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The Rotterdam System and Irish Models 
of Consumer Demand 
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Precis: The form of Rotterdam (ROS) model previously applied to Irish data did not impose all the 
constraints on parameters suggested by Demand Theory. In this paper a method of estimating the 
ROS, subject to symmetry and negativity, is outlined and applied to data. The elasticity estimates 
obtained are compared with those obtained by O'Riordan (1976) for the Linear Expenditure Systems 
( L E S ) . The substantial differences between L E S estimates and "unconstrained" ROS estimates largely 
vanish when the ROS is subjected to full constraints. The topic of comparisons between alternative 
systems of demand equations is discussed. 

I INTRODUCTION 

In recent years there has been considerable interest in estimating complete 
systems of demand equations from Irish data. The relevant literature 

includes the papers of Casey (1973), O'Riordan (1975 and 1976) and 
McCarthy (1977). Although the Linear Expenditure System (LES) is most 
frequently employed, the Rotterdam System (ROS) is an important alter­
native. O'Riordan (1976) found substantial differences between estimates of 
price elasticities obtained from these two models when applied to Irish data 
for the period 1953—1972. In his later simulation study (O'Riordan, 1978), 
he concluded that the LES led to much more precise estimators than did the 
ROS. But in both studies the form of ROS used was simple; only the aggre­
gation and homogeneity constraints were imposed in the 1976 paper and 
aggregation alone in the 1978 paper. The ROS can be applied with the full 
constraints of symmetry and negativity, though the estimation procedure is 
more complex. 

Our main purpose in this paper is to re-estimate, with full constraints, 
the eight-commodity ROS obtained by O'Riordan (1976) and to make com­
parisons with his corresponding LES. One point deserves mention at the out­
set. Since the ROS permits the testing of constraints, it can be argued that 



the form used with a particular data set ought to be that most compatible 
with the data. But when comparing estimates from the ROS with estimates 
from the LES, it should be remembered that the functional form of the LES 
implies aggregation, homogeneity and symmetry. Furthermore, the estima­
tion method employed by O'Riordan (1976) (namely, "L INEX" ; see Car-
levaro and Rossier, 1970) also imposes negativity. Of course, there are 
various plausible reasons why constraints derived from Utility Theory may 
not apply in practice to aggregate data. But i f disbelief in, say, symmetry 
constraints limits us to the simple form of the ROS, what justification have 
we for estimating the LES at all? We discuss this matter further in Section V 
and also give our views on necessary conditions for a valid simulation com­
parison of the estimation precision of alternative systems. A secondary 
objective of the paper is to illustrate a computational approach to the im­
position of symmetry and negativity. We presume the reader to be familiar 
with the theory of complete systems of demand equations. The topic is 
thoroughly treated in the volume by Theil (1975) and the papers of Barten 
(1969) and Brown and Deaton (1972). 

I I ESTIMATION METHODS 

For p commodity groups and n observations, the equations of the Rotter­
dam System are 

Y k i = b k X i + £ d k j Z j i k = l , 2 , . . . , P ; i = 2 , 3 , . . . , n (1) 
J=l J 

where 
Y k i = W k i ( l n °lk,i - l n ) ' 

Xj ^ J j W ^ l n q ^ - l n q ^ ) } , 

Z k i = l n P k , i - l n p k 4 - , , 

w k i = y 2 f i , i % , i + P k . i - ^ k , ^ ) 

Pk,i<ik,i 2 P k , i - , ik, i - j 

and the P and q are prices and quantities, respectively. The estimation prob­
lem is to obtain estimates of the b^ and di^j, given that the equations also 
contain additive error terms that are contemporaneously correlated across 
commodities. The definition of Xj implies Hb^ = 1 and Sd^j = 0 for fixed j . 
So the pth equation can be discarded as its coefficients can be obtained from 
those of the other equations. The estimation of these p—1 equations, with­
out specifying further constraints, is just the standard case of multivariate 



regression and the formulae for coefficients are the familiar multiple regres­
sion estimates (e.g., Anderson, 1958). They are maximum likelihood esti­
mates i f a multinomial error structure holds. Of course, discarding any one 
equation instead of the eighth would lead to the same estimates. 

The symmetry constraint implies that aggregation requires homogeneity 
so that 2dkj = 0 f ° r fixed k. So the Z-j variables can be replaced by Zj-— Zp-, 
eliminating the pth variable. We then write all equations as a single equation 
and simply add together the pairs of columns corresponding to the equal 
pairs of coefficients. The generalised least-squares solution, subject to the 
symmetry constraint, is then 

A = [ U ' V ^ U ] " 1 U 'V" 1 Y (2) 

where A is the vector of parameters, V the n(p—1) x n(p—1) error covariance 
matrix, Y the [n(p—l)]x 1 vector of observations and U the redefined mat­
rix of explanatory variables. For example, the row of U ' corresponding to 
the coefficient d J 3 (=d 3 1 ) is 

[ Z 3 i — Z p i , Z 3 2 — Z p 2 , . . . , z 3 n — z p n , 00 . . . 0, Z n —Zpj, Z 1 2 —Zp 2 , . . . , 
Z m - Z p n > 00 . . . 0, 00 . . . 0, , , , , 00 . . . 0 ] . 
V is, of course, really unknown and initially may be replaced by estimates 
based on residuals from the ordinary multiple regression equations. The 
resulting A provides new estimates of residuals leading to another estimate 
of A and so on. Repetitions of the cycle are either tedious or costly in com­
puter time, but the modifications are usually slight and indeed computation­
al convergence is not necessarily associated with improved statistical pre­
cision. 

The literature on estimation of demand equations usually suggests pro­
ceeding via generalised least squares, subject to a set of linear constraints 
corresponding to the equal pairs of coefficients and with similar iterative 
estimation of V. But as the number of p increases, that approach leads to 
the manipulation of immense matrices. 

Negativity 
The symmetry solution (2) minimises the weighted residual sum of 

squares 
[ Y - E ( Y ) ] ' V 1 [ Y - E ( Y ) ] (3) 

where E(Y), the expectation of the vector Y, is a function of the 35 para­
meters remaining after the imposition of homogeneity and symmetry. Let 
us call any one set of values of these parameters a point. Then if we evalu­
ated (3) at all possible points, we would find that the minimum occurs at the 
symmetry solution (2). The minimum over all points must be less than or 
equal to the minimum over a restricted set of points. So i f the symmetry 



solution satisfies negativity, i t is also the minimum of (3) over the set of 
points satisfying negativity. I f the symmetry solution fails negativity condi­
tions, we must search for the minimum of (3) over the restricted set of 
points. Convenient algebraic formulae are unavailable for this restricted 
minimum, but numerical optimisation methods can be employed. We choose 
the approach of Nelder and Mead (1965) and our programing was based on 
the algorithm by O'Neill (1971). An initial estimate of the minimum point, 
based on a guess, is supplied to the algorithm which proceeds to search for 
the minimum from there by repeatedly evaluating (3) at points satisfying 
negativity. As with the standard symmetry solution method, estimates of 
V based on residuals are employed. In theory, this is not the only approach. 
One could work with the "concentrated" likelihood, |V| , but this would re­
quire the computation of a 49 x 49 determinant at each step of the iterative 
process. 

I t remains to show how the process can be restricted to points satisfying 
negativity. Consider the symmetric matrix, C, whose elements (diagonal and 
above) are 

c n f i 2 ( c i i c 2 2 ) ^ ? i3( c n c 33) / ' 2 ? i 4 ( c n c « ) ^ • • • 

c22 ?23 (c22c33 )^ 2 f 24 (c22 c44 ) ^ • • • 

c33 ?34(c33c44)^2 • ••• 
c44 

where t i j = t i i 

?2i = £l2£li + £2i*?12fhi 

?3i = £l3£li + ^23^2^13^1 i + ^3i'?13'?23'7l if?2i 

$ji = * l j * l i + $2j * a i ' ? l j ' f l i + . . . + * j i £ fakjTJy) 

with C i i > 0, l ^ j l < 1 and TJJJ = ( I - * 2 ; / 2 . 

I t is easily shown that the quadratic form, x'Cx, can be expressed 
l / 2 l / 2 l / 2 

(Cll Xj + £i 2 C 2 2X 2 + tl3 C 3 3 X 3 + . . . ) 2 

+ (T?12C22 X 2 + S221713C33 X 3 + . . . ) 2 

+ (T?l3T?23 C33 X 3 + . . . Y 

+ 



and so is positive definite. Therefore, —C is negative definite. I t can be nega­
tive semi-definite i f we permit Cjj > 0 or < 1. So i f we build up the 
djj that are used to evaluate (3) by constructing C from the Cjj and £jj and 
equating the matrix (djj) to —C, we can be sure that our points satisfy nega­
tivity. In effect, we have transformed (3) from being a function of the djj 
to a function of the c-• and £jj and, at each iterative step of the minimisa­
tion, we have only to check that Cjj is non-negative and £jj < 1. Indeed, these 
checks could be eliminated by further transformation — for example, £jj = 
sin as suggested by Nelder (1968). 

Since (3) is a positive definite quadratic form, it is convex. Therefore, 
from non-linear optimisation theory, the minimum occurs on the boundary 
i f the symmetry solution fails the negativity conditions — that is, C should 
be singular at the minimum either with a Cj- = 0 or some |£jj| = 1. Conse­
quently the matrix (djj) should also be singular. However, because of the 
approximation inherent in a numerical optimisation procedure, it may not 
appear exactly singular. 

I l l ESTIMATING THE ROTTERDAM MODEL FOR IRISH DATA 

The Simple Model 
O'Riordan's (1976) set of commodity groups and data for the years 

1953—1972 were used. The eight commodity groups were food, alcohol, 
clothing, fuel and power, household durables, transport equipment, other 
goods (which included tobacco) and other expenditure. The regression 
coefficients and their standard errors for the simplest Rotterdam model are 
shown in Table 1. The term "income" is used for the X variable and the price 
varkibles (Zs) are numbered in the same sequence as. the commodity groups 
are listed above. The eighth equation was omitted in the estimation, but the 
coefficients, obtained by difference, are given for interest. 

The income coefficients are well determined; they are large relative to 
their standard errors and are statistically significant. Most of the price coeffi­
cients are of the same magnitude or smaller than their standard errors. Only 
a few coefficients approach statistical significance on individual t tests 
(5 per cent level): the own price for alcohol, the coefficients for clothing, 
durables and transport equipment in the fuel equation, and the coefficients 
for alcohol in the durables equation. These may be unreal as with 56 price 
coefficients one expects a few spurious "significances" when using a 5 per 
cent test. The row totals of the price coefficients are shown in the last 
column and their average over the first seven equations is —.0029. Each total 
could be tested for difference from zero by adding the variances and covari-
ances and employing a t test, but this is clearly unnecessary. The table pro­
vides no evidence of non-homogeneity. I t does not follow that it strongly 



o 
Table 1: Regression coefficients for the simplest Rotterdam model 

Prices Totals 
over 

Commodity Income 1 2 3 4 5 6 7 8 prices 

F o o d .168 - . 0 6 9 .008 .041 .018 - . 1 6 2 - . 0 1 1 .013 .115 - . 0 4 7 
( ± . 0 4 5 ) ( ± . 0 5 7 ) ( ± . 0 4 8 ) ( ± . 0 7 9 ) ( ± . 0 5 0 ) ( ± . 1 4 4 ) ( ± . 0 8 1 ) ( ± . 0 8 1 ) ( ± . 1 5 9 ) w 

o 

A l c o h o l .114 .014 - . 0 4 0 .052 .018 .010 .028 .028 - . 0 6 8 +.042 
o 
z 
/—> ( ± . 0 1 8 ) ( ± . 0 2 3 ) ( ± . 0 1 9 ) ( ± . 0 3 2 ) ( ± . 0 2 0 ) ( ± . 0 5 8 ) ( ± . 0 3 3 ) ( ± . 0 3 2 ) ( ± . 0 6 4 ) § 

Cloth ing .172 .014 - . 0 3 1 - . 0 8 2 - . 0 3 9 .217 +.061 .042 - . 1 5 8 +.024 > 
( ± . 0 4 0 ) ( ± . 0 5 1 ) ( ± . 0 4 3 ) ( ± . 0 7 0 ) ( ± . 0 4 4 ) ( ± . 1 2 9 ) ( ± . 0 7 3 ) ( ± . 0 7 2 ) ( ± . 1 4 2 ) D 

C/l 
F u e l .080 .042 .015 .074 .010 - . 1 6 5 .091 .030 - . 1 2 1 - . 0 2 4 

O 
n 

( ± . 0 1 9 ) ( ± .024) ( ± . 0 2 0 ) ( ± . 0 3 3 ) ( ± . 0 2 1 ) ( ± . 0 6 1 ) ( ± . 0 3 5 ) ( ± . 0 3 4 ) ( ± . 0 6 8 ) > 
r 

Durables .084 .021 .044 - . 0 0 4 .017 .026 - . 0 2 9 - . 0 3 3 - . 0 2 2 +.020 s 
( ± . 0 1 9 ) ( ± . 0 2 4 ) ( ± . 0 2 0 ) ( ± . 0 3 4 ) ( ± . 0 2 1 ) ( ± . 0 6 2 ) ( ± . 0 3 5 ) ( ± . 0 3 5 ) ( ± . 0 6 8 ) 5 

Transport equipment .081 .033 .018 - . 0 2 1 - . 0 0 4 .020 - . 0 5 6 - . 0 6 1 .065 - . 0 0 6 
( ± . 0 2 7 ) ( ± . 0 3 4 ) ( ± . 0 2 8 ) ( ± . 0 4 7 ) ( ± . 0 3 0 ) ( ± . 0 8 6 ) ( ± . 0 4 9 ) ( ± . 0 4 8 ) ( ± . 0 9 5 ) 

Other goods .124 .016 .009 - . 0 5 5 .015 - . 0 2 4 .049 - . 0 7 6 .03 7 - . 0 2 9 

( + 0 3 9 ) ( ± . 0 4 9 ) ( ± . 0 4 1 ) ( ± . 0 6 8 ) ( ± . 0 4 3 ) ( ± . 1 2 5 ) ( ± . 0 7 1 ) ( ± . 0 7 0 ) ( ± . 1 3 8 ) 

Other expenditure .176 - . 0 7 1 - . 0 2 2 - . 0 0 6 - . 0 3 4 .078 - . 1 3 3 .057 .152 .020 

Note: T h e figures in parentheses are standard errors of the coefficients. 



supports homogeneity; the price coefficients are simply very imprecise. Two 
of the own price coefficients, for fuel and durables, have the "wrong" sign 
as judged by the negativity criterion. So does the own price coefficient for 
other expenditure. No tests have been made on the other expenditure 
coefficients because we have only seven algebraically independent equations. 

Table 2 gives, for each of the seven equations, the coefficient of deter­
mination, the F(9, 10) test of joint significance of all explanatory variables 
and the F(8, 10) test of joint significance of the price coefficients. The 
latter is the test of real interest. I t tests the contribution of the price varia­
bles, given that the income variable has been fitted. Only for the alcohol 
equation is there any statistical evidence for the existence of price effects. 

Table 2: Goodness of fit and contribution of price variables 

Commodity R1 x 100 F(9, 10) F(8, 10) for price 
variables 

F o o d 82 5 .2** 1.3 
A l c o h o l 92 12 .8*** 4.0* 
Cloth ing 81 4.6* 1.7 
F u e l 83 5 .3** 1.6 
Durables 89 8.4** 0.8 
Transport equipment 82 5 .2** 1.4 
Other goods 75 3 .3* 0.8 

Notation: *Significant at the .05 level. 
**Significant at the .01 level. 

• • • S i g n i f i c a n t at the .001 level 

Symmetry 
Estimates given the symmetry constraints are shown in Table 3. The 

eighth price coefficient has been removed from all equations by use of the 
homogeneity constraint. 

The coefficients have been modified by the imposition of symmetry and 
standard errors are smaller, but, in terms of statistical significance, matters 
have not improved greatly. The only own-price coefficient significantly 
different from zero on a 5 per cent test is still that for alcohol. Only two 
cross-price coefficients show significance on a t test and the reservation men­
tioned in respect of Table 1 still applies. In performing 28 t-tests, each at a 
5 per cent level, the true probability of error is much higher. Although the 
sign of the own-price coefficient for durables is now negative and that for 
fuel close to zero, the estimates are incompatible with negativity assump­
tions. The own-price coefficient for other expenditure, when calculated by 



ECONOMIC AND S O C I A L R E V I E W 

Table 3 : Estimates given symmetry constraints 

Price 
Commodity Income 1 2 3 4 5 6 7 

F o o d .205 
( ± . 0 2 8 ) ( 

- . 0 6 4 - . 0 1 2 .023 
± . 0 3 6 ) ( ± . 0 1 5 ) ( ± . 0 3 0 ) 

.003 
( ± . 0 1 7 ) 

.020 
( ± . 0 1 9 ) 

.059 
( ± . 0 2 3 ) 

.043 
( ± . 0 2 5 ) 

A l c o h o l .137 
( ± . 0 1 3 ) 

- . 0 3 8 .001 
( ± . 0 1 7 ) ( ± . 0 1 7 ) 

.020 
( ± . 0 1 5 ) 

.035 
( ± . 0 1 4 ) 

.009 
( ± . 0 1 6 ) 

.001 
( ± . 0 1 9 ) 

Cloth ing .138 
( ± . 0 2 5 ) 

- . 0 5 7 
( ± . 0 8 7 ) 

.010 
( ± . 0 1 9 ) 

.012 
( ± . 0 2 3 ) 

.034 
( ± . 0 2 6 ) 

- . 0 1 2 
( ± . 0 2 8 ) 

F u e l .074 
( ± . 0 1 4 ) 

.001 
( ± . 0 1 9 ) 

.002 
( ± . 0 1 5 ) 

.025 
( ± . 0 1 8 ) 

- . 0 3 7 
( ± . 1 9 5 ) 

Durables .080 
( ± . 0 1 5 ) 

- . 0 3 5 
( ± . 0 3 3 ) 

- . 0 2 1 
( ± . 0 2 1 ) 

- . 0 1 5 
( ± . 0 2 2 ) 

Transport 
equipment 

.108 
( ± . 0 1 9 ) 

- . 0 2 8 
( ± . 0 2 9 ) 

.031 
( ± . 0 2 3 ) 

Other goods .086 
( ± . 0 2 6 ) 

- . 0 3 4 
( ± . 0 3 8 ) 

Note: T h e figures in parentheses are standard errors of the coefficients. 

difference, is 0.21 and some of the off-diagonal elements in Table 3 are too 
large. A necessary, though not sufficient, condition that a matrix be negative 
semi-definite is that the square of any off-diagonal element be less than the 
product of the corresponding diagonals. The coefficients in the fourth row 
and column fail this criterion because of ,the small own-price coefficient for 
fuel. So does the "significant" coefficient for transport equipment in the 
food equation while the other "significant" coefficient — for durables in the 
alcohol equation — is barely acceptable by this criterion. 

Negativity 
We imposed negativity by applying the method described in Section I I . 

Since the symmetry solution lay outside the boundary defined by the nega­
tivity conditions, we knew the optimal solution must occur either with an 
own-price coefficient zero or with some of the = 1 or both. The actual 
numerical solution could deviate from the boundary by a quantity depend­
ent on the sizes of iterative step lengths and curvatures near the boundaries. 



The solution obtained, from which the coefficients shown in Table 4 were 
calculated, had several close to unity. 

Table 4: Estimates given negativity 

Price 
Commodity Income 1 2 3 4 5 6 7 8 

F o o d .201 - .077 - . 0 0 6 .023 .005 .013 .020 .034 - . 0 1 2 
A l c o h o l .123 - . 0 5 4 .006 0 .020 .002 .031 .001 
Clothing .119 - . 0 7 8 .014 .018 .026 - . 0 4 6 .037 
F u e l .064 - . 0 1 5 - . 0 0 3 .001 .001 - . 0 0 3 
Durables .090 - . 0 2 0 - . 0 1 5 .002 - . 0 1 5 
Transport equipment .094 - . 0 2 8 .014 - . 0 2 0 
Other goods .088 - . 1 0 7 .071 
Other expenditure .221 - . 0 5 9 

The coefficients in Table 4 are certainly more acceptable (in the sense of 
compatibility with Demand Theory) than those of Tables 1 or 3, but i t does 
not follow they are much more precise in a statistical sense. Indeed it is 
clearly evident from these analyses that the data are providing relatively little 
information about price coefficients and that i t is the constraints imposed 
that are most influential. Whether or not the coefficients are of any practical 
value must then depend on the credibility of constraints deduced from 
Demand Theory. 

IV COMPARING ELASTICITY ESTIMATES FROM THE ROS AND LES 

The elasticities for the LES are taken directly from O'Riordan (1976) 
except for the minor modification of calculating them at the mean points 
of the series rather than the end-points. The reason is that the "own price" 
elasticity for the LES, calculated at time point t , is related to that at the 
mean time point as follows: 

E i t = - i + | - ( V i ) 
^ t 

where the subscript i refers to commodity and and are the mean quan­
tity over the whole series and the end-point quantity, respectively. Thus, 
E j t will exceed Ej in absolute value i f q^ t exceeds q~j, even i f the budget share 
has remained constant. This is a particular property of the LES which has 
other implications also. Relevant comments are given by McCarthy. For the 



ROS, on the other hand, own price elasticities change only i f the budget 
share does. So in Table 5 all elasticities are evaluated at the mean. 

In contrast to the own-price elasticities, the income elasticities do not vary 
dramatically between models. This was also remarked by O'Riordan (1976) 
when he compared (one variation of) the ROS, LES and two other models. 
The differences in own-price elasticities between the simple ROS and the 
LES are very evident, with opposite signs for three of the commodities. But 
these differences largely disappear when the ROS is estimated subject to 
negativity constraints. The disparities that remain can probably be explained 
by the following considerations. The LES is a much more restrictive model 

Table 5: Income and own-price elasticities 

Income Own-price 
ROS LES ROS LES 

Commodity Simple Symmetry Negativity Simple Symmetry Negativity 

F o o d .55 .68 .66 .50 - .40 - .42 - .46 - . 3 2 
A l c o h o l 1.25 1.51 1.35 1.56 - .55 - .56 - .72 - . 6 6 
Cloth ing 1.70 1.37 1.18 1.29 - .98 - .70 - .89 - . 5 7 
F u e l 1.79 1.66 1.43 1.01 .16 - .06 - .40 - . 4 2 
Durables 1.81 1.72 1.94 1.83 .47 - .84 - .52 - . 7 4 
Transport 
equipment 2.64 3.52 3.06 2 .52 - 1 . 9 2 - 1 . 0 2 - 1 . 0 1 - . 9 7 
Other goods .97 .67 .68 .84 - .72 - .35 - .92 - . 4 1 
Other expenditure .69 .67 .87 1.00 .42 .65 - .45 - . 5 5 

than the ROS in that i t contains far fewer parameters. In the present ex­
ample the ROS, allowing for reductions in parameters through the homo­
geneity aggregation and symmetry constraints, estimates 35 coefficients; the 
LES estimates 15. This paucity of parameters in the LES can be thought of 
as resulting from the preference independence inherent in the form of the 
parent uti l i ty function and it has various implications. One is correlation be­
tween own-price arid income elasticities as discussed by Deaton (1974). I f 
we rank the commodities in the order of the magnitude of their income 
elasticities — treating those for fuel and other expenditure as equal — and 
compare them with the ranking by magnitude of own-price elasticities, the 
rankings in Table 6 below emerge. 

The agreement in ranking for the LES is almost perfect. Thus some of the 
remaining discrepancies in Table 5 between own-price elasticities for the 
ROS (with negativity) and the LES may be explained on this basis. The LES 
own-price elasticity for other goods is half that of the ROS estimate, but the 
corresponding LES income elasticity was small. 
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Table 6: Comparative rankings of magnitudes of income and own-price elasticities 

Commodity Income 
LES 

Own-price 
ROS (with negativity) 

Income Own-price 

F o o d 
A l c o h o l 
Clothing 
F u e l 
Durables 
Transport equipment 
Other goods 
Other expenditure 

1 
6 
5 
3y 2 

7 
8 
2 
m 

i 
6 
5 
3 
7 
8 
2 
4 

1 
5 
4 
6 
7 
8 
2 
3 

3 
5 
6 
1 
4 
8 
7 
2 

V CONCLUSIONS AND DISCUSSION 

Our conclusions from Sections I I I and IV can be briefly summarised. The 
data gave imprecise estimates of price coefficients, and elasticity estimates 
from the simple ROS seem very different to those from the LES. But when 
full negativity constraints are imposed, the dramatic differences vanish. The 
particular restrictiveness of the LES may explain remaining discrepancies. We 
are not concluding that either the LES or the ROS is the "correct" model. 
We are concluding that models that embody the same constraints wil l lead to 
very similar estimates, whether the constraints are built-in to functional 
forms or imposed during estimation. 

As mentioned in the Introduction, i t could be maintained that the form of 
ROS employed ought to be decided by the results of significance tests of the 
various constraints. O'Riordan (1976) mentioned that the symmetry con­
straint could be rejected by a significance test. We could not reproduce the 
definity of this result — much depends on the test criterion and the probabil­
ity levels chosen — but some elements of Table 1 do suggest non-symmetry; 
for example, the "significant" coefficient for clothing in the fuel equation 
has an opposite sign to that for fuel in the clothing equation. But the latter 
coefficient is very imprecise, as are the majority of coefficients in the table. 
A rejection of symmetry, given that homogeneity is accepted, would also 
conflict with findings from other data as described in the review by Brown 
and Deaton. Probably a composite test of symmetry and negativity would be 
more relevant since the symmetry solution was itself unsatisfactory, but 
there are still technical difficulties to testing negativity (Barten and Geyskens, 
1975). Even the asymptotic Chi-squared tests based on log-likelihood require 
degrees of freedom, but the same numbers of parameters are fitted, given 



negativity as symmetry. This may be irrelevant when comparing the ROS 
with LES. Since the latter is formulated to include symmetry and the esti­
mation method imposes negativity, it seems inconsistent to refrain from im­
posing the same constraints on the ROS. 

O'Riordan (1978) conducted a simulation study on the precision of esti­
mates obtained from the LES and the simple ROS. He found the LES to be 
much more precise. This was a valuable study and we do not wish to criticise 
either the methodology or the conclusions, but instead to suggest how 
these conclusions might have to be modified i f the " f u l l " ROS were employ­
ed. We think this is an important matter because the joint content of the two 
papers (O'Riordan, 1976 and 1978) suggests the inferiority of the simpler 
forms of the ROS as compared to the LES. Generalisation of this to the 
" f u l l " ROS, even i f unintended, could lead to the neglect of this system for 
analysis of Irish data. Yet as McCarthy has remarked, the preference in­
dependence assumption, implicit in the LES, is a serious limitation and 
models avoiding the assumption are desirable. The ROS does not require 
preference independence. 

O'Riordan (1978) used three basic models to generate the data: the LES, 
•the indirect addilog and the direct addilog. The stochastic components of the 
models were assumed uncorrelated, serially and contemporaneously. For 
each generation model he obtained estimates by the LES, the simple ROS 
and two other systems. Not surprisingly the LES estimates were most precise 
when the true model was LES, but for all three generation models he found 
the ROS inferior in estimating elasticities. He postulated that this inferiority 
might result from the absence of serial correlation and conducted other 
simulations to test this, but obtained a similar result. 

We would point out that the underlying models used embody symmetry 
and homogeneity. Therefore, it is plausible that the LES (and the indirect 
addilog) estimation methods, which retain these constraints, should perform 
better than the simple ROS, which does not impose them. I f we know that 
certain constraints hold among parameters and do not utilise this knowledge 
in estimation, then we are certain to obtain less precise estimators. We would 
submit that the " f u l l " ROS would perform much more efficiently than the 
simple form. Of course, it could hardly jmprove on the LES when the true 
generation model is LES. But i f the underlying model contained more para­
meters than the LES estimates, the " f u l l " ROS could prove superior. The 
simulation results obtained by O'Riordan are "fair comment" on the ele­
mentary form of the ROS, given underlying utility functions that are rela­
tively simple additive, or preference independent, functions. We do not 
believe the results apply to the " f u l l " ROS, even with these underlying 
models, and we suspect the LES would prove much inferior, given a non-
additive utility function involving many parameters. With p equations, the 



LES estimates 2p—1 algebraically independent parameters, the simple ROS 
estimates p(p—1) and the " f u l l " ROS estimates (p—1) (1+^). Homogeneity, 
aggregation and symmetry account for the decrease in parameters estimated 
by the " f u l l " ROS as compared with the simple ROS. If, in reality, there are 
far fewer parameters, the ROS wil l be inefficient. But if the number of para­
meters considerably exceeds 2p—1, the LES cannot be appropriate. Another 
study by O'Riordan (1979) compared the forecasting accuracy of various 
methods and found the LES superior to the ROS. But again the "simple", 
rather than " f u l l " , ROS was employed. 

Finally, we comment briefly on the computational aspects of imposing 
negativity by the method given in Section I I . The Nelder and Mead approach 
has been widely applied and is considered highly efficient, but a substantial 
computing time was required to obtain the estimates given in Table 4. The 
calculation of (3) at each step of the iteration required significant computing 
time as i t involved the calculation of a quadratic form with 133 variables. 
One factor that contributed to the large number of iterations required for 
the solution was our choice of initial estimates for the parameters. These 
were obtained by modifying the symmetry solution of Table 3 just suffi­
ciently to satisfy negativity and were considerably removed from the actual 
coefficients of Table 4. Also since the optimum should correspond with 
a singular matrix of price coefficients (excluding the eighth equation because 
the calculation of its coefficients by difference creates exact singularity), we 
continued to iterate until the magnitude of various £s was almost unity. This 
was rather unnecessary as the own-price coefficients (the — CJJS) changed very 
little over the final iterations. Indeed, rounding off the cross-price coefficients 
to three decimal places for display in Table 4 was sufficient to change the 
smallest eigenvalue of the 7 x 7 matrix from a tiny negative value to a small 
positive one. 

A method for estimating standard errors exists for the Nelder-Mead ap­
proach and consists of evaluating the function at a set of points about the 
optimum and fitting a quadratic. The precision depends on choices discussed 
by Nelder and Mead. We did not calculate these standard errors, partly be­
cause O'Riordan (1976) had not given them for the LES estimates (in any 
event the ROS and LES estimates of coefficients must be correlated in a very 
complex way, so preventing comparisons using these standard errors) and 
also because the standard errors in Tables 1 and 2 indicated the degree of im­
precision. Barten and Geyskens have described another approach to imposing 
negativity, though this may not be any more efficient computationally. They 
mention difficulties associated with obtaining standard errors due to the oc­
currence of the optimum on the boundary and similar problems might arise 
in our approach. 

These remarks ought not to deter someone from employing the " f u l l " 



ROS. The computational approach discussed need only be applied if the 
symmetry solution fails the negativity conditions. I t is worth noting that i f 
it does, the occurrence of the optimum on the boundary implies that some 
algebraic relationship exists at this point between the coefficients of the 
p—1 equations. Perhaps a reformulation of the equations, reducing the num­
ber of commodity groups, would solve the problem. 
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