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Comments on the Weighted Regression 
Approach to Missing Values 
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Abstract: These comments relate to those methods of dealing with missing values of explanatory 
variables in regression analysis that first "complete" the data by inserting estimates derived from 
regressions of explanatory variables on each other and then employ some form of weighted regression. 
It is argued that the choices of weights in the published methods are not optimal and that improve
ments are possible. This is verified for a simple case and the difficulties to extending the methodology 
to general cases are discussed. 

here is an extensive literature on the topic of estimating parameters of 
X equations when some observations are incomplete. Important papers in 

the statistical literature include Anderson (1957), Buck (I960), Hocking and 
Smith (1968), Hartley and Hocking (1971), Orchard and Woodbury (1972), 
Rubin (1974), Beale and Little (1975) and Dempster, Laird and Rubin 
(1977). The more specifically econometric literature includes Dagenais 
(1973), Kmenta (1978), Gourieroux and Monfort (1981), Dagenais and 
Dagenais (1982) and Conniffe (1983). However, this paper is concerned only 
with the sub-class of methods in which missing values of explanatory variables 
are first replaced by estimates before applying some form of weighted regres
sion analysis to the "completed" data. Furthermore the estimates are pre
sumed derived from regression equations of explanatory variables on each 
other. It is assumed that no values of the dependent variable are missing. 

I INTRODUCTION 



The idea of "filling in" missing values by this method and then employing 
standard least squares formulae is of long standing and is included in Afifi 
and Elashoff's (1966) review of methods. But the standard formulae treat 
all observations on the same basis whether or not they are initially incom
plete. Intuitively, it seems more plausible to conduct a weighted regression 
where complete and incomplete observations need not be treated as of equal 
status. This approach was taken by Dagenais (1973) and Beale and Little 
(1975). 

The Dagenais argument commenced by assuming the true model is 

Y = XB + U (1) 

to which the standard assumptions of multiple regression would apply, but 
that some elements of some rows of X are unavailable. Let these be estimated 
using regression equations of explanatory variables on each other, as deter
mined from the sub-set of complete data, and let Z denote the "completed" 
matrix of explanatory variables. Since 

X = Z + ( X - Z) 

the model (1) becomes 

Y = ZB + W (2) 

where W = ( X - Z ) B + U (3) 

For a complete observation the row of X is identical to that of Z and so the 
relevant component of W is identical to that of U. It is a random variable 
with mean zero and variance a , say. When an observation is incomplete, the 
corresponding row of X - Z contains at least one non-zero element, which is 
the difference between the (unknown) true value and the regression estimate 
of that value. Provided assumptions of stochastic explanatory variables with 
linear regressions on each other are true, the estimate has the same expectation 
as that of the true value, where the expectation is taken over the distribution 
of the explanatory variable. So the component of W has again zero mean, 
but the variance is a function of that of at least one explanatory variable and, 
at least one component of B. 

Let 2 = E(WW l) 

= Iojj + E [ ( X - Z ) B B l ( X - Z) 1 ] (4) 

Ignoring, for the present, the fact that the second term of (4) must be esti
mated and treating 2 as if it were a known matrix, analogy with generalised 
least squares suggests the estimator 

( Z ^ Z J ' ^ S ^ Y (5) 



This is essentially the estimator proposed by Dagenais (1973) although he 
neglected small terms in the second component of (4) including the off-
diagonal terms. For example, for the case of two explanatory variables (apart 
from an intercept term) and two types of observations — either complete or 
with x 2 missing — his variances were for complete observations and 

" i + b | a ! (6) 

for incomplete observations. Here b 2 is the regression coefficient of y on x 2 

in model (1) and a 2 the variance of x 2 about its regression on X j . But the 
precise value of the ith diagonal term of (4) would be: 

x ^ / S x f l (7) 
where r denotes the number of complete observations and the mean and sum 
of squared deviations in (7) are calculated over these complete observations. 
The three terms within the parentheses in (7) are familiar components of the 
variance of a prediction from a regression line and the second and third will 
be small if r is reasonably large. Similarly, from (4), the off-diagonal element 
of 2 corresponding to observations i and j is: 

h\o\ j I + t x j . - ^ K x ^ - x ^ / S x f j 

Even using (6) involves unknown parameters so Dagenais first estimated 
these from the complete observations before conducting the weighted regres
sion. His simulation studies showed the procedure compared favourably 
with the alternative of just analysing complete observations only. A weighted 
regression allowing for the small terms in (7), etc., is also possible and 
Gourieroux and Monfort (1981) give an asymptotic result for one case. 

Beale and Little (1975) arrived at a quite similar method of estimation. 
They argued that the "value" of an observation in which, say, k of the p 
explanatory variables were measured, could be taken as inversely proportional 
to the variance of the distribution of y conditionally on these k variables 
only. This conditional variance could be estimated by taking all observations 
for which the k variables were available and calculating the residual mean 
square of the regression of y on them. The weighted regression was based 
on these "values". However, the expectations of the residual mean squares 
are exactly the variances used by Dagenais (1973). For example, in the 
simple case already mentioned the expectation of the residual mean square 
in a regression of y on Xj over all observations would be (6). So differences 
between the two methods are only a matter of computational detail. The 
Beale and Little paper examined other estimates also, including an iterative 
maximum likelihood method, and a simulation study showed the weighted 
regression approach to be usually inferior to this. Indeed, the weighted 



regression was sometimes inferior to analysis of complete observations only. 
The paper concluded by recommending the maximum likelihood method 
and only advised the use of weighted observations as a device to assign 
standard errors to coefficients. 

There remains the possibility that a different choice of weights could 
lead to an estimator with better properties. The idea that incomplete obser
vations should be assigned larger variances than complete ones in a weighted 
regression is intuitively appealing. The generalised least squares analogy is 
suggestive and the "value" arguments not implausible. However, Section II 
argues that these weights are sub-optimal and formulates another approach 
to optimal weighted regression. The approach is illustrated for a simple 
pattern of missing values in Section III and the results are contrasted with 
those obtained using the published methods. Unfortunately there are algebraic 
problems in extending the approach to complex patterns and some difficulties 
and possibilities are discussed in Section IV. 

II WEIGHTING SCHEMES 

It should not be assumed that (5) must be an optimal estimator (in the 
minimum variance unbiased sense) even if 2 were known. It is not as if the 
model (2) corresponds to a genuine generalisated least squares problem; that 
is, if Z may be treated as a matrix of constants with the first term on the right 
hand side of (2) the expectation of Y . Instead, some elements of Z are 
stochastic and the expectation of the first term is the same as the expectation 
of Y . Because one consequence is that some elements of Z and W are cor
related, Kmenta (1978) stated that the weighted estimator and even the 
simpler one obtained by applying standard regression formulae to the "com
pleted" data (which, for later reference, will be called the "unweighted" 
estimator) are biased. It will be shown in Section III that this is not necessarily 
true. On the other hand, minimum small-sample variance properties cannot 
be presumed and so it may be possible to improve on (5). 

The argument for weights based on the concept of "values" of incomplete 
observations may also be interpreted somewhat differently. Consider the 
"marginal value" of an incomplete observation — the value of an extra obser
vation of a particular type. The set of complete observations permit estimation 
of all the coefficients. The set of incomplete observations of a particular 
type — that is with the same variables missing — do not permit estimation of 
all the coefficients. What the sums of squares and cross-products calculable 
within the set do permit is the estimation of some functions of coefficients 
of the original equation and of the regressions of explanatory variables on 
each other. The complete observation estimates are required to transform 
this information on functions into improved estimates of all coefficients of 



the original equation. Suppose the number of incomplete observations of a 
particular type become very large. Now these functions are estimated very 
precisely but this is not necessarily true of the coefficients if the number of 
complete observations is small. So the marginal value of a complete obser
vation relative to an incomplete one of this type is much greater when the 
frequency of the incomplete observations is large relative to the frequency 
of complete observations. Thus, the "values" and hence weights assigned to 
incomplete observations may need to reflect the frequencies of the types 
of observations as well as their composition in terms of missing variables. 
Kelejian (1969), although not dealing with weighted regression, uses a 
similar argument to this in assessing the usefulness of analysis of incomplete 
observations. 

One approach to optimal weighting is as follows: 

(ZtQTlZ)~lZtQrlY (8) 

where Z and Y are as in (2). Taking Q, - I gives the "unweighted" estimator 
and n = 2 gives one weighted estimator. But the "best" £2 could be defined 
as that which makes (8) the unbiased estimator of minimum variance in the 
entire class that could be generated by varying the weightings of the incom
plete observations. This is too broad a class to ensure estimability because 
since £2 is (n X n), where n is the number of observations, there could be 
more unknowns in an arbitrary Q, than there are observations. So assume 
that observations of the same type are assigned the same diagonal element, 
and off-diagonal elements corresponding to (i, j) and(i, k) are the same if j 
and k are the same type. The assumptions seem plausible because if i and j 
are of the same type, they are presumably of equal value, given assumptions 
of randomness of occurrence of missing values, and the weights assigned 
ought to be equal. It is also assumed that there are sufficient complete obser
vations to permit estimation. 

The process of obtaining an optimal Q, would require constraining the 
elements of J2 so that (8) is unbiased and then obtaining an expression for 
the variance matrix and seeking the choice of elements to minimise this 
(either in the sense that the difference between this variance matrix and any 
other is negative definite or, less strongly, in the sense of minimising the 
trace). It is evident that this is really a large-sample concept of optimality 
because the elements of S2 will undoubtedly be functions of the unknown 
parameters and will require estimation, so that small sample optimality (and 
even unbiasedness, perhaps) is not guaranteed. Even so, the proposed pro
cedure is algebraically formidable except in simple cases. 



III A SIMPLE CASE 

Let there be two explanatory variables X j , which is available for all n 
observations, and x 2 , which is available only for the first r observations. For 
this case, the Zs, as defined in Section I , become 

Z j . = X J J , for all i, and Z 2 j = x 2 J , for i < r, 

and Z 2 j = x 2 + ( x H - X j ) S x j x 2 / S x 2 , f o r i > r, 

where S x } x 2 = 2(xj. - x 1 ) ( x 2 1 - x 2 ) and Sx 2 = £ ( x H - X j ) 2 

and the means and sums of squares and cross-products have been calculated 
over the first r observations. 

Let £2 equal the partitioned matrix 

l a 2 

u 
O 

A 
where A = 

D 
C 

C 
D 

C 
C 

D 

where I is an r X r unit matrix, O an r X (n - r) matrix of zeros and A an 
(n - r) X (n - r) matrix. The inverse of Q, is easily shown to be: 

o 
where F = 

G 
H 

H 

H 
G 

H 

H 
H 

where G D + ( n - r - 2 ) C 
( D - C) | D + (n - r - 1)C) 

and H - C 
(D - C) {D + (n - r - 1)C[ 

Suppose the true model is Y = bQ + bjXj + b 2 x 2 + U, then the estimators: 
forb 0 , b j and b 2 are: 

( Z ^ ^ Z y ^ f l ^ Y , where Z = 

1 Z l l Z 2 i 
1 7 7 
l ^ 1 2 22 

1 Z l n Z 2 n 



Evaluating and simplifying, as outlined in the Appendix, gives the standard 
estimator, obtainable from the complete observations only, for b 2 (call it 
bg) and 

b * = S x l Y + £ S ' x i y + m(x 1 - x 1 ) ( y - y ) _ « S x ^ ^ 

Sx* + £S'x 2 + m(xj - x , ) — _ - \2 Sx 2 

where primes indicate means or sums of squares and cross-products taken 
over the n - r incomplete observations, 

a 2 r ( n -
 T)°l 

D - C 
m = r ( D - C ) + ( n - r ) ( o 2 + r C ) 

The expectation of (9), conditionally on x g is 

b i + 

SxjX 2 + £ S x j X 2 + m(xj - X j ) ( x 2 - x g ) S x 1 x 2 

Sx 2 + £S'x 2 +m(x 1 - X j f Sx 2 

(10) 

If we now take expectations over x 2 , it is clear that (9) is unbiased since, 
given linear regression of x 2 on Xj (and, of course, stationarity of the regres
sion coefficient over all n observations) 

E ( S x j X 2 ) = kSx 2 , E(S X j X 2 ) = kS'x 2 , E ( x 2 - x g ) = k(Xj - X j ) 

where k is the regression coefficient of x 2 on X j . This, of course, assumes 
that £ and m are constants. In fact, we will find that the values of £ and m 
that minimise variance are functions of parameters and will have to be 
estimated in practice so that the foregoing argument will not suffice. But 
consider the case of "unweighted" regression: D = o 2 , C = 0. Then £ = 1 and 
m = r(n - r)/n, both pure constants. So the "unweighted" estimator is un
biased. Note that this result contradicts the assertion by Kmenta (1978), 
mentioned in the previous section. 

The variance of the estimator (9) may be calculated as the sum of two 
components. The first is the expectation, over x 2 , of the variance of (9), 
conditionally on Xj . The second is the variance, over x 2 , of the conditional 
expectation as given by (10). Note that in (9) the terms Sx t y and S'xjy, 
are independent because they are based on different y values; Sxjy, y"j 
and b 2 have zero covariances because they are orthogonal linear combinations 
of the ys; and S'xjy, y and b 2 also have zero covariances for both of the 
previous reasons. So the conditional variance of (9) is 



Q2 JSxf +l*&'x*+m*Fl-xl)*nlt(n-T) \ ^ ( S x ^ ) 2

 ( n ) 

[Sx 2 + fiS'x2 + m( Xj - x ' j ) 2 ] 2 ) S x 2 [ S x 2 S x 2 - (SxjX 2 )] 

So far, no probability distributions have been specified by y or x 2 . In getting 
the expectation over x 2 of this conditional variance, no difficulty arises with 
the first term of (11) since it does not contain x 2 . Some distributional assump
tion would be required to obtain the expectation of the second term, but 
since the term does not contain £ or m this cannot affect the choice of best 
estimator so we simply neglect the term. In calculating the variance, over 
x 2 , of (10), note the independence of Sxj x 2 and S'xj x 2 , the zero covariance 
of SxjXg and x"2 and the zero covariance of S'xjX 2 and x 2 . We obtain 

b 2 o 2 Q 2 2 b j a | _b|a 2 

Qi Qj + Sxj 

where Qj = Sx 2 + £S'x 2 + m(x1 - x j ) 2 

Q 2 = Sx 2 + fi2S'x2 + m 2 ^ - x' 1) 2n/r(n - r) 

and a^ is the variance of x 2 about its regression on X j . The third term of 
(12) is not a function of £ or m. Now we differentiate the sum of the first 
term of (11) and the first and second terms of (12) with respect to 2 and 
m and equate to zero. Making use of the identity 

S"x2 = Sx 2 + S'x2 + (xj - x[)2r{n - r)/n (13) 

where the double prime denotes summation over all n observations, we find 

£r(n - r) a 2 

m = and £ = 
a 2 + b 2 f l 2 S " x 2 / S x 2 

b 2 a 2 S " x 2 „ b 2 a 2 S " x 2 , t x or, C = 2 2 Land D = a 2 + 2 2 1 +C (14) 
rSx 2 U Sx 2 

The Dagenais (1973) or Beale and Little (1975) estimates, for this case, would 
be given by 

C = 0 and D = a 2 + b 2 a 2 (15) 

The "optimal" values of C and D as given by (14) supports the intuitive 
argument given in the previous section. D increases with S"x 2 /Sx 2 ; that is, 



the greater n relative to r. So the greater the relative frequency of incom
plete observations the more they are weighted against in the regression. The 
estimates (14) and (15) are not asymptotically equivalent because although 
C in (14) will tend to zero, D will tend to + 5 b | a | where 

6 = Lt S"xf/Sx* 
r -»• oo 
n -» °° 

Substituting (14) back into the variance formula would give a lower bound 
to the small sample variance. It is not the exact variance because C and D 
require estimates of parameters. Similarly, unbiasedness is not immediately 
evident. However, if (14) are substituted back into (9) via S and m, the 
expression for the estimator can be rewritten in the form: 

S"x, y , x Sx, y * Sx,x„ 
X—ll + ( l - X ) - i l - b 2 - ^ L _ 2 (16) 

S Xj S X | Sxj 

where X = ff^/(a^ + b | a 2). Now supposed is estimated by the ratio of residual 
mean squares of y on Xj and x 2 , and y on Xp using the complete obser
vations as data. Then (16) is a special case of the estimators discussed by 
Conniffe (1983) which were shown to be unbiased. (This coincidence of 
estimators seems to be a special case. If the argument of this section is 
extended to several explanatory variables with missing values and several 
without, the resulting "optimal" weighted regression estimators do not seem 
to coincide with the corresponding generalisation of (16).) 

It is interesting to quantify the differences in variance between the esti
mators given by (14) and (15). Although the exact small sample variance 
formula given by Conniffe (1983) can be applied to (16) there is no corres
ponding algebraic formula for the estimator corresponding to (15) so a 
simulation study was undertaken, with D in (15) also estimated by the 
residual mean square. For the study, n = 18, r = 9 and the Xj values were 
the integers 1 and 18. This choice, by including a trend in X j , deliberately 
makes S"XJ /SXJ large so as to make the Ds in (14) and (15) appreciably 
different. Conditional normality of y given Xj and x 2 and of x 2 given Xj 
was assumed. Obviously, if x 2 was too closely related to x } a multicolline-
arity problem would arise and both (14) and (15) would give estimators with 
large variances (as indeed would have occurred with the usual estimator even 
without missing values). So a squared "correlation" between x g and Xj of 
0.5 was chosen. For completeness, the variance of the "unweighted" estimator 
was also computed. In Table 1 the variances of all these estimators are 
expressed as ratios of the variance of the standard estimator based on com-



Table 1: Ratios of estimator variances to variance of complete observation estimator 

b 2 < y o - u Unweighted 
"Published" 

Weights 
"Optimal" 

Weights M l M 2 

4.0 7.90 2.68 0.96 1.11 1.86 
2.0 2.38 1.67 0.90 1.01 1.42 
1.0 1.01 0.93 0.77 0.80 0.89 
0.5 0.67 0.66 0.64 0.65 0.65 

plete observations only. 
The weights (14) and (15) are referred to as "Optimal" and "Published" 

respectively. The columns headed Mj and M 2 will be explained in the next 
section. The simulation was conducted for a range of values of b 2 a 2 / a i a 

because the consequences of missing values of x 2 clearly depend on the mag
nitude of the standardised regression coefficient. If it is zero or small, little 
information is lost by missing values of x 2 and, hence, an analysis including 
the incomplete observations will be considerably more efficient than one 
ignoring them, while if it is large the converse is true. Each tabular value is 
based on 1,000 replications. The "Optimal" is truly best except when 
b 2 o 2 / a u is small when there is no difference between estimators, all three 
being considerably superior to analysis of complete observations only. But 
when b 2 a 2 / a u becomes larger only the "Optimal" retains its superiority 
and the others can become alarmingly inferior. So using the "Published" 
rather than "Optimal" weights in this case may not mean just a reduction 
in efficiency but will determine whether or not the incomplete observations 
were worth including in the analysis at all. 

IV PROBLEMS OF GENERALISATION 

The previous section has illustrated the importance of "Optimal" weights 
in a simple case and there seems no reason why choice of weights should be 
less important in more complex cases. Unfortunately, the algebra of deriving 
weights was not trivial even with the simple patterns. For more complicated 
cases the expectations and variances of estimators will be more difficult to 
obtain. For example, the fact that no Xj values were missing in the example 
permitted working with expectation and variances conditional on Xj . In 
more general cases, it maybe necessary to take expectations over all variables 
and this could require specification of the multivariate distribution of the 
variables. Also in complex cases, and even if working with the average variance 
of coefficients, the optimisation stage would involve the solution of an 
apparently complicated set of non-linear equations. 



At this point it is as well to review why one might prefer a weighted 
regression procedure to an iterative maximum likelihood method. While it 
is conceivable that with appropriate weights the estimators may not be less 
efficient than maximum likelihood in small samples (the simulation in 
Conniffe, 1983, would justify this for the case of Section III) it seems 
unlikely they could ever be much superior. So efficiency is not a reason. 
There are two other possible reasons. The first is that iterative maximum 
likelihood is computationally demanding and estimates the regression 
equation only after estimating all the parameters of the multivariate distri
bution. If only a single regression equation is of interest one feels there should 
be a short-cut. But this argument loses whatever virtue it possesses unless 
the weights can be fairly easily determined. The second reason is the distri
butional assumptions required for likelihood methods. But, as already 
remarked, the derivation of "Optimal" weights would seem to require these 
too. 

Another possibility is to seek weights that if not "Optimal" are closer 
than the "Published" ones. The columns Mj and M 2 in Table 1 correspond 
to the estimators given by the weights: 

D = ff2+b2CT2s"x2/Sx2 C = 0, 

and D = ff2 + b 2 f f 2 n / r C = 0. 

The table shows that setting off-diagonal terms to zero does not greatly 
impair efficiency. The further modification to a weight involving a simple 
relative frequency does have a substantial detrimental effect but is still 
superior to the "Published" weights. Furthermore, the choice of the positive 
integers for Xj was extreme. If Xj was normally distributed the expectation 
of S"xj/Sx2 w o u l c l be (n - 3)/(r- 3). So a simple modification of "Published" 
weights by the relative frequency might produce a good improvement. 

Unfortunately the appropriate extension to general cases is unclear, at 
least to the author. It is easy to modify each weight by the relative frequency 
of that type of observation but, with more than two types of observation, 
this is ignoring a lot about pattern. For example, in a case of four explana
tory variables with three types of observation, including complete, obser
vations with x g and x 4 missing are of greater value if the other incomplete 
observations have Xj and x g missing than if they have x 2 and x g missing. 
Although simulation can be used to assess any particular weighting scheme, 
it would be an immense task to evaluate the possible range of schemes. An 
insight into the relationship between pattern and appropriate weighting 
scheme is required to make progress. So far, the author has failed to find it. 
Perhaps some reader might. 
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Noting that G - (n - r - 1)H = 

APPENDIX 

1 
D + ( n - r - l ) C 

and G - H 
D - C 

1 1 1 1 

°l ' " ^ 
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D + ( n - r - l ) C D + ( n - r - l ) C 

z n 

'I ' 
Z l r 

" a 2 

u 

Z i r + l + H 2 - z 

D - C 
. +H2'Z, 

D - C 

Z 2 1 

a 2 

u 

Z 2 r 

a 2 

u 

Z z r + 1 +H2'Z 9 . . 
D - C 

z 
. _JlL + H2'Z„ 

D - C 

where E ' denotes summation over the n - r incomplete observations. The 
terms 

Z l n - 1 Z and Z ' ^ ' Y 

follow easily. Then eliminating the constant bQ from the equations 

"b„ 
= z 'n^Y 

by subtracting multiples of the first equation from the other two, and 
replacing the Zs by Xs as specified in Section III of the paper, gives 

Sx j Sx j X g 
+ 

Sx j X g Sxj 

/ r \ S'x 2 

+ - ^ ( x - x ' , ) 2 Sx? 

S x j X 2 / S x j X A 

1 / r \ S x l v ( 1 / r \ rS _ _ _, I 

°l \ a u / S x 2 y ( D - C \ol ) a 2 ) S x , x 2 / S x 2 

where 8 = n - r 
D + (n - r - 1)C 

and primes denote means or sums of squares and cross-products taken over 
the incomplete observations. Solving these equations for bj and b 2 gives 
equation (9) of Section III . 




