Identification of Cause and Effect in Simple Least Squares Regression

R. C. GEARY

> IVEn data $\left(X_{t}, Y_{t}, t=\mathrm{I}\right.$,
causal: If the model be-
(I)

$$
Y_{t}=a+\beta X_{\mathrm{t}}+u_{\mathrm{t}},
$$

with disturbances regular (i.e. $E u_{\mathrm{t}}=0, E u_{\mathrm{t}}{ }^{2}=0^{2}, E u_{\mathrm{t}^{\prime}} u_{\mathrm{t}^{\prime}}, t^{\prime} \neq t,=0$, all t, t^{\prime}) then the non-stochastic X is causal (or exogenous) and Y is the effect. The essential character of model (I) from the present point of view is the quasi-independence of X and u; in fact $E X_{t} u_{t}=X_{t} E u_{t}=0$, all t. As is usual, our data (X_{t}, Y_{v}) are assumed to be a single realisation from a possible infinity of samples all with the same X_{t}, the operation E indicating the arithmetic mean of such infinity.

The "right" regression, namely Y_{t} on X_{1}, is-

$$
\begin{equation*}
Y_{\mathrm{t}}=a+b X_{\mathrm{t}}+\hat{u}_{\mathrm{t}}, \tag{2}
\end{equation*}
$$

where. LS estimates a and b, and disturbances \hat{u}_{t} are unbiased and consistent estimates of a, β and u_{c} respectively. If the model be (I) then the von Neumann statistic for the \hat{u}, namely-

$$
\begin{equation*}
D_{\hat{u}}=\sum_{t=2}^{T}\left(\Delta \hat{u}_{\mathrm{t}}\right)^{2} / \sum_{t=\mathrm{r}}^{T} \hat{\mathrm{u}}^{2}, \tag{3}
\end{equation*}
$$

$\Delta \hat{u}_{t}=\hat{u}_{t}-\hat{u}_{t_{-}}$, will not differ significantly from 2 , using the well-known Durbin-Watson approximate probability tables for D_{u}, indicating that in the
population the disturbances are probably non-autoregressed, i.e. that $E \hat{u}_{1} \hat{u}_{1}$, $t^{\prime} \neq t,=0$. In fact when the \hat{u}_{c} are normal variates $E D \hat{u}=2$, exactly. If theory ordains that X should be the cause of Y and if the von Neumann ratio does not contradict this theory with actual data then the theory might be regarded as proved. It would seem prudent, however, to show also that the theory thiat the Y_{t} are the cause of the X_{t} is untenable. Our method is to examine the von Neumann ratios for the residuals from $L S$ regression both ways, i.e. of Y_{t} on X_{t} and of X_{t} on Y_{t}. If one is near 2 and thé other much less, and if theory does not say us nay, we may confidently accept that we have identified the causal variable.

As the mean of the \hat{u}_{t}, namely $\overrightarrow{\hat{u}}_{\text {u }}$, equals zero exactly, from (2), 一
(4)

$$
y_{t}=b x_{t}+\hat{u}_{t}
$$

where $y_{t}=Y_{t}-\bar{Y}, x_{t}=X_{t}-\bar{X}$.
The "wrong" regression which we examine is that of X_{t} on Y_{t}, namely-

$$
\begin{equation*}
X_{\mathrm{t}}=c+d Y_{\mathrm{t}}+v_{\mathrm{t}}, \tag{s}
\end{equation*}
$$

Required to estimate residuals v_{c} in terms of parameters of the right regression when c and d are formally calculated by $L S$ regression, the true relationship being (r).

We have-

$$
\begin{equation*}
\text { (i) } c=\bar{X}-d \bar{Y} \tag{6}
\end{equation*}
$$

$$
\text { (ii) } d=\Sigma x_{r} y_{l} / \Sigma y_{\mathrm{t}}{ }^{2}
$$

On substitution from (4), (6) (ii) becomes-

$$
\begin{align*}
d & =\Sigma x_{\mathrm{t}}\left(b x_{\mathrm{t}}+\hat{u}_{\mathrm{t}}\right) / \Sigma\left(b x_{\mathrm{t}}+\hat{u}_{\mathrm{t}}\right)^{2} \\
& =b \Sigma x_{\mathrm{t}}^{2} 2\left(\left(b^{2} \Sigma x_{\mathrm{t}}^{2}+\Sigma \hat{u}_{\mathrm{t}}^{2}\right)\right. \tag{7}
\end{align*}
$$

since $\Sigma x_{\mathrm{t}} \hat{u}_{\mathrm{t}}=0$. Hence, from simple regression theory -

$$
\begin{align*}
b d & =\Sigma \gamma^{2}{ }^{2} / \Sigma y_{\mathrm{t}}{ }^{2} \tag{8}\\
& =\dot{r}^{2},
\end{align*}
$$

where r is the coefficient of correlation between X_{1} and Y_{t}, of course a classical result,

From (s) -
(9)

$$
\begin{aligned}
v_{\mathrm{t}} & =X_{\mathrm{t}}-c-d Y_{\mathrm{t}} \\
& =X_{\mathrm{t}}-c-d\left(a+b X_{\mathrm{t}}+\hat{u}_{\mathrm{t}}\right)
\end{aligned}
$$

$$
=-(c+a d)+(\mathrm{r}-b d) X_{\mathrm{t}}-d \hat{u}_{\mathrm{t}} .
$$

using (6) (i) and (8). (9) is easily seen to be-

$$
\begin{equation*}
v_{t}=\left(\mathrm{I}-r^{2}\right) x_{\mathrm{t}}-r^{2} \hat{u}_{\mathrm{t}} / b \tag{то}
\end{equation*}
$$

When $r^{2}=\mathrm{I}, u_{\mathrm{t}}=0$ exactly for all t, from (8) $b d=\mathrm{I}$, from (10) $v_{t}=0$, all t. This is the only case, trivial of course, in which the two regressions are consistent. (10) also shows that, since \bar{x} and $\overline{\hat{u}}(=\Sigma \hat{u}, T)$ are both zero, \bar{v} is also zero, as of course it should be since it is an $L S$ residual. The reader can easily verify that (Io) is exactly reversible, i.e.-

$$
\begin{equation*}
\hat{u}_{\mathrm{t}}=\left(\mathrm{r}-r^{2}\right) \gamma_{\mathrm{t}}-r^{2} v_{\mathrm{v}} / d . \tag{II}
\end{equation*}
$$

Another form of (10) is-

$$
\begin{gather*}
v_{\mathrm{t}}=x_{\mathrm{t}}-r^{2} \gamma_{\mathrm{t}} \tag{I2}\\
\bar{b}
\end{gather*}
$$

From (10) -

$$
\begin{equation*}
\Sigma v_{\mathrm{t}}^{2}=\left(\mathrm{I}-r^{2}\right)^{2} \Sigma x_{\mathrm{t}}{ }^{2}+r^{4} \Sigma \hat{u}_{\mathrm{t}}^{2} / b^{2} \tag{13}
\end{equation*}
$$

since $\Sigma x_{1} \hat{u}_{t}=0$. Also, from (го), 一
(I4) $\Sigma\left(\Delta v_{\mathrm{t}}\right)^{2}=\left(\mathrm{I}-r^{2}\right)^{2} \Sigma\left(\Delta x_{\mathrm{t}}\right)^{2}-2\left(\mathrm{r}-r^{2}\right)^{2} \Sigma \Delta x_{\mathrm{t}} \Delta \hat{u}_{\mathrm{t}} / b+r^{4} \Sigma\left(\Delta \hat{u}_{\mathrm{t}}\right)^{2} / b,{ }^{2}$
where $\Delta v_{\mathrm{t}}=v_{\mathrm{t}}-v_{t_{-1}}$ etc. All $\Sigma \mathrm{s}$ in (I4) are from $t=2$ to $t=T$. So far, theory has been perfectly general. We assume from now on that T is large. Consider the middle term on the right of (14) and set-

$$
\begin{align*}
z & =\underset{\bar{T}}{\sum_{t==}^{T}} \Delta x_{t} \Delta \hat{u}_{t} \tag{Is}\\
& =\frac{\mathrm{I}}{T}\left[\Delta x_{2}\left(\hat{u}_{2}-\hat{u}_{\mathrm{J}}\right)+\ldots+\Delta x_{T}\left(\hat{u}_{T}-\hat{u}_{T-1}\right)\right]
\end{align*}
$$

It is easily seen that $E(z)=0$ and var $z=E z^{2}$ is $O\left(T^{-1}\right)$ in which sense z is $O\left(T^{-1 / 2}\right)$.

Other terms divided by T on both sides of (r4) are ordinary magnitudes (i.e. $O\left(T^{\circ}\right)$). Hence the middle term on the right of (14) will be ignored. If the von Neumann ratio for the v_{i} be D then-

$$
\begin{equation*}
D=\Sigma\left(\Delta v_{t}\right)^{2} / \Sigma v_{\mathrm{t}}^{2} \tag{ז6}
\end{equation*}
$$

If the von Neumann ratios for the x_{t} and the \hat{u}_{t} be respectively D_{x} and D_{u} and if we set $\Sigma x_{\mathrm{t}}{ }^{2}=T S^{2}$ and $\Sigma \hat{u}_{\mathrm{t}}{ }^{2}=T s^{2}$ then from (13) and (14)-

$$
\begin{equation*}
\mathrm{D} \doteq \frac{\left(\mathrm{I}-r^{2}\right)^{2} S^{2} D_{x}+r^{4} s^{2} D_{u} / b^{2}}{\left(\mathrm{I}-r^{2}\right)^{2} S+r^{4} s^{2} / b^{2}} \tag{17}
\end{equation*}
$$

where " $=$ " means "approximately equal to", i.e ignoring terms in $T^{-1} /^{2} . D$ can be expressed in simpler form by setting $r^{2}=b^{2} S^{2} /\left(b^{2} S^{2}+s^{2}\right)$ and $\mathrm{I}-r^{2}$ $=s^{2} /\left(b^{2} S^{2}+s^{2}\right)$ in(17) giving-

$$
\begin{equation*}
D=\frac{s^{2} D_{x}+b^{2} S^{2} D_{u}}{s^{2}+b^{2} S^{2}} \tag{18}
\end{equation*}
$$

The von Neumann for the "wrong" regression is given approximately at (18): Will we be able to identify the regression as wrong? If, given T and probability level (.05, ©oI, 'etc.), the right hand side is lower than the Durbin-Watson lower critical value on the null hypothesis namely', in the notation of these authors, d_{L}, then we can make such an identification. We therefore set-

$$
\begin{equation*}
\frac{s^{2} D_{x}+b^{2} S^{2} D_{u}}{s^{2}+b^{2} S^{2}} \leqslant d_{\mathrm{L}} \tag{I9}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{b^{2} S^{2}}{s^{2}} \leqslant \frac{d_{\mathrm{L}}-D_{x}}{D_{u}-d_{L}} \tag{20}
\end{equation*}
$$

Reverting to r^{2} notation, with $r^{2}=b^{2} S^{2} /\left(b^{2} S^{2}+s^{2}\right),-$

$$
\begin{equation*}
r^{2} \leqslant \frac{d_{L}-D_{x}}{D_{u}-D_{x}} \tag{2I}
\end{equation*}
$$

This is our basic result. We recall that, because of the approximative character of (17), it also is approximate.

For the von Neumann test, as applied to \hat{u}_{t} given by (3), to be effective, a particular kind of ordering of the original data is implied, as usually happens with time series. In the present case of simple regression (there is no difficulty in dealing analogously with the multi-variate case) this implies that if our first $L S$ experiment meant fitting a constant to the data, so that $\hat{u}_{v}=\gamma_{t}$, clearly this \hat{u}_{c} should exhibit the phenomenon of serial correlation for the subsequent test on the "right" \hat{u}_{t} to show probably absence of autoregression. Otherwise, if, before starting our $L S$ regression, we were so unwise as to randomise our original data (i.e. change the "row" sequence, $1,2, \ldots, T$, to a random sequence) we do not affect any of the familiar $L S$ regression values (coefficients and their s.e.'s, r, F, s.e.e.) but we destroy the effectiveness of the von Neumann test with its associated DurbinWatson null-hypothesis probability theory.

We therefore assume that, our data (here X and Y) are time series ordered in time, all of which usually exhibit serial correlation. We also assume that, if the model be (I) and we regress Y_{t} on X_{t}, in no case will the von Neumann ratio (3) differ significantly from 2.
If the data could be regarded as ordered according to the magnitude of the X_{t}, D_{x} in (21) is easily seen to be very small. As an example, if equally spaced sequence of X_{t} is-
$-n,-(n-\mathrm{I}), \ldots,-2,-\mathrm{I}, \mathrm{o}, \mathrm{I}, 2, \ldots(n-\mathrm{I}), n$, so that $T=2 n+\mathrm{I}$ Then-

$$
\begin{aligned}
D_{x} & =2 n /[n(n+\mathrm{r})(2 n+\mathrm{r}) / 3] \\
& =6 /(n+\mathrm{r})(2 n+\mathrm{r}) \\
& \doteq \mathrm{I} 2 / T^{2},
\end{aligned}
$$

exceedingly small when T is large. Or, using actual data for Ireland, in fact annual figures for \log GNP and \log money 1947-1967, we find values of the von Neumanin ratios of 0.037 and 0.035 respectively.
In (2I) therefore D_{x} can be set at zero. Also we take D_{u} at its average value 2, (21) becomes simply-

$$
\begin{equation*}
r^{2} \leqslant d_{\mathrm{L}} / 2 \tag{22}
\end{equation*}
$$

The Durbin-Watson tables show that as T increases d_{L} increases slowly. Thus for simple regression $d_{\mathrm{L}}=\mathrm{r} \cdot 50$ for $T=50$ and $d_{\mathrm{L}}=\mathrm{r} \cdot 65$ for $T=100$, so that upper limiting values of r^{2}, for rejection of hypothesis that Y is the cause of X, would be respectively 75 and $\cdot 83$.

Constructed Example

Mainly to confirm that certain of the approximations we made in the text were valid, and generally to check the algebra, we constructed an example in which the u_{t} in (I) was a random normal sample with $\sigma^{2}=\mathrm{I}$. The X_{t} were the sequence-

$$
K(-30,-29, \ldots,-2,- \text { I. o, 1, 2, }: \ldots, 29,30)
$$

so that $T=6 \mathrm{I}$ and numerical constant K to be determined. Also $\bar{X}=0$, so that $X_{t}=x_{t}, \beta$ was taken as I and α as o, i.e. the model was $Y_{t}=x_{t}+u_{t}$, in which the X_{i} were causal, because the formula shows how the Y_{t} were derived. In this case the correlation coefficient ρ between the X_{t} and the Y_{t} is approximately by $\rho^{2}=\Sigma x_{t}^{2} /\left(\Sigma x_{t}^{2}+\Sigma u_{i}^{2}\right)$, with $\Sigma u_{i}^{2}=61$. We found K so that $\Sigma x_{t}^{2}=50$ which should yield a value of $\rho=\sqrt{ }(50 /$ III $)=\cdot 67$, certainly significant but not too large, as theory requires. The usual statistics are as follows-

$$
\begin{aligned}
& T=6 \text { I. } \Sigma X_{t}=\text { o. } \Sigma X_{t}^{2}=50=\Sigma x_{t}^{2} \\
& \Sigma Y_{t}=-6 \cdot 52 . \Sigma Y_{t}^{2}=97 \cdot 4434 . \Sigma y_{t}^{3}=96 \cdot 7444 . \\
& \Sigma x_{t} Y_{t}=46 \cdot 4368=\Sigma x_{t} y_{t} \\
& b=0 \cdot 928736 . a=-0 \cdot 106885 . r=\cdot 6677 \\
& \Sigma \hat{u}_{t}=53 \cdot 6190 . s^{2}=0.9088 .
\end{aligned}
$$

By reference to its estimated standard error the estimate b of β (which we know is unity) is on the low side. The value of r is exactly what it should be. The value of $\Sigma\left(\Delta u_{i}\right)^{2}$ was 112.2730 so that the Durbin-Watson statistic was 2.09 , indicating absence of residual auto-regression.

As regards the causally wrong regression of the X_{t} on the Y_{t} we find from (13), using the foregoing numerical values,-

$$
\Sigma v_{\mathrm{t}}^{2}=27.7 \mathrm{I} 3 \mathrm{I}
$$

agreeing to four significant figures with the value calculated directly with the regression. We display the values of the three expression on the right of (14)-

$$
\begin{aligned}
\Sigma\left(\Delta v_{1}\right)^{2} & =\cdot 0487-.0085+25 \cdot 8766 \\
& =25.9168
\end{aligned}
$$

the last value agreeing with the value calculated directly from the "wrong" regression. As assumed in the text the value of the middle term is negligible. In deriving relation(14) we also seem justified in neglecting the first term.

The value of the d-statistic is $25.9168 / 27.713 \mathrm{I}=0.9352$. This is considerably below the I per cent critical value of the $\mathrm{I} \cdot 38$ for $T=60$. The illustration confirms the theory of the text: from our data we have been able to identify the causal variable by rejection of the non-causal.

Economic and Social Research Institute,

Dublin.

