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A Comparison of the Bounds, Beta-
approximate, and Exact Variants of Two
Tests for Heteroscedasticity based on
Ordinary Least Squares Residuals

M. J. HARRISON*
Trinity College, Dublin

Précis: This paper compares the small sample empirical size, power and incidence of inconclusiveness
of the bounds tests for heteroscedasticity proposed by Szroeter (1978) and Harrison and McCabe
(1979). It also examines the performance of the exact and beta-approximate variants of the tests.
Probabilities are computed numerically using both simulated and actual data and various heteroscedas-
ticity specifications. No consistent power superiority of either test is found, although for the types of
heteroscedasticity most commonly postulated in applied economics, Szroeter’s test is the more
powerful. On the other hand, Szroeter’s test suffers from the higher incidence of inconclusiveness in
all of the cases examined. Two-moment beta-approximations perform well compared with the exact
tests. An example of the use of both bounds tests is given.

I INTRODUCTION

zroeter (1978) has recently proposed, amongst other things, a para-

metric bounds test for heteroscedasticity in linear regression models
with nonstochastic regressors. A similar test has been developed by Harrison
and McCabe (1979). Both tests are small sample tests based on the direct
use of the ordinary least squares residuals from a single regression on the
complete sample of observations. Their computational simplicity, which
compares with that of the Durbin-Watson bounds test for autocorrelation
(1950, 1951), exceeds that of other recent tests for heteroscedasticity,
such as the likelihood ratio test of Harvey (1976) and the Lagrange multi-
*The research for this paper was undertaken during the author’s tenure of a Visiting Research Fellow-
ship in the Department of Econometrics and Social Statistics, University of Manchester. The author
is most grateful to two anonymous referees for their valuable comments on an earlier draft of the

paper, and to B. J. Whelan and G. Keogh, the Economic and Social Research Institute, Dublin, for
making available the data on which the example in Section II is based.
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plier test of Godfrey (1978),! and makes them most attractive practical
procedures. However, little is known about their relative efficacy in the
kinds of situation likely to be encountered in practice. Harrison and McCabe
briefly considered the problem of inconclusiveness of their test and its small
sample power compared with that of the tests of Goldfeld and Quandt
(1965), Theil (1971, pp. 214-218), and Harvey and Phillips (1974). Szroeter
derived an asymptotic power function for his class of tests; Harrison (1980)
has since examined the problem of inconclusiveness of the Szroeter bounds
test in small samples. Yet no direct study of the comparative performance
of the two bounds procedures has been undertaken. Similarly, little is known
about the relative performance of associated procedures for use in the event
of the bounds tests being inconclusive. ‘

The main purpose of this paper is to compare the empirical size, the
power against several specific forms of heteroscedasticity, and the incidence
of inconclusiveness of the Szroeter (S) and Harrison-McCabe (HM) bounds
tests in a variety of small sample circumstances. The small sample performan-
ces of the exact and beta-approximate variants of the two tests are also
examined. It is hoped that the results may be of value to applied economists
who may wish to use a simple bounds procedure to effect a test for hetero-
scedasticity.

The organisation of the paper is as follows. Section II briefly describes
the two bounds procedures and illustrates their application using data from a
recent Irish demographic study. The relative performance of the bounds tests
is examined in Section III. The exact and beta-approximate variants of the

tests are assessed in Sections IV and V, respectively. Section VI contains a
number of conclusions.

II THE S AND HM TESTS

Consider the problem of testing the null hypothesis H, of homoscedas-
ticity against an alternative hypothesis H, of heteroscedasticity in the
familiar context of the general normal linear regression model (see Theil
1971, Sec. 5.4). Let the n sample observations be ordered such that, under
H,, the disturbance variances 02,1 =1, 2, . . ., n, satisfy 0?_ ; <02, i =
2,3,...,n. Then the form of the S test statistic used in this study is

i
i=1

n n
h=2 T he?/ = e? (1)
i=1 i
1. While these likelihood ratio and Lagrange multiplier tests are also based on the ordinary least

squares residuals, they are strictly large sample procedures. However, on the evidence presented by

Godfrey (1978) and Breusch and Pagan (1979), the Lagrange multiplier test appears to perform fairly
well even with quite small samples.
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where h, =1 — cos[inr/(n+1)],i=1,2,...,n,and thee,i=1,2,...,n,are
the ordinary least squares regression residuals. One other form for the S
test statistic is available based on a somewhat less straightforward definition
of the h;. The simpler specification (1) was chosen with the practitioner in
mind; it also accords with S’s own choice of statistic in his worked example
(see Szroeter 1978, p. 1317). The distribution of h, which is dependert on
the observations on the regressors, is bounded below and above by the
distributions of the variablesh; =4 —dy(n+1,k+1)and hy =4 —dy (n + 1,
k + 1), respectively, where d; and dy; are the well-known lower and upper
bounding Durbin-Watson variables (see Szroeter 1978, Sec. 4).2 Thus the
one-sided S bounds test criterion is to reject Hy if h > h{, and accept if
h < h¢, where h and h{ denote the bounding 100« per cent critical values;
otherwise the test is inconclusive.
The form of the HM test statistic used in the study is

b= T eg/z e2, @)

i=1 i=1

where m = [n/2], i.e., the integer part of n/2. The choice of m, like
the choice of the number of omitted observations in the Goldfeld-Quandt
test, is an important practical consideration having implications for the
power of the HM test. The present choice accords with HM’s suggestion
for situations in which, as is common in practice, Hy, does not postulate
the precise form of the heteroscedasticity. As HM (1979, sec. 2.1) show,
b is bounded below and above by the beta-distributed variables
by (& 2_ k, 2 ; ™M) and bU('r—;—, i—_r—_= rr; — k), respectively. Thus, for the 100«
per cent significance level, the one sided HM bounds test criterion is to reject
Hg if b <b, and accept if b > b, where b and b$ denote the bounding
beta critical values; otherwise the test is inconclusive.

The ease of application of both bounds tests is illustrated in the following
example.

Example

The example relates to a recent study by Whelan and Keogh (1980) of
the relationship between the population and the number of registered elec-
tors in Irish counties in census years. Conscious of the potential problem of
heteroscedasticity due to the great variation in population across counties,

2. Readers familiar with standard Durbin-Watson theory may be puzzled by the use of i and n + 1
instead of i — 1 and n, in the definition of hj; and by the use of n + 1 and k + 1, instead of n and k,

in the choice of dy, and dy. The explanation for this is to be found in Szroeter (1978, Proposition
3.1, p. 1314).
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Whelan and Keogh adopted an equation specification in which the ratio of
county population and Electoral Register is the dependent variable. On the
assumption that this ratio is constant in any given county or county borough,
but may vary across counties, in the census years covered by the data, the
right-hand side of the equation contained an intercept and 30 county
dummy variables. The equation was estimated by stepwise ordinary least
squares regression, using the SPSS package and observations on 31 counties
and county boroughs from 3 censuses. The overall result was statistically
highly significant, with a coefficient of determination of 0.95. However,
8 of the county coefficients were not significantly different from zero at
the 5 per cent level,® and the dummy variables associated with these were
excluded from the version of the equation actually used by Whelan and
Keogh in estimating county populations in intercensal years.

Despite their awareness of the possibility of heteroscedasticity, Whelan
and Keogh did not test for the problem, either before choosing the ratio
specification or after estimating their preferred equation. A test for hetero-
scedasticity in their chosen model is undertaken here, using the ordinary
least squares residuals from their final regression; both the S and HM bounds
procedures are employed. From Whelan and Keogh’s regression Q%utput,
n = 93, k=23 and the sum of squares of the least squares residuals X ef =

i=1
0.03989. The latter number is required for the denominator when calculat-

ing the sample value of both the S and HM test statistics. Before the numer-
ators of the statistics are computed, however, the residuals require to be
ordered. Since the use of the ratio of county population and Electoral
Register for the dependent variable may be viewed as a form of “correction”
of the data for heteroscedasticity based on the assumption that the distur-
bance variance is a function of the size of the Electoral Register, the
residuals were ordered according to the magnitude of the Electoral Register
for the present tests.

Usin§ Equation (1), the numerator of the S statistic, h, was then computed
9

as 2 El h;e? = 2 X 0.04247 = 0.08494. Thus the sample value of h is 0.08494/

i=

0.03989 = 2.1294. Unfortunately, the values for d; (n+1,k+1) = d (94, 24)
and dy(n + 1, k + 1) = dyy(94, 24), which are required to determine the critical
values h% and h%, respectively, are not tabulated, even in the extended
Durbin-Watson tables of Savin and White (1977). However, extrapolating
from Savin and White’s tables for o = 0.05, which cater for values of k up
to 20, d9:95(94, 24) = 1.123 and d%% (94, 24) = 2.274 are thought to be

8. After scrutiny of their regression output, the present author is of the opinion that Whelan and
Keogh’s (1980, p. 305) statement that nine of the county coefficients are insignificant, is in error,
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reasonable estimates.* Using these values, h$:% = 4 — 3%05 (94,24) = 4 —
2.274 = 1.726, and h%% = 4 — d%05(94, 24) = 4 — 1.123 = 2.877. Since
the sample value of h lies between these critical values, the S bounds test
is inconclusive at the 5 per cent level of significance.
Similarly, using Equation (2), the numerator of the HM statistic, b, was
m
computed as '21 e? = 0.01711, where m = [n/2] = 46. Therefore the
i=
sample value of b is 0.01711/0.03989 = 0.4289. The critical values b¥:% and
b¥%% were obtained from standard F tables, which are more readily available
than beta tables, with the aid of the transformation given in HM (1979,
Sec. 2). Specifically,

b0-05 = [1+(n—m)F°-05 (n—m,m—k)}_1 _
m—k

-1
} =0.205; and

0.0 —1
[1+47XF 5 (47, 23) _ |p + 47 x1.901
23 23

bY,05 {1 4 (—m—K)F*® (n—m—k, m):“l= {1 + 24 x FO% (94 46)}_1
46

m

_ [1 , 24x 1750

46

As in the case of the S test, the computed value of b lies between the appro-
priate critical values and, therefore, the HM bounds test is also inconclusive
at the 5 per cent significance level.

The fact that both bounds tests are inconclusive, and therefore provide
no basis for accepting or rejecting the null hypothesis of homoscedasticity,
is not altogether surprising given the large value of k. Even with large n, such
large values of k inevitably give rise to large inconclusive regions. However,
lest it be thought that these inconclusive test results, though illustrative,
cast doubt on the efficiency of Whelan and Keogh’s ordinary least squares
estimates, it should be pointed out that on further testing, the null hypothesis
is accepted at the 5 per cent significance level. For example, using the simple
beta approximation to the true distribution of Szroeter’s h statistic proposed
by Harrison (1980, Sec. V), the 5 per cent critical value of h is found to be
2.334. Since the sample value of h = 2.1294 is less than 2.334, the null
hypothesis of homoscedasticity is accepted.

-1
=0.523.

4, In practice, values of k as large as that used by Whelan and Keogh are rare. If required, exact
Durbin-Watson values could be calculated numerically, of course, but this complicated exercise was
not felt to be warranted for the purposes of this illustration, particularly as the HM test can be applied
using published tables.



240 THE ECONOMIG AND SOCIAL REVIEW

As well as demonstrating their simplicity in application, this example
has shown clearly the possibility of inconclusiveness of both bounds pro-

cedures. This matter, and others, is examined more systematically in the
following section. '

III COMPARISONS OF THE S AND HM BOUNDS TESTS

Model and Methodology :
To facilitate comparisons of the two bounds tests a simple regression

model was postulated involving an intercept and single explanatory variable,
1.e.,

Vi=Bo B X ty, i=1,2,..,n, (3)

where y;, X; and u; denote the i observation on the dependent variable,
independent variable and unknown disturbance, respectively, and §, and
B, are unknown parameters. Thus, including the unit dummy variable associ-
ated with the intercept, k = 2. The u; are assumed to be N(0,62 ) variables.

Both cross-section and time-series observations on the explanatory variable
were used, some of the data in each category being artificially generated and
some being actual economic data. In the cross-section category, observations
were randomly generated on a uniformly distributed variable with range (0,
20) by the method of Downham and Roberts (1967); on a normally distribu-
ted variable with mean 10 and standard deviation 10 by the method of
Marsaglia and Bray (1964); and on a lognormally distributed variable with
coefficient of variation 1 by exponentiation of random normal numbers. In
each of these cases, values for n of 10, 20, 30 and 40 were used. In addition,
two sets of actual cross-section data were used, namely, the observations on
output and employment in 28 UK industrial groupings in 1968 from Stone’s
A Programme for Growth (1974, Table 26, p. 129 and Table 35, p. 135).

In the time-series data category, the artificial observations used were those
on the pure trend variable i = 1, 2, . . ., n, the values used for n again being
10, 20, 30, and 40. Three actual economic time-series were used, namely,
the final 16 annual observations on real income per capita in The Netherlands
from Theil’s “textile” example (1971, Table 3.1, p. 102), the final 20 annual
observations on real income per capita in the UK from Durbin and Watson’s
“spirits” data (1951, Table 1, p. 160), and 40 quarterly observations (second
quarter of 1966 to first quarter of 1977, inclusive) on the index of industrial
production in the Republic of Ireland (Irish Statistical Bulletin). As Dubbel-
man et al., (1978) have pointed out, when time series data are being used, the
powers of statistical procedures, such as the S and HM tests, may be
influenced considerably by the characteristics of the series; and often, simu-
lated time-series data may not possess the typical characteristics of economic



HETEROSCEDASTICITY TESTS 241

time series. Hence the emphasis on actual economic time series here.
However, it still seemed worthwhile to calculate the values of the indicators
of the typicality of time series proposed by Dubbelman et al. Thus, for each
of the time series used, the quantities 7(s) = tr[X'ASX(X'X)~ 1], where X is
the n X k matrix of observations on the regressors and A is the familiar first-
differencing matrix of order n x n, were evaluated for s = 1, 2, 3, and 4
(see Dubbelman et al.,1978, p. 300). Of these 7(s) values, which are available
on request from the author, most were small; only 4 exceeded unity, and of
those, only 1 exceeded 3.0, namely, 7(4) = 11.463, for the Irish industrial
production series. All were of the low order of magnitude expected of
representative economic time series.
The following disturbance variance structures were used

Hy, : o? =02,
HAl 012 =02Xi’
Hpp @ 02 =0%2X2,} i=1,2,...,n,
H,; : o? =0,
H,, : o2 =0%?2,
62 i=1,2,...,m
and H,, : o2 =

0% i=m+1,m+2,...,n,

where 02 and 01(02< oi) are constants. Since h and b are each independent
of the scale of the u,, the value for o2 was, without loss of generality, taken
to be unity; 62 was given the values 2, 4, and 8. The pairs of alternatives
Hp, and Hyg, and Hy, and H, 4, are equivalent in the case of the trend
variable, of course.

Thus 160 different combinations of explanatory variable, sample size,
and disturbance variance specification were used. For each of these, and
given numerical values for §; and 8, and appropriately generated disturbances,
Equation (3) defines the corresponding sets of values for the dependent
variable. However, it was not necessary to derive y; values in this way, as it
would have been had the study to rely on Monte Carlo methods. Simulation
techniques were unnecessary. Rather, the probabilities of rejecting Hy using
the S and the HM tests were calculated accurately, for both the lower and
upper bounds of the tests, using the numerical integration technique due to
Imhof (1961), which requires only the observations on the explanatory vari-
ables and the numerical form of the disturbance variance-covariance matrix
for its application. Throughout the study, one-sided tests at the 100« = 5 per
cent level of significance were used, critical values being obtained from Savin
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and White’s (1977) Durbin-Watson tables in the case of the S test, and
Pearson’s (1968) beta tables in the case of the HM test. The probability cal-
culations were performed in the manner described in HM (1979, Sec. 3)
using the method of Imhof (1961). The main computer subroutine used was
that of Koerts and Abrahamse (1969, pp. 155-160) for which the truncation
and integration errors were set at 1.0 x 10™*, The eigenvalue calculations
required for the implementation of the Koerts and Abrahamse algorithm
were performed using the NAG subroutine FO2AAF (1977). The computer

used was the CDC 7600 at the University of Manchester Regional Computer
Centre.

Results

A representative selection of results is given in Table 1; the results not
reported are available on request from the author.

Before commenting on the results in Table 1, it may be useful to clarify
their meaning. Columns 1 to 4 in the body of the table give the theoretically
calculated probabilities of certain events under H,; Columns 5 to 8,9 to 12,
and 13 to 16 give the calculated probabilities of events under H, ;, Hy 5, and
H, 4, respectively. For example, each number in Column 1 gives the proba-
bility, Pr(h > h¥|H,), that the sample value of Szroeter’s h will exceed the
a = 0.05 critical value of hL when Hg, is true. Now, under the S procedure,
Hy is accepted if h <h§, where Pr(h;, <h¥|Hy) =1 — a. Since h > h,
Pr(h <h{Hy) <1 —a; therefore Pr(h > hLlHO) > a. Note also that Pr(h >

ha|H0 =Pr(h <h < ]HO + Pr(h > h$ [HO) Each number in Column 2
gives the probability, Pr(h > h$ \HO) that h will exceed the a critical value of
hy; when H, is true. The S procedure rejects Hg if h>h$, where Pr(hy >h¥ lHo
=a. Therefore, since h<hy;, Pr(h>h$ lHo )<o. A similar argument apphes to the
entries in Columns 3 and 4, which give Pr(b<b{|Hg)<a and Pr(b<b$|Hy)
= Pr(bd > b = b¥Hy) + Pr(b < b¥Hy) > o, respectively. In the
discussion that follows these pairs of probabilities are referred to as the
actual or bounding sizes of the S and HM bounds tests. For a given set of
sample circumstances, the difference between the bounding sizes of each test
yields the probability that the test will be inconclusive under H,.

Further, each number in Column 5 gives the probability, Pr(h>h${H, )
= Pr(ha<h<h [Ha) + Pr(h>hg|H, ), that the S test statistic h will exceed
h$ when H,, is true, wh11e each number in Column 6 gives the probability,
Pr(h > hUlHA1 that h will exceed h{ when H Ia is true. Likewise, Columns
7 and 8 give the calculated values of Pr(b <b{|H,,) and Pr(b <b{ 1HA1
Pr(b% >b > b¥ \HAI + Pr(b < b¥ |HA1 respectlvely, for the HM test. On
the basis of reasoning similar to that just outlined for the Hg case, these
pairs of values are referred to as the bounding powers of the tests against
H,,; the differences between associated bounding powers are the
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Note: The results for Stone’s variable in this and the following tables relate to the output data

results for the employment data are very similar.
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probabilities of inconclusiveness of the tests under H,,; in the various sample
situations. The remaining columns contain similar information on the bound-
ing powers of the two tests against H,, and H,.

In accordance with theoretical expectations, the actual sizes of the bounds
of both tests, given by the results for Hg, bound the nominal test size of
a = 0.05 in all cases. The sizes of hy; and by, are similar, but, without excep-
tion, the sizes of hy are greater than the corresponding sizes of by, and in
several cases exceed 4 times the nominal size of the test. The sizes associated
with by; rarely exceed 2% times the nominal value. Consequently, the differ-
ences between the bounding sizes are greater in the case of the S test than in
the case of the HM test. In the case of both tests, however, these differences
decrease as sample size increases, with both bounding sizes approaching 0.05.
More specifically, as sample size increases from 10 to 40, the differences
decrease from about 0.20 to about 0.07 for the S test, and from about
0.12 to about 0.05 for the HM test.

The power of both tests, for given explanatory variable and sample size,
varies directly with the degree of heteroscedasticity, being considerably
higher for Hyo and H,, than for Hy, and H,s, and, in the case of H,,,
for a2 = 8 than for o = 2. Similarly, for a given variable and a given H,,
the power of both tests varies directly with sample size. However, there are
no systematic variations in the power of the tests with type of variable,
ceteris paribus. None the less, it seems noteworthy that for H,; and H,,,
which are commonly used alternatives in applied econometrics, the power of
both tests is markedly higher with the actual than with the simulated cross-
section data, but lower with the actual time-series data than with the pure
trend variable.

Concerning relative performance, the S test appears to be more powerful
than the HM test against alternatives Hy; to Hy,, but, with the exception
of cases in which n = 10, less powerful than the HM test against H,,. This
result appears to provide some confirmation, for small samples, of Szroeter’s
asymptotic result that power increases with the correlation between the h;
and 02 (Szroeter 1978, Sec. 6). However, for any given set of circumstances
" in Table 1, it is difficult to draw accurate conclusions about the relative
power of the two bounds tests because of the differences in their actual
sizes. To circumvent this problem, the powers of the exact variants of the
S and HM tests are examined in Section IV.

As has been stated, an indication of the incidence of inconclusiveness of
the bounds tests is provided by the differences between their bounding
powers. As in the H, case, these differences are consistently larger for the
S test than for the HM test in all of the H, cases considered, suggesting a
higher likelihood of inconclusiveness for the S than for the HM test. More-
over, while inconclusiveness declines with increasing sample size for both
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tests, the results suggest that its incidence may remain quite large even for
n as large as 40. For n = 10, inconclusiveness varies from about 0.3 to over
0.6 in the case of the S test, and from about 0.2 to 0.5 in the case of the HM
test; for n = 40, it may still be as high as 0.3 in the case of the S test and
0.2 in the case of the HM test. Only when the degree of heteroscedasticity
is high, as in the case of Hy,, Hy, and Hyy (oi = 8), is the incidence of incon-
clusiveness of both tests small for the larger sample sizes. This finding
suggests that the availability of supplementary procedures for use when the
bounds tests are inconclusive is a matter of considerable practical importance.
Besides exact tests, certain approximations are feasible. The performances
of two-moment beta-approximations to the distributions of h and b are
examined in Section V.

IV COMPARISON OF THE EXACT S AND HM TESTS

The scope of the comparisons for the exact variants of the tests was
extended in two ways. First, in view of Szroeter’s asymptotic power func-
tion result, a third test, whose construction is dependent on the H, in ques-
tion, was included. We may refer to this as the “generalised’” Szroeter (GS)
test and define it in a similar fashion to h, but with h; = 012, i=1,2,...,n.
For the purposes of this study, the h; in the GS test for alternatives H,; to
H,, were “normalised” by appropriate scaling to yield a test statistic with
range (0, 1).> Second, an additional alternative hypothesis was considered,
namely,

02,i=1,2,...,r,
. g2 =
HA6 - oi - .
oi,1=r+1,r+2,...,n,

where r (# m) was set at [n/3], and 0% was given the values 2 and 4.

Exact critical values for each test and data set were obtained by using a
search procedure based on the repeated application of Imhof’s method
under Hy. Values were calculated which yielded a test size of 0.050 correct
to 3 decimal places,convergence being achieved in between 5 and 13 itera-
tions per case. Given these values, exact powers were computed using the
methodology described in Section III. A selection of results is given in
Table 2.

The contents of Table 2 are more straightforward than those of Table 1.
For each alternative hypothesis, the column of numbers relating to each
test gives the exact powers of that test in the various sample circumstances;
5. Szroeter (1978, p. 1315) has proposed an exact test based on the use of a set of BLUS residuals.

However, as this study is concemed only with testing for heteroscedasticity using the OLS residuals,
this rather complex BLUS-based procedure was not examined.
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i.e., the probability that that test will lead to rejection of Hy when Hy is
false and the particular alternative is true. Thus, for example, each number
in Column 1 in the body of the table gives the probability Pr(h>h§|H,,),
where hg denotes the exact 100« per cent critical value of h; and similarly
for the numbers in the other columns.

The exact powers confirm the impression given by the results in Table 1
that the S test is more powerful than the HM test against alternatives Hy, to
H,,. In the case of H,y, the HM exact test, unlike the HM bounds test, is
more powerful than the corresponding S test for all sample sizes. The exact
GS test is not in general superior to the exact S test for Hy; to Hy,, but it is
consistently more powerful than it in the case of H,;.% The exact HM test
under H,4 is equivalent to the exact GS test, of course, and both yield
identical powers. In the case of H,4, however, both the S and HM exact
tests are inferior to the GS exact test, especially for the larger sample sizes.
Moreover, while the HM test is more powerful than the S test for n = 10
under H g, it is less powerful than the S test for n > 20.

V COMPARISON OF THE BETA-APPROXIMATE S AND HM TESTS

For each data set, beta-approximate critical values were computed for the
HM test using the method described in HM (1979, Sec. 2.2.). A similar pro-
cedure, using the correct range of h, was used to obtain beta-approximate
critical values for the S test.” With these values, probability calculations were
carried out for the tests under Hy. Table 3 contains both the critical values
and the test sizes for the two beta approximations. For comparative
purposes, the exact 0.05 critical values are also included in the table. The
h, and b, columns contain the beta approximations to hy and by, respec-
tively. The S size gives the probability, Pr(h>h,|H,), that the sample value
of h will exceed h, when Hy, is true, while the HM size gives the probability,

Pr(b <b,|Hg), that the sample value of b will be less than b A when Hg is
true.

6. The inferior performance of the exact GS test vis-a-vis the exact S test for Hp | to Hp4, inclusive,
is puzzling because it conflicts with expectations based on Szroeter’s asymptotic power function. Yet
it conforms to an alternative, but as yet unpublished, theoretical result on the asymptotically most
powerful form of the § statistic obtained in correspondence from G. Bornholt, Department of
Economic Statistics, University of Sydney. Together with Bornholt’s result, the numerical results
presented here might be viewed as casting some doubt on Szroeter’s asymptotics, though to date the
present author has not found any error.

7. While such a procedure was not suggested by Szroeter, it would seem entirely appropriate given
that h is a Durbin-Watson variable. Following Durbin and Watson’s (1951) suggestion, beta distribu-
tions have been extensively used to approximate the distribution of the Durbin-Watson statistic. See,
for example, Theil and Nagar (1961), Henshaw (1966) and Durbin and Watson (1971). Incidentatly,
the correct range of h is given by the largest and smallest non-zero eigenvalues of the matrix appearing
in the numerator of h when the statistic, defined in (1), is written in matrix terms as a ratio of
quadratic forms in the true disturbances. For further details see Henshaw (1966, Sec. 3).
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Table 3: Critical values and sizes of the Beta-Approximate S and HM tests for the 0.05
significance level

S HM
Variable n
Critical value Size Critical value Size
hg hy hy bg bp ba

a. Cross-section data

10 2.813 2.785 .096 178 172 .046

20 2.676 2613  .069 .246 .246  .050
Lognormal 1 30 2,557 2556  .080  .294  .293  .049
40 2492 2498  .048 320 .320  .050
10 2.856 2.749  .075  .166 .160  .046
Normal 20 2.703 2610  .080 .240 .240  .050

1 30 2.578 2.5638 064 .289 .289 .050
40 2.506 2.488 .056 .316 317 .050

10 2912 2.693 114 .143 141 .049

. 20 2.684 2.657 .057 .247 .247 .050
Unif

ntorm 1 30 2.570 2.565 .052 .290 .290 .050

40 2.512 2.512 .059 315 315 .050

Stone’s 28 2.547 2.599 .036 294 .293 049

b. Time series data

10 2.906 2.688 112 147 144 .048

Trend 20 2.691 2.635 067 .243 243 .050

30 2.578 2.552 058 .289 .291 .052

40 2.506 2.491 .055 317 317 .050

Theil’s 16 2.764 2.698 .068 213 212 .050

Durbin-Watson’s 20 2.682 2.635 .063 .246 .246 .050
Irish Industrial

Production 40 2.512 2.484 .060 315 .316 .050

Note: The subscripts E and A denote the exact and beta-approximate variants, respectively.
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In the case of both tests, the beta-approximate critical values are, without
exception, closer to the exact critical values than to either of the bounding
critical values. This is reflected by the fact that the empirical sizes of the
approximations are closer to 0.05 than to the corresponding bounding sizes
given in Table 1. Clearly, the powers of the approximations against the
various H,’s would likewise be closer to the exact than to the bounding
powers of the tests.

Comparing the two tests, the HM beta-approximate critical values and
sizes are, in general, closer to the exact critical values and the actual size of
the test, respectively, than those of the beta-approximate S test. This
generally superior accuracy is no doubt due to the fact that, in the case of
the HM test, only k of the eigenvalues necessary for the approximation are
not known to be zero or one, whereas in the case of the S test all of the
eigenvalues used for the approximation are unknown. For it is the fact that
the corresponding eigenvalues are all ones or zeros in the case of the HM
bounds, that results in the bounds being exactly beta distributed.

VI CONCLUDING REMARKS

Three main findings have emerged from this study. First, for the range of
circumstances examined, there is no consistent power superiority of either
of the tests over the other; the relative power performance depends on the
nature of the heteroscedasticity postulated in the alternative hypothesis.
However, for the alternatives commonly used in applied econometrics
(Hpy and Hyy), the S test is more powerful than the HM test. The HM test
is the more powerful procedure against the H,, type of alternative which is
more common in other areas of applied statistics. Second, both bounds tests
are likely to be characterised by a high incidence of inconclusiveness in the
kinds of small sample situation typically encountered in practice, although
the HM bounds test is somewhat less prone to inconclusiveness than the S
bounds test, ceteris paribus. Therefore in practice, the choice between the
two bounds tests will generally involve a trade-off between considerations of
power and inconclusiveness. Third, when a two-moment beta approximation
is used, greater accuracy is generally obtained in the case of the HM than in
the case of the S test. This is not altogether surprising given that the HM
bounding statistics are themselves beta variables and all but k of the eigen-
values used in the approximation to the true distribution of b are known to
be ones and zeros. In the case of both tests, however, the performance of the
beta approximation accords more with that of the exact test than with that
of either of the bounding statistics. On the other hand, the two-moment
beta-approximations used in this study are relatively complex; they offer
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little saving in computational cost over the exact variants of the tests, and
therefore are not attractive for practical purposes. In the event of inconclus-
iveness, other, considerably simplified, beta-approximations have been
suggested (see, e.g., Harrison 1980).

The results on which these conclusions are based relate to specific sample
situations, of course, and no claim to generality is made for them. In particu-
lar they relate to a regression model with only two explanatory variables,
including the dummy variable unity to account for the intercept. When the
number of explanatory variables is larger, one would expect that the bounds
tests would have larger regions of inconclusiveness, and the approximate
tests may be poorer. For example, comparing the case in which n = 20 and
k = 2 with that in which n = 20 and k = 5, the inconclusive interval for the
S test at the 5 per cent level increases from (2.462, 2.875) to (2.036, 3.171),
and that of the HM test increases from (0.193, 0.289) to (0.095, 0.375). The
speculation that, for given n, beta approximations may be poorer the larger
is k, is based on the previously mentioned fact that, in the HM case, k of the
eigenvalues used in the approximation are unknown. Therefore, an increase
in k would seem to be tantamount to a loss of information. However, given
the range of circumstances investigated, it seems likely that the broader
findings would carry over to other situations.

Finally, it may be noted that the findings of this study lead to no change
in the view, expressed in Section I, that the S and HM bounds tests are
attractive practical procedures. Despite the possibility that both tests may
prove to be inconclusive, they are reliable in the sense that the probabilities
Pr(h>h%) and Pr(b <b§’) are less than the significance level & under Hy,
and the probabilities Pr(h<<h{) and Pr(b>b$) are less than Pr(h;<h{) and
Pr(by > bQ), respectively, under H,,, whatever the value of k. Moreover,
just as the Durbin-Watson bounds test is a conservative test for autocorrela-
tion, so the S and HM bounds tests are conservative tests for heteroscedas-
ticity in linear regression models. This, together with the fact that they are
computationally so simple, suggests that they would at least be useful as
first tests for heteroscedasticity. The HM test, which does not require the
evaluation of cosine expressions to obtain the sample value of its test statis-
tic, as the S test does, is particularly simple to apply, and therefore would
seem eminently suitable for use by researchers.
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