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THE last decade, beginning with the work of Teigen [12], has seen wide­
spread recognition of the need to "endogenise" the supply of money in 
order to obtain consistent (i.e. asymptotically unbiased) estimates of the 

parameters in the money-demand1 and other equations of an econometric system. 
Most such models, however, assume the central bank's policy-instrument 
(typically, commercial banks' reserves or the monetary base) to be exogenous. 

Nevertheless, a few model-builders have estimated, central bank behaviour 
functions, thereby recognising that the instrument variable not only affects macro-
economic variables such as income, prices, and interest rates, but responds to them 
according to the policy-preferences of the monetary authority. Such functions 
are termed "reaction functions", and are of the general form: 

(1) 1=1 [tv t2, . . .tt, . . . tn, Z x , Z 2 , . . . Z,, . . . Z„, fJ.) 

where I is an instrument variable, the tt are endogenous target variables, the Z ; are 
other variables, and i± is a stochastic variable. By "endogenous" target variable 
is meant "one which is affected by, as well as affects, the instrument, I " . 

Recently, reaction functions have been incorporated into multi-equation models 
simply in order to "endogenise" instrument variables and thereby ensure con-

*This paper is a revised and abridged version of Chapter 5 of the author's Ph.D. dissertation 
for Harvard University (1973). The author is indebted to Herbert G. Grubel, Thomas M. 
Havrilesky and Edward Tower for valuable comments on an earlier draft. 

1. With respect to the money-demand equation, this is the familiar "identification" problem. 



sistent estimates of all the model's parameters [e.g., 3]. Such studies make no 
attempt to place an economic interpretation on the reaction function's parameters. 
Early work, however, estimated (1) by itself, typically in linear form using the 
ordinary least squares (OLS) technique, and interpreted estimates of the tt's 
coefficients as measures of the central bank's relative preferences for its targets 
[2, 6, 8, 11]. Wood's seminal article [17] showed such an interpretation to be 
fallacious: reaction function coefficients depend not only upon targets' relative 
weights in the policy-maker's preference function (I call these the "utility-
weights"), but also upon "structural" relationships between I , the tt and the Z,-.2 

The reaction function must be conceived, not as a single-equation model of the 
policy authority's behaviour, but as the solution for J of a system which maximises 
a utility function subject to structural constraints on its arguments. The econo­
metric implication of this is that the single-equation OLS technique is inadequate 
since (1) must be estimated in the context of a multi-equation system which 
includes "structural" equations relating the targets to each other. 

In order to yield information about the policy-maker's relative preferences for 
targets, then, the reaction function must be derived from a model of the following 
type: 

maximise (with respect to I) the utility function 

(2) u = u (tx, t2, . . . t,t, ... t„, some or all Z,), 

subject to the "structural" constraints 

(3) h — t {!> some or all tj other than th some or all Zh ut), 

for i = 1 . . . n, 

where u is the policy-maker's utility function and the ju.; are stochastic variables. 
The reaction function is then derived by solving the result of this maximisation 
process for the instrument I. 

This paper is in three parts. In Part I , I posit specific forms for (2) and (3), and 
show that, subject to the restrictions that (2) be additive, separable and quadratic, 
and that (3) be strictly linear, (2) and (3) can depart only slightly from the forms 
I have posited i f the utility-weights are to be algebraically determined and 
statistically identified. I list five restrictions on the form of the model, each of 
which is necessary and which are, together, sufficient,3 for the statistical deter-

2. This result was already implicit, in a more general context, in the work of Theil [14] or 
of Holt [7], but early estimators of central bank reaction functions seem to have been unaware 
of this literature, Reuber [11], however, was aware of the preference structure interaction although 
he made no attempt to adjust his reaction-function coefficients accordingly. 

3. They are, of course, sufficient only if the model's stochastic terms possess properties which 
ermit econometric estimation by means of a known technique. 



initiation of a policy authority's relative marginal preferences for its endogenous 
targets. 

In Part I I , I analyse the stochastic properties of the model, and show that 
whereas the reaction-function locus is (under the usual OLS assumptions about 
random terms) unaffected by stochasticity in the structural equations, the choice 
of instrument variable is, in general, dependent upon the variances and covariances 
of the stochastic terms. 

Part I I I provides a short summary of the paper's conclusions. 

I 

Specification of the Model 
The simplest class of model which allows constrained optimisation in continuous 

space4 involves a quadratic criterion function with linear constraints. I shall 
restrict myself further, both because it is common practice and for ease of analysis, 
to a utility function comprised of additive terms, each of which contains one and 
only one endogenous target variable.5 

I shall also rule out use of reduced rather than structural forms in (3). The 
otherwise excellent work of Wood [17] and of Friedlaender [5] avoids many of 
the problems dealt with in Part I of this paper by specifying constraint equations 
so that endogenous target variables depend only on exogenous or lagged 
endogenous variables. Wood seems to associate such equations with "the Federal 
Reserve's view of the structure of the economy" [17, p. 141], whereas Friedlaender 
is forced to simulate approximations to the reduced-form coefficients of the 
MIT-FRB model because that model "does not have a unique reduced form" 
[5, p. 38]. 6 In contrast I specify constraint equations in which endogenous targets 

4. The continuity restriction rules out linear programming models. 

5. This restriction implies separability in the endogenous variables, since S(«(/«j) / Stk = o, 
where Ui = Sujhti (similarly for^), and i =£ j k. 

6. Wood's and Friedlaender's are the only published attempts (of which I am aware) to estimate 
reaction-function coefficients using the utility-maximisation approach. They both use structural 
models developed elsewhere. Wood modifies the SSRC/Brookings model of the financial sector 
developed by De Leeuw and re-estimates it as part of a two-stage least square procedure designed 
to obtain consistent estimates of the reaction-function's parameters. However, he does not, in 
the empirical portion of his paper, attempt to solve for the utility-weights. Friedlaender, on the 
other hand, attempts no structural re-estimation, but uses the MIT—FRB model in simulation 
experiments to estimate first-quarter impact multipliers which she then interprets as reduced-form 
coefficients for purposes of solving for the utility-weights. Thus hers is the first study to attempt 
derivation of the utility-weights from empirically estimated coefficients. 

A recent study by Lucia [9] explicitly derives a reaction function by minimising a central bank 
disutility function subject to structural constraints, in the Wood tradition. Lucia, however, quite 
correctly, refrains from interpreting his empirical estimates of the reaction function coefficients 
as relative utility weights. 



are functions of current values of other endogenous targets, on the grounds that 
(unlike Wood's equations) they are plausible representations of the structure of 
the economy and/or that my model (unlike Friedlaender's) allows the possibility 
that prior knowledge of structural rather than reduced-form coefficients can be 
used in conjunction with reaction-function coefficients to determine utility-
weights. 

Finally, I restrict myself to four endogenous targets and one instrument, 
although the analysis of this section applies generally to the one instrument 
«-target case, where n> i . Let the instrument, I, be R = percentage changes in 
commercial banks' reserves. As four plausible target variables, I choose Y — per­
centage changes in real output, U = the rate of unemployment, r = the domestic 
short-term interest rate, and P = percentage changes in the price level. Exogenous 
target variables are r* = the target level of r, and P* =* the target level of P,7 

whereas the symbols Xt,i± i . . . 4, denote non-target exogenous variables—for 
example, lagged values of the endogenous target variables, percentage changes in 
the domestic budget surplus, etc. 

Consider, then, the following specification for (i)-~(3): 

maximise with respect to JR 

(2a) u = Y- w^Y2 - w2U+ w3U* - (u>4P- whP*f- ( t i / e r - w 7 r*) 8 

subject to 

(3.1a)' Y = ^JR—k 2 r+k z X 1 +iJ . 1 

(3.2a) U = -fe 4 JR-fe 5P+fe 6X 2+M 2 

(3-3a) P = 

(34a) r = 

This system (ignoring the stochastic terms /xx . . . yx4) implies the following 
reaction function: 

7. Note that r* and p* are specified as variables. In the case of Canada, for example, r* might 
equal the US 90-day Treasury bill rate adjusted for forward premium on the Canadian dollar. 
P* also will Vary through time independently of the relative weights assigned to P and P* by the 
central bank. 



(ia) R = b±+ b2Y+ baU+ bj?+ b5r+ b6P*+ b?*+ b8X^ b^+ b10X3+ bnX^ 

where 
bx = w2kj jzA 

h = w6%oku l A 

b3 = wfkfa jA 

h = wzKh l A 

h = wihh l A 

h = wiw^i l A 

b7 = — w 6 w 7 f e 1 0 J A 

K = l A 

K w3hh l A 

bw= -iPi%hg IA 

bn = w6

2k10k12 J A 
and 

A = t f^ 2 —M/ 3 fe 4

2 +w 4

2 fe 7

2 +w 6

2 fe 1 0

2 . 

Determination of the Utility-Weights 
The parameters u^, and k* are all positive constants, called "utility-weights", 

"reaction-function coefficients", and "structural coefficients", respectively. I f the 
purpose of reaction function estimation is to derive estimates for the wh it is 
essential that they are (at least) algebraically determined when estimates of the 
kh, 4,, and estimates of bJt t>j = f(kh, wt), are simultaneously available. I t is easy 
to see that, given $>j,j= i . . . n , and J$h, h = i . . . 12, the above model over-
determines the seven u>t. The expressions for b1. . . b5 jointly determine the five 
endogenous target weights wv u>z, w3, u>4 and w6. Given these, the expressions 
for b6 and fc7 determine the exogenous target weights, w5 and ivT The coefficients 
of the Xj , bs . . . bn, are then pre-determined, and the system as a whole is 
over-determined. 

Specification of the Structural Equations 
This section states and discusses four restrictions on (3), numbered Ri—£4, 

each of which is, given (2a) and the restriction that (3) be strictly linear, necessary, 



and which are, together, sufficient, for identification and determination of the 
utility-weights. The system (3 a) satisfies all these restrictions. 

Ri. At first blush, it would seem, possible to exactly determine the w-, by 
dropping the X ; from the structural system (3 a) and therefore from the reaction 
function (ia). However, identification considerations preclude this; furthermore, 
it is necessary for identification that their coefficients be restricted in value. 

In the absence of non-zero parameter restrictions, a necessary and sufficient 
condition for identification is that it be possible to form at least one non-vanishing 
determinant of order (g—i) ,where g is the number of endogenous variables in 
the system, from the coefficients of the variables which are absent from the 
equation under consideration. A necessary condition is that at least (£—1) variables 
be absent from that equation.8 

In practice it is almost always safe to proceed as i f the necessary condition were 
also sufficient, since "there is almost no prospect of encountering a real problem 
whose structure is such that all the relevant determinants are zero when the 
[necessary] condition is satisfied" [1, p. 322]. 

Thus it is almost certainly possible to identify each equation in the model by 
adding the four exogenous variables Xx. . . X 4 to (3): four are necessary to 
identify (ia) because it contains all seven variables of the system before the Xt are 
added, and (g—i) = 4 variables must be absent. Note that since the Wt appear 
in the reaction function, it might seem that the identification condition that (g— 1) 
variables be absent from (ia) is violated. However, the coefficients on the 
exogenous variables are determined i f all other parameters are known: that is, 
a "non-zero parameter restriction" applies to the coefficients of the exogenous 
variables, and they may be considered absent from (ia) in so far as satisfaction of 
the Valavanis counting rule is concerned. Thus the necessity for four non-target 
exogenous variables in (3) is established. 

R2. Consider the necessity for four equations in (3 a), one with each of the 
endogenous targets as a dependent variable. Clearly, the omission of any one of 
them (say (3.1a)) would cause the utility-weight(s) on that target (in this case w-^j 
to disappear from (ia), and therefore to be impossible to determine. 

i?3. Now consider the necessity for the khR terms in each of (3.1a)—(3.4a). 
By definition, each endogenous target must be. linked to the instrument. Further­
more, the link must be direct, in the sense that 8( ;/8J? ^ 0 for all 1. Otherwise, 
maximisation of (2a) with respect to R would eliminate from (ia) the utility-
weight of each tt for which SCj/Si? o.9 That is, the policy-maker's marginal 
preference for, say, U cannot be distinguished from that for, say, Y i f L7 has no 
functional link to R except via Y. Therefore, all the khR terms must be retained. 

i?4. It may, finally, be demonstrated that each endogenous target variable, 
i f (to minimise complexity) it is to appear at most once as an independent variable 

8. This is often termed the "Valavanis" or "order condition" for identifiability [15, pp. 93-4], 
whereas the necessary and sufficient condition is the "rank condition" [1, p. 320]. 

9. This is easily illustrated by writing U = kY, substituting it into (2a), and noting that w2 and wt 

disappear when u is partially differentiated with respect to i?. 



in (3), must appear exactly once in that role. Furthermore, each such variable 
must- appear in an equation of (3) which contains no other endogenous target 
as an independent variable. 

I t is immediately obvious that all endogenous target variables must appear as 
independent variables in (3); otherwise, they would not all appear in (ia), and 
their utility-weights could not be determined.10 Consider, however, what would 
happen were all the endogenous targets incorporated into a subset of the 
structural equations. In that case, the reaction-function coefficients of any two 
endogenous variables which appeared as independent variables in the same 
structural equation and only in that equation would be functions of the same 
utility-weights. If, for example, (3.3a) and (34a) were rewritten as 

(3.3a') P= k1R-ksU+klsr+... 

and 

(34a') r = -k1QR+knY+k14P-\-... 

the coefficients on U and r would be u>4

2fe7

2fe8/y4 and —w4

2fe7k13/^4, respectively; 
similarly for Y and P. The weights on P and r, and w5, would be over-
determined in this case, whereas those on Yand U, u>x, w2, and u>3, would disappear 
entirely from the reaction function. The simplest way out is to make each of 
Y, U, P, and r an independent variable in a separate equation of (3), as in 
(3.1a)—(3.4a). 

It has now been demonstrated that, given (2a) plus the requirement that the 
system be statistically identified and that the utility-weights on endogenous 
targets be algebraically determined,11 strictly linear structural equations must, at 
a minimum, contain the structure specified in (3.1a)—(3.4a); the only allowable 
change is that Y, U, P, and r may be substituted for each other as independent 
variables.12 

Specification of the Utility Function 
This section wil l show that, subject to the restrictions that the utility function (2) 

be additive, separable, and either linear or quadratic in all terms, and that the 
structural equations (3) be strictly linear, the specification of (2) is, like that of (3), 
restricted by the need to determine utility-weights. These restrictions are 
numbered R5 and R6. It wi l l be seen, furthermore, that the restrictions on (2), in 
contrast to those on (3), necessitate an a priori sacrifice in plausibility. 

RS- I t is immediately obvious that, given strict linearity in (3), at least one of 

10. Recall that reaction-function coefficients on each of the endogenous targets, b2 • • • K, are 
necessary to determine the endogenous target utility weights, wu u>2, u>3 wt and w6. 

11. In fact, the system as specified also determines the utility-weights on the exogenous targets. 
12. However, Y cannot appear as the only independent endogenous target variable in (3.1a); 

similarly for [/and (3.2(1), etc. 



the tterms in (2) must be non-linear (i.e. quadratic); otherwise, partial differen­
tiation of (2) with respect to I would eliminate I from the system and therefore 
from the reaction function. In fact, it is easily seen that all t terms in (2) must be 
quadratic; otherwise, substitution of (3a) into (2) and partial differentiation with 
respect to I would eliminate one tt for every linear t} in (2). 

R6. Plausibility dictates against the common [5, 7,10,14,17] deviation-from-
exogenous target formulation for the variables Y, U, and P. On the other hand 
were all t, to be specified analogously to Y and U in (2a), extra utility-weights 
would be introduced and they would be under-determined. It is therefore 
necessary to specify at least two of the four tt in the deviation form, since (by 
inspection of bx.. . fc5) at most g = 5 endogenous utility-weights can be 
determined. 

The deviation specification is implausible for certain t because it implies that 
utility decreases on either side of r*. As usually formulated, this specification has 
even more restrictive implications. Consider, for example, the utility-term 
—w(P—P*)2. It states that a decrease of, say, 1 per cent from a target inflation 
rate of, say, P* = 3% would reduce utility by the same amount as would an 
increase from 3 per cent to 4 per cent. This problem can be partially remedied 
by attaching separate weights to P and P*, as in (2a). I f w '4>i, |8M/8P| is, for 
a given \P—P*\, larger when P>P* than when P<P*. 

This deviation form for P can be rationalised in an institutional environment 
which stands to lose from below- as well as from above-target inflation rates. It is 
often argued that the uncertainty generated by variability in the inflation rate is 
more costly than the inflation per se. The deviation form could also be rationalised 
for Y on "slow-growth" grounds. For U the form is difficult to rationalise except 
in an institutional framework which permits U* to be interpreted as voluntary 
unemployment. The deviation form is, however, easy to rationalise for the 
balance-of-payments target, r. 

One might be tempted to drop one of the Y and /or one of the 17 terms from 
(2a) in order that fewer utility-weights need be determined. The quadratic terms 
must be retained because of Rs above. Might not, however, the linear terms be 
eliminated? 

I f WjY2 were the only income term in (2a), the marginal utility of Y would be 
specified to increase with increasing Y, at a constant rate S^/SY 2 = zu>1 (since 
w 1 >o) . Plausibility dictates that the marginal utility of income be positive but 
non- increasing. The specification Y — wxY2 possesses this property for 
appropriately-valued w1 and over a limited range of Y . 1 3 

In summary, this section has shown that given strictly linear structural equations 
plus the restriction that the utility function be additive, separable, and either linear 
or quadratic in all terms, the latter must (for four endogenous targets) take very 
much the form specified in (2a). That is, all r; must appear quadratically; further-

13. Since relative but not absolute utility-weights are meaningful, the weight on Yis arbitrarily 
set at unity. This reduces by one the number of endogenous w i to be determined. 



more, a maximum of two can take the double-weight form specified for Y and U 
which is, for many targets, more plausible than the customary deviation-from-
exogenous-target specification. In fact, this maximum of two holds for any 
number of targets, since at most g endogenous target weights can be determined, 
there are (g—i) endogenous targets, and the first such target specified in the 
double-weight fashion (i.e. Y) need add only one relative weight, but subsequent 
such targets add two. 

I I 

Implications of Stochasticity 
Consideration of the stochastic terms in (3.1a)—(3.4a), ^ . . . fiit points to at 

least three avenues of inquiry which have never been explored in the central 
bank reaction function literature. First, what is the economic interpretation of the 
property of "certainty equivalence" of the reaction function? Second, what does 
the introduction of stochasticity imply for the substitutability of instruments ? 
Third, can stochastic information be used to choose an instrument from among 
the endogenous variables >. 

Let me, at the outset, impose the usual regression-model restrictions on the 
stochastic terms: £(/x,) = O, £(/x f

2) = of for all 1, and E (/^/A,) = atJ for all i andj. 
E is the expected-value operator; a(

2 and ai} are variances and covariances, 
respectively. 

Certainty Equivalence and its Economic Implication 
Theil has proved the property of "certainty equivalence" for a class of criterion 

functions and constraints of which the model (2b) and (3.1a)—(3.4a) (quadratic 
in utility and linear in the constraints) is a special case. This property states: 

maximisation of [such a] welfare function subject to [such a] non-stochastic 
constraint y = f (x), the disturbance vector being replaced by its mean value, 
gives the same instrument vector (or set of instrument vectors) as maximisation 
of the mean value of the welfare function subject to the stochastic constraint 
7 =f(x)+ «, provided such a maximum exists [13, p. 415]-

In terms of my model, certainty equivalence states that after adding /Xj—yx4 to 
(3.1a)—(3.4a), the locus of R which maximises expected utility, E(u), is still given 
by (ia). The property of certainty equivalence greatly simplifies the mathematics 
of optimal instrument values, and was a major consideration in my choice of a 
quadratic criterion function with linear constraints. 

It is easily shown that this property does, indeed, obtain for the model. When 
(3.1a)—(3.4a) are substituted into (ia), the partial derivative Su/SR yields only 
linear terms in the jCtf-, Efiu/oR) contains no stochastic terms, since £(/xf) = O. 

The economic implication of the independence^ of (ia) from structural 
stochasticity is that the residual terms fl, = (Rt— Rt), where R denotes the 
regression estimate, may be interpreted as the central bank's error in reserves-



control, rather than as some amalgam of control error and the random terms 
Hi . . . /x4. In other words, any deviation of actual reserves, i?, from their desired 
level, R, is independent of uncertainty about the structure of the economy, and 
arises, instead, from any unwanted variations in reserves which remain after the 
application of defensive policy. 1 4 Such unwanted reserves movement is, in fact, 
the error in defensive policy. 1 5 

Substitutability of Instruments under Uncertainty 
Part I's choice of R as the instrument" variable from among five potential 

candidates (all the endogenous variables) was somewhat arbitrary, based only 
on an intuitive notion that R is in some sense susceptible to tighter control by die 
central bank than are the other variables.16 Given, however, that r, the short-term 
interest rate, is also susceptible to tight central bank control, one must ask whether 
the model provides one with grounds for choosing R instead. 

Poole has recently shown that two instruments which are, like r and R in 
(3.3a), linearly related in a non-stochastic model, are perfect substitutes [10, p. 
203-4] m the sense that the utility-maximising locus of R (i.e. (ia)) yields the same 
level of utility, um, as would the utility-maximising level of r. 

Introduction of stochasticity, however, nullifies this result. Even though 
optimal values of individual instruments do not change when uncertainty is added 
(the principle of certainty equivalence), instruments are no longer perfect 
substitutes. In other words^ uncertainty does not affect the optimal loci of R and r 
(providing E(/x,.) = O), but E(um)r # E(um)R. A proof follows. 

Consider first the case where R is the instrument. Denote non-stochastic utility-
maximising values of the endogenous targets by Y T , U T , rT, and PT, so that the 
structural equations may be written as 

(3.ib) 

(3.2b) 

(3.3b) 

(3.4b) 

U R = IT+pz 

rR = r T + / * 3 

PR = PT4-/*4, 

14. This, of course, assumes, in addition to correct specification of the model, that the kh are 
nonstochastic, that the central bank knows their values with certainty, and that the bank's utility-
weights are non-stochastic constants. 

15. The residual terms could, in principle, be interpreted as the error in discretionary monetary 
policy. Attempts to compare empirically the errors of discretionary policy with those which 
would arise from rules date from work by Modigliani [9], who used an extremely crude target 
function based on the quantity equation of exchange. Use of the residuals from estimated reaction 
functions would constitute interpretation of such function as target functions. See also Dean [4]. 

16. See Waud [16] for an excellent analysis of the perils of assuming error-free control of the 
interest rate. 



where YR etc. are the stochastic endogenous target values which maximise 
expected utility. 

I f r is the instrument, it is by definition non-stochastic; R, on the other hand, is 
stochastic, so that (3.4a) solved for R must be substituted for R in (3.1a), (3.2a), 
and (3.3a). Moreover, by the Poole principle of instrument-equivalency, um is 
unchanged, and since the functional form of the utility function is also unchanged, 
the non-stochastic optimal target loci must be given by Y* etc. in this case as well 
as in the i?-instrument case. Thus the optimal stochastic target values, Y r etc., 
are given by 

'(3.1c) Y r = Y T+fe 1^ 4/fe 1 0+/x 1 

(3-2c) U1 = UT-kifj.Jk10+iJ.2 

(3.3c) PT 

(34c) r = f 

Under the reserves policy, maximum expected utility is obtained by sub­
stituting (3.1b)—(3.4b), plus the utility-maximising values U'* T, P*T and r* T , 1 7 

into E(u), where u is given by (2a); this process yields 

(2b) E(um)R = Un-w^+w^—wfog-w^a*. 

Under interest-rate policy, on the other hand, maximum expected utility is 
obtained analogously, and is 

(2c) E(um)r = « r a-^i(V° ,4 2/ f el0 2+°'i 2+2fe 1cr 1 4/fe 1 0)-M;3(fe 4

2o- 4

2/fe 1 0

2+a 2

2 

+ 2fe4(T242/felo) - " V ^ T V / V + f f 3 2 + 2kT°3ilho)-

Clearly, E(um)R E{= E(um)r. 
Q.E.D. 

The Optimal Instrument Variable 
The results of the previous section suggest a criterion for choosing between R 

and r as instrument variables. Interest-rate policy is superior when E(um) T > E(um)R; 
this may be reduced to a condition on the wt and kh plus the variances and 
covariances of the /u.; by employing (2b) and (2c). It is conceivable that the 
variance-covariance matrix from regression estimates of the system (3) could be 
used to provide estimates of the a,-2 and a^2, so that this criterion is, in principle, 
operational. 

17. The variables U*, P*, and r* are assumed non-stochastic. 



m 

Summary and Conclusions 
Part I of this paper has demonstrated that in order to determine a policy-maker's 

relative marginal preferences for his various targets from estimates of structural 
and reaction-function parameters, i t is necessary to restrict rather severely both 
the forms of his utility function and of the structural equations. More specifically, 
i f one restricts oneself on grounds of simplicity to a utility function which is additive, 
separable, and quadratic, to structural equations which are strictly linear, and to 
one instrument and four endogenous targets, the form of the model can depart 
very little from equations (2a) and (3.1a)—(3.4a). In fact, six restrictions on such 
a model are necessary to determine the policy-maker's utility-weights; they are, 
together, sufficient for that purpose. These restrictions are numbered Ri—R6. — 

In Part I I it is demonstrated that despite the addition of stochastic terms to the 
model, its property of "certainty equivalence" allows the residual terms from 
reaction-function estimates to be interpreted solely as the policy authority's error 
in controlling the instrument, rather than as some amalgam of such error and the 
stochastic terms. The paper concludes by demonstrating a second implication of 
stochasticity: the estimated model's variance-covariance matrix could, in principle, 
be used to choose as the instrument that variable which, (when employed 
according to the reaction-function "rule", yields the maximum expected utility. 

Simon Fraser University, 
British Columbia ' 
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