nel of beile returns to neck year to restorable rules of the sub-The Elasticity of Demandsfort Petrolsins Irelands F. e.d. and main and the return of the rule of the returned to glad an odr Hardi net arms day of the rule and the rule production to glad an W. K. O'RIORDAN

THIS brief study attempts to, estimate the price elasticity of demand for petrol in Ireland at the present time. The statistic is not without importance. Alcohol, tobacco and petrol are the three main sources of indirect tax revenues in this country. Estimates of the price elasticities of the first two are already available^[1,2] so it seems worth making an effort to finish the task. Ignorance of price elasticities probably does little harm if we are prepared to let the price system work unhampered. But when we begin to interfere, to the extent that is normal in the case of such goods, it is wise to have some idea about the likely result of our actions.

result of our actions. There does not seem to be any alternative to the use of time series data. This problem is common to all investigations of price elasticity. It is virtually impossible to find adequate cross-section data and even when they are available they bring their own difficulties, notably the need to introduce the effects of variables which are difficult to quantify.^[3]

The Model water to see all the set of the water strategies of the water build for

¿ Variations in the quantity of petrol over time will be caused by many factors other than price; indeed one would be surprised if price were the dominan influence. Thus it will not be possible to derive an accurate estimate of the pricequantity, relationship without taking the other, important variables into account. The first question to be decided is whether price and quantity are related in more than one way, that is whether we must use a model containing more than one equation or not. The last is the market is one in which the seller is trying to maximise profit or some other variable which depends on quantity sold and the buyer is trying to reach the highest level of satisfaction: In such a case price and quantity are linked by two equations (supply and demand) and since there will only be one value of each which will be consistent with the desires of both buyers and sellers then the values of these two, variables will be determined within the system. However, this is scarcely a realistic representation of the market for petrol. About three quarters of the market price of petrol is excise duty and most price changes are due to changes in tax. Thus it does not seem reasonable to regard price as anything but a variable which is determined outside the system with little reference, if any, to the profitability of the industry. So changes in price lead to changes in quantity demanded and we can validly construct a single equation model with quantity as a dependent and price as one of a number of independent variables. To put the matter in a slightly more technical way, the supply curve is probably a horizontal straight line—the petrol companies take price as given and sell as much as they can at that price. Shifts in the curve then identify the demand curve.

There is another type of simultaneity which is simply ignored here. No attempt is made to see the demand for petrol as one of a complete set of demand relationships like those proposed by Stone, Houthakker and others.^[4] The main reason for this is of course economy of effort, but in any case it is doubtful if one can hope for an accurate estimate of a particular elasticity in such a system. Difficulties of specification and estimation force one to ignore the entire supply side of the matter which must be relevant in a complete system.^[5] For what it is worth, the model used here, with relative price, is very similar to a single equation out of the set proposed by Houthakker.^[6]

Variables

Petrol does not (normally!) confer utility directly. The demand is a derived one depending on the demand for motor transport. To find the factors which affect the quantity of petrol demanded we must consider everything which might have an important influence on the demand for motor transport. Standard economic theory suggests that we consider the variables which might affect the position or slope of the budget plane and the form of the community indifference map.

العروب المساحي فتم

Real income in the community would seem to be the first obvious consideration. Since there have been substantial changes in the level of real income and since the evidence suggests that the income elasticity of demand for motor transport is fairly high^[7] it is reasonable to expect that income may exert a stronger influence than any other variable. The price of motor transport must be expected to have an effect on the demand. This price will be affected by the prices of vehicles and ancilliary items like tax, insurance and repairs and also by the price of fuel. Vehicle prices, tax and insurance are fixed costs in the sense that they do not vary with the use made of the vehicle. They must affect the decision to buy a vehicle and not interfere with the use made of it, so their influence will be allowed for if the stock of vehicles is included in the regression. Another reason for including this variable is given below. The cost of repairs is ignored because of practical difficulties of measurement. The price of fuel will affect both the number of vehicles bought and the use made of them. The elasticities presented below measure the response to a price change with the vehicle stock held constant and thus are, if anything, an understatement of the true situation. This point will be 1.15 referred to again.

It is also possible that changes in technical efficiency could affect the price of motor transport. If a vehicle can be induced to go further on a gallon of petrol then each ton-mile or seat-mile costs less. I believe that this influence has not been sufficiently strong in the period to be worth including. There is some doubt as to which form of the price-variable is the most meaningful. If people are completely free of the money illusion then a uniform rise in all prices and income would leave their consumption-pattern unchanged. In such a case people would respond to relative price and some measure of this variable could be used unhesitatingly. However, there is no guarantee that people do, in fact, see through the "veil of money", especially in the case of petrol where the price changes receive a great deal of publicity. As evidence of this, most people believe that petrol has risen faster than the general level of prices in the last few years, but the variable P_r in Table 9 shows that the reverse is the case. For this reason all the regressions were calculated in pairs using both P_a (actual price) and P_r (relative price = P_a – Consumer Price Index).

The prices of other goods which have some special relationship with the commodity in question may have a significant influence. In the present case the list is not long but it would seem that motor transport and public transport fill approximately the same need so that some index of the price of public transport would seem to be worth including. Since actual prices because of their strong time trend caused serious problems of multicollinearity an index of relative price of public transport was used. The Consumer Price Index and the price of petrol were both used as deflators, the latter giving slightly better results.

Finally there are three factors which may affect the taste of the community for motor transport. The first is advertising. However it appears that advertising of both cars and petrol is of the competitive type and is aimed rather at changing market shares than at expanding the total market. If this is true then advertising is not important for the problem in hand. The second consideration is the stock of cars. This stock is not something that can change quickly. The level that exists at any moment is probably mainly determined by incomes of a large number of past periods. A community with a big stock of cars will probably demand a greater amount of motor transport at a given income level than a community with a small stock would. For this reason, in addition to the one mentioned above, it would appear necessary to include the stock of vehicles as a variable.

The final factor is the change from petrol to diesel as a fuel for commercial vehicles. It is reasonable to say that throughout the sample period virtually all private vehicles were petrol-driven. In the early 1950s there were many petrol-driven commercial vehicles but by 1969 virtually all used diesel fuel. So this change must have affected the demand for petrol. A study of the sample shows that from 1962 onward the ratio of diesel to petrol remained very stable at about '25 to I, so it may be calculated that the change to diesel for commercial use was more or less completed by that date. It is, however, necessary to introduce some sort of a correction for this process in the first half of the sample.

This correction may be achieved fairly simply in the following way. Define Q_c and Q_p as commercially—and privately—used petrol respectively. Q as $(Q_c + Q_p)$, Q_d as diesel used (all commercial) and R as a constant representing the amount of petrol for which one gallon of diesel can be substituted in normal road-haulage. Of these, Q and Q_d are the only variables that can be observed.

Assume that throughout the sample period the commercial demand for fuel is such that if it were all satisfied by diesel it would constitute 25 times the private demand for , petrolan This would be consistent with private and commercial demands both maintaining the same relationship with income. In an and the same relationship with income. our media terrar terrar and an allianaray. The arriter bay ter arriter to call and and $\int_{\Omega} \frac{\partial Q_{d}}{\partial t} = \frac{1}{R} Q_{d} \frac{\partial L}{\partial t} = \frac{1}{2} Q_{d} \frac{\partial Q_{d}}{\partial t} = \frac{1}{2}$ $\int_{\mathrm{diff}} \frac{1}{\sqrt{2}} Q_{e} + \frac{1}{R} Q_{e}^{11} + \frac{1}{\sqrt{2}} \frac{25}{\sqrt{2}} Q_{e} = \frac{1}{2} \frac{25}{\sqrt{p}} Q_{e} = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} Q_{e} = \frac{1}{\sqrt{2}} \frac{25}{\sqrt{p}} Q_{e} = \frac{1}{\sqrt{2}} \frac{25}{\sqrt{p}} Q_{e} = \frac{1}{\sqrt{2}} \frac{1}$ The price of Constant Part Index. I have $Q_{i1}(\mathbf{r}, \mathbf{r}^{2S}) = (\mathbf{r}_{i1}^{2S} + \mathbf{r}_{i2}^{2S}) = (\mathbf{r}_{i2}^{2S} + \mathbf{r}_{i3}^{2S}) = (\mathbf{r}_{i1}^{2S} + \mathbf{r}_{i3}^{2S}$ P. Water price P. 1.2014 $\lim_{n \to \infty} |Q_d| = \frac{1}{2} \sum_{i=1}^{n} |Q_d|^2 = \frac{1}{2} \sum_{i=1}^{n} |Q_d|^2 = \frac{1}{2} (25Q - Q_d)^2 = R' (25Q - Q_d)^2$ 2. Star ruger and silding to a sign of the 123 and a set of the set of the set of the set print right to sward is by Rais wait grade by Ground other a pair which expresses the unobserved Q_e as a function of R and the observed P and Q_a included. This may then be as an additive element in the demand equation thus Total petrol demand = Private demand + Commercial Demand Total period demand = Private demand + Commercial Demand (1,0) (1,0) (1,0) (1,1) (2,0) (2,1) (2,0) (2income, price, the stock of private vehicles, the price of public transport and the dieselisation factor concost ve bunime tobe and dispersion of Data throw the doing they end to xnote give prove should be to return the The following symbols are used from this point onward: Q: Quantity of petrol sold for road use l en s Quantity of diesel sold for road use Q_d : D^{a} : Dieselisation factor explained above; $(25Q - Q_{a})$ Relative price of public transport: Price index - price of petrol $d_1, d_2, \dots, b_1, b_2, \dots, k$: constraints to be estimated *u*: Disturbance term The series used and their sources are set out in Table 9; they are all annual data. Mathematical Form The form of the relationship between price and quantity is worth some thought. It is generally true that if one calculates a linear and a non-linear relationship the

478

estimates of price elasticity at the means of the variables do not differ greatly: However policy decisions are rarely made at the means but more usually at extreme values of the variables and in such cases the two types of relationship may have very different implications.

Thus it seems wise not to exclude the possibility of non-linearities in the relationship. There are, of course, many types of non-linear function which could be used, but as long as the possibility of curvature is allowed for, the precise form of the function will scarcely affect the matter very much. It is probably unrealistic to expect the data to be sufficiently rich to show that, say, a log-linear form is more satisfactory than a quadratic.

$$\log Q = \log b_0 + b_1 \log Y + b_2 \log P_1 + \dots \text{ or } Q = b_0 Y^{b_1} I_{p_2 2 \dots}$$

has many advantages, not the least of which is ease of computation. Since the b's are free to take on values equal to less than or greater than unity the relationship, between Q and the independent variables can, be proportional, less than proportional or more than proportional. Thus there is a great deal of flexibility and the various independent variables may show themselves to be related to the dependent in different ways. Finally in the present case since the function may be written

it implies that basically the quantity is proportional to some power of income, the proportionality being modified by changes in price and the other variables. This appears to be a more reasonable approach than to assume, as one does in the case of a linear function, that the quantity demanded is composed of a number of independent parts one of which is determined by income, another by price and so on. The results of the linear regressions (Tables 7, 8) indicate that this belief is not altogether naive.

One minor fault of the log-linear function is that (if all the *b*'s are positive) it is constrained through the origin. There does not appear to be any reason why this need be realistic so some improvement may be expected if the restriction is removed. To do this one sees the relationship as $Q = k + b_0 Y^{b_1} P^{b_2} - -$. Estimation is most easily done by using the form $\log (Q-k) = \log b_0 + b_1 \log Y + b_2 \log P' + ---$, giving k a series of values and choosing the most satisfactory result. Since the object of the exercise is to find the best fit in the Q.P plane the t- value of the coefficient of P seems to be the most sensible criterion; however as one would expect, there is a close correspondence between the behaviour of this statistic and that of the other t- values and the overall goodness-of-fit.

In summary, then, the functional form

 $\log (Q-k) = \log b_0 + b_1 \log Y + b_2 \log P + b_3 \log C + b_4 \log D + b_5 \log P_t + \log u$ Two series of regressions were calculated; one using $P = P_a$ (actual price) and

.

one using $P = P_r$ (relative price), each being tried in combination with a series of values for k ranging from -70 to +100. The criterion for selecting the best outcome in each case is the t-value of b_2 . Strictly speaking D should appear as an additive element in a linear rather than a log-linear regression. Its use here represents an approximation. 4

The Results

-ie. くゆち The basic results are presented in Tables 1 and 2 below which are, I hope, self-explanatory. The figures in brackets are t- values of the coefficients. Using the *t*-value of the coefficient of P as the criterion the most acceptable regression is that using (Q-60) in the case of P_a and (Q-35). in the case of P_r . The tvalues reach a peak in these cases and decline continuously on either side. The other statistics (the t- values of Y, C, D and P_t and the multiple correlation coefficient) tend to confirm this conclusion.

In an equation of this type the elasticity is not given precisely by the regression coefficient. Defining price elasticity of demand as $\frac{P \cdot dQ}{Q \cdot dP}$ it is easily shown that it can be reduced to $b_2\left(1-\frac{k}{O}\right)$ using the definitions of k and b_2 in the equation above. In the present case the elasticity will be less than b_2 (-1.1146 for P_a and -9854 for P, at the 1969 value of Q. The Durbin-Watson statistic is 2.37 for the P_a equation and 2.31 for the P_r equation; both of which indicate absence of autocorrelation with 95 per cent probability.

The following conclusions are suggested by the results

- (a) (Q-k) as a dependent variable and gives better results than Q.
 - (b) The absolute value of the price elasticity of demand for petrol is not

(c) The elasticity with respect to absolute price is not very much different from the elasticity with respect to relative price,

(d) Absolute price is as "good" an explanatory variable as relative price. There is no appreciable difference in their *t*-'values or in the contribution · which they make to overall goodness of fit, ·

(e) The coefficient of P_t (relative price of public transport) has a negative sign. This would imply that public transport is complementary to the demand for petrol. I can think of no reason why this should be so. The variable $(P_{ia}^{c} - CPI)$ also has a negative coefficient as also has the actual price in some cases. ·~ ٠.,

Points (b) and (c) require some further investigation. There is of course no reason why they should not be valid-for example both measures of price might be equally unsatisfactory approximations to the true variable to which consumers respond. However there is a peculiarity in the sample which suggests a reason

-1

15

for these results. There were two years (1957, 1960) in which exceptionally big changes in price took place. These are very much greater than all the other changes and so must be dominant in the regression. Further, since the changes in P_a and P_r in these years were very much the same it is inevitable that their regression coefficients should be similar.

It is worth removing the influence of these two changes. This is done by using only the ten observations from 1960 to 1969. The variable D is dropped from the regression because it has been virtually reduced to zero by 1960. The results shown in Tables 3 and 4, are reasonable. The elasticity with regard to P_a is very much lower than with regard to P_r .

The coefficients of P_a and P_r seem to be fairly stable. As long as the variable C is retained, the dropping of the other two makes very little difference (Tables 5, 6). If C is dropped the confidence intervals become very wide. Finally, in Tables 7 and 8, the results of simple linear regressions are shown. The logarithmic form is vastly superior.

It is worth recalling that the elasticities measured here represent the effect of price changes with stocks of vehicles held constant. Since an increase in the price of petrol may be expected to reduce the stock of vehicles the total elasticity when this effect is allowed for is likely to be greater.

Conclusion

The main conclusion suggested by the evidence is that the price elasticity of demand at the present time (and particularly the elasticity with regard to relative price) can scarcely be much less than unity. This relatively big elasticity may well be due to the abnormal publicity which is given to changes in petrol prices—changes which are proportionally rather small. It would seem that it is quite useless to raise the rate of tax on petrol if the purpose is to gather more revenue, for the resulting decrease in quantity will be at least big enough to prevent income from rising. It is true, of course, that in the past increases in tax have been accompanied by increases in revenue, but these increases have been caused by changes in other factors, notably by increases in income. Revenue would have been about the same—possibly even higher—if the tax rate were not changed.

If it were desired to decrease the quantity of petrol used, higher tax rates would be quite effective; but such a policy has never been announced and it seems unlikely to have been contemplated. In the circumstances, the industry can validly claim that it is being treated rather badly. On the assumption that the elasticity is about unity, higher rates of duty bring no benefit to the exchequer but they do reduce the quantity of petrol sold. So, if the profit per unit is roughly constant, the industry must be worse off. In logic, when tax rates are raised the industry ought to be allowed to raise its margins by an equal proportion so as to maintain its position. Or are we simply trying to improve the environment by discouraging oil companies?

University College, Dublin.

TABLES STREAM STREAM TABLES SHE HE SECTION AND A STREAM AND A
Tables 1-6. present the coefficients in regressions of the form:
$\log (Q-k) = \log (b_0 + b_1, \log Y + b_2 \log P_1 + b_3 \log C + b_4 \log D + b_5 \log P_T, \dots$
the second of the second of the second mention of the second s
$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$
needen en oor jij van helegjin en ne gan dan de twee dewee oor jij an de geween al
(Q-k) Constant Y P C $(1 + 1)$ $($
$Q_{-70}^{-61} \xrightarrow{-3:1485} (-2:25)^{-17} (-4:74)^{-1} (5:74)^{-17} (-3:5137)^{-17} (-3:676)^{-17} (-2:17)^{-1} (-3:955)^{-17} (-2:17)^{-1} (-3:955)^{-17} (-3:17)^{-1} (-3:17)$
$Q-70^{-6} - 3.1485^{-(1)} \cdot (2.25)^{-(7+4)} \cdot (7-474)^{-(5+74)} \cdot (5.74)^{-(5+74)} \cdot (0.65)^{+(1)} \cdot (-2.17)^{+(1+1)} \cdot 9955^{-(1+1)} \cdot (-2.17)^{-(1+1)} \cdot (-2.17)^$
(1,1,1) $(1,1,2)$ $(1,2,2)$ $(2,6805)$ $(1,4)$ $(2,26622)$ $(2,2)$ $(2,3)$ $(2,3)$ $(2,1)$ $(2,0605)$ $(1,2)$ $(-1,06687)$ $(1,2)$ $(-1,06687)$ $(-1,2)$
2.5415' (-1.6913) (1.8308) (1.955) (2.5415' (-1.6913)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$Q_{-55}^{-1} \xrightarrow{4}{4} 7898^{1} \xrightarrow{1}{7} (7.06)^{1} \xrightarrow{1}{1} (\frac{1}{-6}, 53)^{-1} \xrightarrow{1}{2} (8.43)^{1} \xrightarrow{1}{1} (2.43)^{1} \xrightarrow{1}{2} (2.02)^{1} \xrightarrow{1}{1} \xrightarrow{1}{1} (1.1)^{1}$
2·2407 — I·0900 (1) I·2546 (1.200700 (1-3348, 1.1) + 1/1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
<u>— A the sector of the sector set of simplements of an energy of the terms of the sector of the terms of the sector of the se</u>
in the first second second is the second
$\lim_{R \to \infty} \psi_{1} + \psi_{$
in a standard a spectra with both of the standard of the stand
$\begin{array}{c} (Q, k) \\ (Q, k$
The second s
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2.2330''
(2-50), (-150) , $(-2-55)$, (-50) , (-550) , (-550) , (-550) , (-550) , $(-2-55)$, (-50) , $(-2-55)$, (-50) , $(-2-55)$, (-50) , $(-2-55)$, (-50) , $(-2-55)$, (-50) , $(-2-55)$, $(-2-5$
$\begin{array}{cccc} (0,1) & (1,1$
2·0662
$\begin{array}{c} (Q-45) & \begin{array}{c} +1:5495 \\ 2\cdot0662 \\ (Q-40)' & \begin{array}{c} 1\cdot289 \\ 1\cdot4885 \\ 1\cdot9801 \\ 1\cdot9801 \\ 1\cdot12373 \\ 1\cdot12373$
*(Q-35) -1.4086 (9.12) (1.99914 (5.99) (2.28) (-2.96) (1.99914 (2.28))
(2-35) = 14000 (912) = (-0.36) (3.599) = (2.26) (-2.26) (-2.260)
$(Q_{-30})_1 = 1^{\cdot}3268$ $(9^{\cdot}23)_{1} = (6^{\cdot}22)$ $(5^{\cdot}81)_1 = (2^{\cdot}62)_{1} = (-2^{\cdot}88)_{1} = (-2^{$
$Q - 7924 \begin{pmatrix} 1 & 5077 & -7717 & 3341 & 0459 & -3523 \\ (8 & 58) & (-4 & 92) & (4 & 53) & (3 & 44) & (-2 & 22) & 9987 \end{pmatrix}$

482

.....

(Q-k)	Constant	<u>Y</u> e	P	;. C	•	D		•
(Q70) .	— 5·1668	1•6407 (1•65)	-1·3382 (-2·10)	2•4469 (8•57)	، ۶. ر		(., - ·4279 (·75)	•9988
			TABLE 4:	(Price = 1	<i>P_R</i>)			
(Q-k)	Constant	Y G	Р	o c	<u>д</u> С	D	′ P _T	aataa Roo
(Q70)	-0 · 2974						(-1.003 (-1.00)	
			Table 5:	(Price =)	P _A)			
(Q-k)	¹ Constant	Ý)	P	, t c		D	^t P _T	C R
(Q-60) (Q-60) (Q-60)	-5·1420 -9·3322 -10·9302	2.0003 (5.80) 4.2780 (10.68) 4.8648 (5.50)	-1.1761 (-8.62) 5804 (-2.26) 4702 (-0.85)	1·545 (8·50)		• 1093 - 1•76)		•9984 ²⁰ •9913 •9893
	{*** ** ** ** *	· · ·	Table 6		P _R)	5*2 **2	•	 Вода Ста Саба <li< td=""></li<>
(Q-k)	Constant	Y	Р	C		D	, P _T	R
(Q-40)	-2.6880	1·7078 (6·88)	(-7.88)	· · · · · 5445 · · · (5·10)		•** [•:4		•9983
(Q-40)	-4.8037	2•7460 (14•33)	-•5996 (-•364) -1•2389		(-	0363 1•16)		9954
(Q-40)	-3.6122	(15.52)	(-3·0I)	, <u>)</u>	1 5.	la	(-1.91)	•9960

ł

.

ŕ

TABLE 3: (Price = P_A)

Constant -41.54 (3.1) YR. Q (3.3) 75.7 (3.3) 75.7 (3.3)	·1597 (4·71) Y :1810 (5·73) Y P. 598 100		Таві Р _R 2238 (-63) СРІ	C · · · · · · · · · · · · · · · · · · ·	$cc = P_R$	D . 1•8078; •	P ·14 > (9	187 187 5)	R · ' •9985 R' •9988 '
Constant -41.54 (1) -5.5 (2) -5	(4.71) Y :1810 (5.73) Y P2 :98 100	(() (-1	03) TABI PR 2238 (•63) CPI	LE 8: (Prid) C 	$cc = P_R$	(5·36) ``) D 1·8078 (4·99)	P ·14 ⟩ (9	3) 2 1 187 5)	R' •9988 '
-41.54 (-31. YR. Q 953 75.7 5 954 79.5 6 955 83.7 6 956 81.7 6 957 76.4 6 958 77.5 6 958 77.5 6 959 81.4 6 960 84.0 6 961 90.6 6 962 95.3	1810 (5·73) Y P2 598 100	2 (-1	P _R 2238 :-63) CPI) C ,	0 • • • • • • • • • • • • • • • • • • •	D 1.8078 (4.99)	··· -·14 ··· / (-·9	187 S)	•9988 •
-41.54 (-31. YR. Q 953 75.7 5 954 79.5 6 955 83.7 6 956 81.7 6 957 76.4 6 958 77.5 6 958 77.5 6 959 81.4 6 960 84.0 6 961 90.6 6 962 95.3	1810 (5·73) Y P2 598 100	2 (-1	2238 (-63) 	(4*87 (4*87	Data	1·8078 (4·99)	··· -·14 ··· / (-·9	187 S)	•9988 •
YR. Q 953 75'7 5 954 79'5 6 955 83'7 6 956 81'7 6 957 76'4 6 958 77'5 6 959 81'4 6 960 84'0 6 961 90'6 6 962 95'3 7	(5·73) Y P2 598 100	(··63)	(4·87	Data	(4•99)	···) (-·9	5)	
953 75'7 5 954 79'5 6 955 83'7 6 956 81'7 6 957 76'4 6 958 77'5 6 959 81'4 6 960 84'0 6 961 90'6 6 962 95'3 7	<u>98 100</u>		CPI			<u>مں</u>		PTA	PT
953 75'7 5 954 79'5 6 955 83'7 6 956 81'7 6 957 76'4 6 958 77'5 6 959 81'4 6 960 84'0 6 961 90'6 6 962 95'3 7	<u>98 100</u>		· · · · · · · · · · · · · · · · · · ·	PR	, C	<u>מס</u>	 D	PTA	PT
953 75'7 5 954 79'5 6 955 83'7 6 956 81'7 6 957 76'4 6 958 77'5 6 959 81'4 6 960 84'0 6 961 90'6 6 962 95'3 7	<u>98 100</u>		· · · · · · · · · · · · · · · · · · ·) PR	, C	OD	n	PTA	$\cdot PT$
954 79*5 60 955 83*7 60 956 81*7 60 957 76*4 60 958 77*5 60 959 81*4 60 960 84*0 60 961 90*6 60 962 95*3 7		0.0		. .			D	<u> </u>	
955 83.7 6 956 81.7 6 957 76.4 6 958 77.5 6 959 81.4 6 960 84.0 6 961 90.6 6 962 95.3 7	ώ <i>ι</i> του		100.0	100	109	6.6	11.6	100.0	100.0
955 83.7 6 956 81.7 6 957 76.4 6 958 77.5 6 959 81.4 6 960 84.0 6 961 90.6 6 962 95.3 7		0.0	100.1	. 99.9	118	7•0	., 12•2	100.0	100.0
957 764 6 958 775 6 959 814 6 960 840 6 961 906 6 962 953 7		.	102.7	97•4	128	8.0		102.0	102.0
958 77*5 (959 81*4 (960 84*0 (961 90*6 (962 95*3 (908 IÓÌ		107.1	94•6	. 136	9.1	12.1	114.0	
959 81·4 (960 84·0 (961 90·6 (962 95·3	512 133		111.2	119.8	135	10.9		114.0	
960 8400 (961 906 (962 953	501 134		116.2	115.2	143		, 7.8	117.8	
961 90·6 (962 95·3	627 134		116.2	115.8	154	-	6.2	119.3	
95.3	559 153		117.0	-131.0		15.3	5*3		
	592 15		120-2	129.2	186	,	3*5		-
	714 . 158		125.3	126.6	207	-	1.3		
		9.2	128.4	124-0	· 229 225		0	143.3	
		5°7 4°3	137•0 143•9	120 · 9 121·1	225		0 0	156·4 160·6	
• •		4 3 3:5	143.9		201		, ο.	. 170°I	-
		30 7*5	140 2		314		, 0. 0	. 1701 1796	
- , .		4°7	152 9		337			199.6	-
		47 I•3		, 117.0	354			227•4	
yuy' <u>(8</u> , 1/1 y)	202 202	~)		1	, 554	• T	4 . V ⁴ . V	22/4	, 11 <u>)</u> (
·			-,- 0	-					
nformation and Soi	<u>.</u>	Mar			<u>.) n (+ -</u> 7 7+		· · ·		

*^{6•} : Quantity of petrol sold. Unit 1 million 'gallons. Source: Reports of Revenue Com-Q missioners 1953-1969. Υ

missioners 1953–1969. Gross National Product at constant (1958) prices. Unit f_{1} million. Source: National Income and Expenditure 1969 (C.S.O.), Tables A₄ and B₆. Index of the National average price of petrol. Supplied by the C.S.O. : P_{A}

:

- CPI : Consumer Price Index. Source: Statistical Abstracts 1953-1969, Section XII, Reworked to base 1953.
- $P_R \\ C$ Index of relative price of petrol. $P_A \div C.P.I.$:
- Number of private cars registered in August of each year. Unit one thousand. Source: : Statistical Abstracts, 1953–1969. Section XI.
- Quantity of diesel sold for road use. Unit I million gallons. Source: Reports of Revenue QD Commissioners 1953-69.
- : Artificial variable ($\cdot 2_5Q QD$). D
- Index of the price of public transport, from figures supplied by the C.S.O. PTA :
- PT : Relative price of public transport. $PTA \div P_A$.

REFERENCES

- [1] Walsh & Walsh: "Economic Aspects of Alcohol Consumption in Ireland", The Economic and Social Review, Vol. 2, No. 1. [2] O'Riordan: "The Price Elasticity of Demand for Tobacco in Ireland", The Economic and
- Social Review, Vol. 1, No. 1.
- [3] See for example, "The Effect of Advertising on Sales and Brand Shares", J. M. Samuels (The Advertising Association, London).
- [4] Stone, R., "Linear Expenditure Systems and Demand Analysis", Economic Journal, Vol. 64, September, 1954. Houthakker, H. S., "Additive Preference", Econometrica, Vol. 28, April, 1960.
- [5] Goldberger, A. S., Functional Form & Utility (section 5): Social Systems Research Institute, University of Winsconsin.
- [6] Houthakker, H. S., "New Evidence on Demand Elasticities", Econometrica, Vol. 33, October, 1965.
- [7] Pratschke, J. L., Income-Expenditure Relations in Ireland 1965-66. Economic and Social Research Institute, Dublin, 1969, Paper No. 50.