly high (Grade 3 fractions, multiplication, division, money; Grade 4
number sentences, multiplication, symmetry, fractions, data etc). Others are
significantly lower (for example place value in both grades), with two particular
challenges in relation to time and data in Grade 3. These latter data are in need of

further analysis in relation to the negative covariances between items within the
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relatively short scales (6 and 7 items respectively), though the small numbers of
students responding to these topics may be relevant also.

What we can draw from these reliability data lends some support to the potential to
develop high-quality, consistently functioning items within a diagnostic CBA.
Though a crude measure, the average of the Grade 3 reliability estimates (omitting
time and data) is .55, with five of the estimates greater than 0.6. The average in 4th
Grade is .59, with 10 estimates greater than 0.6 and seven greater than 0.7. Given the
role of each CBA as part of a larger and continuous testing programme accessed by
students, it can be argued that the high levels of reliability normally expected in the
case of one-shot summative standardised tests may not be as necessary, in keeping
with the analyses of Linn & Miller (2005) and Nitko & Brookhart (2007). The latter’s
suggestion that “the more important and the less reversible is the decision about an
individual based on the assessment instrument, the higher the reliability should be”
(p. 81) is noteworthy. The Maths Assist programme is a process whereby teachers
receive continual data in relation to their students, thereby reflecting a very different
instrument from the more traditional types of standardised multiple-choice

achievement tests.

Use of the Error Codes

Application of the error coding to student responses facilitated compilation of data
reflecting the distribution of incorrect student responses actoss the designated error
codes. Scoring software captured all data inputted by students during the testing
session, including information about the number of attempts made at an item, skipped
items, items to which students refurned etc. These data provide a rich array of
information in relation to student behaviour on the tests. The filtering of student
responses into different predetermined categories provides an overall profile of
responses distinctly different to summed results or averages based on dichotomously
or polytomousty scored procedures. Tables 9 and 10 presents a summary of the
allocation of student incorrect responses to a range of error categories for Grades 3
and 4 respectively. These data reflect students’ performance (i) across all items taken
and (ii) across the three subsets of the fests, namely, the skill areas of knowledge and

understanding, using procedures and reasoning and problem-solving.
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Table ¢
Distribution of incorrect student responses across etror categories: (Percentages of
student responses in different categories). Grade 3

Reasoning &
Error Total Understanding Using Problem
Code Description Test & Recalling  Procedures Solving
1 Concept 47 62 35 33
understanding
2 Strategy selection 6 7 5 16
3 Method execution 14 6 25 17
4 Carelessness 6 4 10 4
5 No conclusion i1 <1 20 20
6 Viewed but i3 20 4 9
unattempted
7 Not reached <1 <1 0 <1

Overall, the Grade 3 results show moderate success for students on the items on the
test as a whole and for the three skill areas. Of total student responses across all items,
61% indicated no error, with corresponding figures of 64, 59 and 58 percent
respectively for the three skill areas. With 61% of all the student responses on the
tests correct, it is in relation to the 39% incorrect responses remaining that the data in
Table 9 offer insight. Of those incorrect responses, the distributions across the seven
Error Codes reveal interesting patterns. On the total test, just under half of the errors
loaded on concept understanding, with lesser loadings on strategy selection, method
execution and carelessness. In 11% of cases, the automated software was unable to
assign student responses to any of the codes, so “no conclusion” was drawn. It was
possible to quantify that in 13% of instances where students did not get the correct
solution, they had viewed items, but did not provide an answer and only in a handful
of cases did the student not reach all the items (Error Code 7).

Of the erroneous responses to the 46 items specifically measuring understanding
and recalling, 62% were identified as relating to concept understanding. Of the errors
made on the 38 items designed to assess students’ capacity in using procedures, one
quarter were allocated to the method execution error code, with over one third (35%)
relating to concept understanding. Errors were distributed widely across reasoning
and problem solving items also, with 16% allocated to strategy selection, and again
one third relating to concept understanding.

What these data indicate is that errors are distributed across different categories

and that some expected patterns are evident, for example, the heavy loading of
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concept understanding errors on items designed to measure students’ understanding
and recalling and a non-trivial level of carelessness by students, especially where they
were required to follow pre-learned mathematical procedures (20%). Other patterns
seem less clear, though the variety of knowledge and skills required by students when
solving problems may well be reflected in the broad distribution of errors in that skill
arca.

In Grade 4, a slightly higher percentage of responses were correct overall (64%),
with values of 69, 64 and 59 percent for the three skill areas respectively. Table 10
focuses on the remaining 36% of the responses that were incorrect. Similar patterns
emerged in Grade 4, though some differences were evident also. Errors relating (o
concept understanding and method execution dominate across the total test. The
pattern on items measuring understanding and recalling are broadly similar to that in
Grade 3, with similarities also in items measuring using procedures, though with more
evidence of carelessness. Method execution (37%) appeared as a more dominant error
category in reasoning items at 4™ Grade. Overall, errors attributable to (avoidable)
carelessness are clearly evident in the data. At both grade levels, there are quite a
pumber of errors that evaded definitive categorisation by the software and that were,
consequently, designated No conclusion. Clearly this is an area for future

development and refinement.

Table 10
Distribution of incorrect student responses across error categories: (Percentages of
student responses in different categories). Grade 4

Reasoning &

Error Total  Understanding Using Probiem
Code Description Test & Reealling  Procedures Solving
1 Concept 34 65 38 12

understanding
2 Sirategy selection 10 6 6 14
3 Method execution 28 13 28 37
4 Carelessness 11 10 19 6
5 No conclusion 12 2 2 23
6 Viewed but 6 3 6 8
unattempted
7 Not reached <1 <1 1 <]
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Tables 11 and 12 show in a more granulated way for separate topics the patterns of

student responses as categorised using the error codin

g. In contrast to Tables 9 and

10, the following tables indicate within the tables the percentages of responses that

were correct (Error Code 0).

Table 11

Distribution of student tesponses across Error Codes. Percentages of student
responses in different categories, by Strand Unit, Grade 3.

Error Code® 0 1 2 3 4 5 6 7
Number  Place value 57 8 7 3 0 1 25 0
Addition, 60 0 1 9 7 22 0 0
subtraction
Multiplication 58 16 3 10 0 5 8 0
Division 71 10 3 15 0 1 1 0
Fractions 48 29 4 6 i 7 5 0
Decimals 52 16 4 5 5 13 4 0
Algebra  Number sentences 74 4 9 8 I 0 4 0
Number patterns & 76 11 5 6 2 0 0 0
sequences
Shape &  2-D shapes 66 28 2 2 1 0 1 0
space
Lines and angles 70 22 8 0 0 0 0 0
Symmetry 48 48 0 0 3 0 1 0
Measures Time 53 6 5 8 14 15 0 0
Money 63 5 2 19 11 0 0 0
Weight 82 3 1 3 1 10 0 0
Data Representing & 76 11 1 10 2 0 0 1

interpreting data

Error Code®

0 =No error - correci response
1 = concept understanding

2 = sirategy selection

3 = method execution

4 = carelessness

5 = no conclision

6 = viewed but unattempted

7 = not reached
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Table 12
Distribution of student responses across Error Codes. (Percentages of student
responses in different categories). By Strand Unit, Grade 4

Error Code” 0 1 2 3 4 5 6 7

Number  Place value 87 4 5 1 1 2 it 0
Addition, 52 0 3 0 4 38 3 0
subtraction
Multiplication 67 5 | 12 6 5 3 0
Division 46 10 8 18 12 4 I 0
Fractions 50 20 8 9 2 7 3 0
Decimals 61 21 1 12 3 1 2 0

Algebra  Number sentences 88 ) 6 0 0 0 0

Number patterns & 89 1 0 ] 9 0 0 0

sequences
Shape &  2-D shapes 69 30 0 0 ] 0 0 1
space
Lines and angles 80 12 4 0 5 0 0 0
Symmetry 77 18 0 0 5 0 0 0
Measures Time 83 6 0 2 0 4 4 1
Money 63 5 15 10 i 3 3
Weight 50 11 0 29 1 6 3 0
Data Representing & 75 3 0 13 i 0 6 1

interpreting data

Error Code®

(0 = No error - correct response
= concepl understanding

2 = strategy selection

3 = method execution

4 = carelessness

5 = no conclusion

& = viewed but unattempted

7 = not reached

Conclusions and Significance of the Research

Overall, the analyses lend some support to the potential to accurately capture and
allocate errors through automated processing using CBAs. Undoubtedly the
complexity of the error coding described in this study would significantly overburden
even the most enthusiastic of teachers, a factor that we believe is related to the relative
underuse of error analysis approaches in teaching and learning within school systems.

This paper offers a glimpse of how such a complicated process might be achievable
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through application of CBA. There is some evidence also that the errors expected in
items designed to assess different mathematical skills did, in fact, materialise and
were correctly categorised, though there is scope and challenge to further refine this
process.

Finally, although this is a small sample of students and teachers, there is evidence
from some of the participants of enthusiasm about the CBA and its impact on their
own planning and teaching and on their students. A small number of the teachers
returned brief questionnaires and their responses indicated satisfaction with the nature
of the CBA and its ease of navigation for students: “children really enjoyed the idea
of doing the tests online. Very enthusiastic compared 1o doing wriften fest.” Of
course, the potential biasing impact of the Hawthorne effect needs to inform
interpretation of findings in this and similar studies of innovative practices, especially
those that involve computers. Teachers highlighted the value to them of receiving
information in relation to the most prevalent type of error for individual students and
for the class as a whole. Tllustrative of the challenges still to be resolved in this
progtam and with online tests in general is the comment from a teacher in a small
cural school that the “infernet connection was poor and this delayed us a lot.” This
frusteation with the internet connectivity in her school has the potential, over time, to
erode enthusiasm for the CBA itself, exemplified by her observation that the CBA
was “all in all a fabulous programme children enjoyed and benefited hugely from
participation.”

The bulk of the error analysis literature in mathematics predates the technological
revolution that has embraced education recently. That research endorses the use of
diagnostic approaches, sometimes associated with interviews, to explore the specilic
conceptions and misconceptions that guide student actions in mathematics. This
message is, however, juxtaposed with reservations about the heavy workload
implications of a granulated diagnostic process. CBAs may help resolve this tension
and the present paper outlines how technology may offer a proxy vehicle for such
detailed processes. The paper describes and critically examines the potential of a CBA
to build on and finally realise the opportunities inherent in etror analysis of students”
mathematical performance in elementary level, thus addressing mathematical
underachievement as one of the major policy imperatives in education systems

worldwide.
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