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Introduction

by
Peter Lynch

The paper appearing here for the first time in an English translation is a detailed study
of a low-order Hamiltonian system, the elastic pendulum. The original motivation for
the study was the desire to find a simple classical description for the quantum mechanical
phenomenon of the splitting of the spectral lines in the CO; molecule. The study was
suggested to the authors by the Russian physicist L. I. Mandel’shtam. The 2:1 resonance
of the pendulum provides a classical analogue to the resonance of the quantum system
which has ionic oscillations with frequencies close to this ratio.

The simple system under study possesses a rich and varied range of dynamical
behaviour. For large amplitudes the motion is chaotic. Breitenberger and Mueller
(1981) remark that ‘this simple system looks like a toy at best, but its behaviour is
astonishingly complex, with many facets of more than academic lustre’. However, the
concern here is the range of amplitudes where the motion is regular so that classical
perturbation techniques yield meaningful results.

This work is the earliest comprehensive analysis of the elastic pendulum. Al-
though the paper is frequently referenced by later authors, it is clear that, in some cases,
they have not studied this work. Van der Burgh (1968) inaccurately describes the paper
as ‘a mainly qualitative description’; in fact, his own paper contains little that is not
already contained in Vitt and Gorelik!. Breitenberger and Mueller (loc. ¢it.) note that
this important paper has often been misquoted. Davidovié, ef al. {1996) give a brief
but accurate synopsis of its contents, and state even more strongly that the paper has
been ‘more frequently quoted and misquoted than read by other authors’. I think this
is a fair point; it is time the work was available in English.

* * * * *

The contents of the paper will now be summarised. Vitt and Gorelik (1933)
consider the motion of an elastic pendulum confined to a plane, thus having two de-
grees of freedom. The authors set up the Lagrangian equations for the system, assuming
the amplitude is sufficiently small that terms beyond cubic order can be ignored. They
identify the linear vertical (springing) and horizontal (swinging) modes of the system.
They concentrate on the special case where the vertical frequency is twice the horizon-
tal frequency; in this case, each type of linear oscillation can induce the other through
nonlinear interactions. Vertical oscillations can induce horizontal motion through para-
metric resonance, whereas horizontal or swinging motion can lead to vertical springing
oscillations through direct resonant forcing.

In §2, periodic solutions are sought using the technique of secular perturbations.
Two distinct solutions are found in which the trajectory of the bob is a parabola.
For these particular solutions, the effect of the nonlinear interactions is to modify the
frequency of the oscillations, but preserving the 2:1 ratio. The cup-like solutions, with

1Indeed, the incorrect reference given by Van der Burgh to the Vitt and Gorelik paper is identical
to that in Minorsky (1962, p.508), suggesting that he took the reference from there and not from the
original paper.
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concave-upward parabola, have frequency slightly depressed, the cap-like ones with
a concave-downward trajectory have a somewhat augmented frequency. There is no
energy transfer between the springing and swinging motion. These solutions are easily
demonstrated in the physical system.

In §3, solutions which transfer energy back and forth between the swinging
and springing motion are considered. A perturbed Hamiltonian is constructed, action-
angle variables are introduced, and the Hamiltonian is averaged with respect to the fast
variations, so that the lowest-order solution is immediate. An equation (equation (20)
in the paper) is derived for the slowly-varying amplitude of the horizontal oscillation.
The integral curves of the equation are illustrated, and the patterns of the trajectories in
phase-space are depicted, clearly illustrating both the generic behaviour and important
limiting cases. Curiously, although Eq. {20) is easily solved in terms of Jacobian elliptic
functions, the authors make no mention of this. A qualitative description of the energy
transfer follows, and an explicit formula for the modulation period is derived {equation
[21] in the translation, un-numbered in the original). Again, this may be expressed as
a complete elliptic integral of the first kind, though the authors do not say this.

In §4, the authors describe a series of experiments, and show that the theo-
retically calculated results are in good agreement with the observed behaviour of the
physical system. They make no reference to its three-dimensional motion. This is
surprising because, in their experiments, they cannot have failed to have noticed the
remarkable propensity of the bob to deviate from the original swing plane, either in a
precessing elliptical orbit, or in successive horizontal excursions with different azimuthal
directions. The three-dimensional motion is discussed in Lynch (1999). Probably, Vitt
and Gorelik did notice the interesting behaviour, but found it not directly relevant to
their goal of providing a classical analogue for quantum resonance.

In the concluding section, the nonlinear interaction of the elastic pendulum is
compared and contrasted to modal interactions in linear systems. One of the crucial
differences is the dependence of the non-linear interactions on the initial conditions.
The authors then discuss the original motivation for the work, the phenomenon of
Fermi resonance, seen in the line spectrum of COy and in other molecules for which
there is a frequency ratio close to 2:1. Although this is a quantum-mechanical effect,
it is closely analogous to the classical phenomenon of nonlinear resonance seen in the
swinging spring.

* * * * *

Current interest in the swinging spring arises from the rich variety of its so-
lutions. For very small amplitudes, the motion is regular, and classical perturbation
theory yields valid results. As the amplitude is increased, the regular motion breaks
down into a chaotic regime which occupies more and more of phase space as the en-
ergy grows. However, for very large energies, a regular and predictable regime is re-
established (Nufiez-Yépesz, et al., 1990). This can easily be understood: for very high
energies, the system rotates rapidly around the point of suspension and is no longer
libratory.

Of course, the chaotic regime was not considered by Vitt and Gorelik, as the
relevant concepts were unavailable to them. However, recent studies have examined
this behaviour in some detail. A large list of references may be found in Lynch (2000).
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That paper considers the elastic pendulum as a simple model for balance in the atmo-
sphere. The concepts of filtering, initialization and the slow manifold, so important for
atmospheric dynamics, can be introduced and lucidly illustrated in the context of the
simple system. The swinging and springing oscillations act as analogues of the Rossby
and gravity waves in the atmosphere.

Finally we may remark that Jin, et al., (1994) have modelled the El Nifio phe-
nomenon using arguments based on transition to chaos through a series of frequency-
locked steps induced by non-linear resonance with the Earth’s annual cycle. Their model
produces results consistent with currently available data. Thus, the non-linear resonance
observed in our simple mechanical system may provide the basis for a paradigm of the
most important interannual variation in the ocean-atmosphere climate system.
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Oscillations of an Elastic Pendulum as
an Example of the Oscillations of Two
Parametrically Coupled Linear Systems

A. Vitt and G. Gorelik

Abstract*

This work investigates the oscillations of an elastic pendulum. Only planar oscillations
are considered and therefore only two degrees of freedom investigated, namely the ver-
tical and one of the horizontal dimensions. The investigation is based on the theory of
secular pertubations. Of particular interest is the case where the frequency of the verti-
cal motion is twice the frequency of the horizontal; this leads to a so-called parameteric
resonance of the coupled system, which manifests itself as an energy transfer from one
component to the other and vice versa. The speed and amplitude of the energy trans-
fer depend essentially on the inital conditions. Other mechanical or electrical systems
with two degrees of freedom can be treated in similar ways, e.g., two oscillating circuits
coupled by a transformer with an iron core. The results of the theory are compared
with experiment and are in complete agreement. Finally, a connection is indicated be-
tween the oscillations of an elastic pendulum and the model of the CO5 molecule which
was recently presented by Fermi to explain the splitting of the spectral lines for this
compound.

* Translated from the German by Klara Finkele, Met Eireann.
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Oscillations of an Elastic Pendulum as
an Example of the Oscillations of Two
Parametrically Coupled Linear Systems

A, Viti and G. Gorelik

1. Introduction and Statement of the Problem

In this article a study is made of small oscillations around an equilibrium configuration
of a conservative system with two degrees of freedom, which is profoundly different from
the commonly studied and well-known linear® oscillatory systems with two degrees of
freedom. The difference is shown in the fact that, however many small oscillations there
are, the behaviour of the system in which we are interested here is essentially determined
by nonlinear terms appearing in its differential equations and expressing the coupling
between the two degrees of freedom. By way of a simple mechanical example of such a
system, we will examine an elastic pendulum, that is, a weight hanging on a spring, the
upper end of which is fixed in place. We shall assume that the movement takes place in
one definite vertical plane. Let » denote the instantaneous value of the spring’s length,
£o the length of the spring in the absence of a weight, ¢ the angle of deviation (we shall
always assume it to be small), m the mass of the pendulum’s bob, & the constant of
elasticity of the spring, and g the acceleration of gravity. For the kinetic and potential
energy of our system we have the following;:

T = 3m(#? + r?p?)
V = 2k(r — €)% — mgr(1 — 2¢?)
where differentiation in time is indicated by dots.

We shall replace » by the coordinate z, equal to the relative lengthening of the
spring compared with its equilibrium length £ = £y -+ mg/k, that is, we shall assume
that

As we are limited to the case of small oscillations, we shall consider that z is very small
in comparison with unity. Ignoring terms of order higher than the third orderin z and ¢
and their products we obtain, for the kinetic and potential energy, the new expressions

me?
T=—— (& +¢" +22¢%) (1)
m& (k o g 2,9
V—T(a“ TPt )

Using (1) and (2) we now formulate Lagrangian equations of motion:

.k 1g o . _
z—l—mz—l-(zzzp tp)—(] (3)

1 That is, systems whose motion is represented by linear differential equations.
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. g g . .
<p+eso+(£zso+2zso+2zso)—0 (4)

An ordinary linear system with two degrees of freedom may be regarded—
especially when the coupling is weak——as a pair of two ‘component’ systems, each with
one degree of freedom, linearly coupled to each other. For example, two pendulums
joined by a weak spring are component systems doubly coupled one to the other, each
of which possesses its own ‘component frequency’ and can be isolated from the full sys-
tem by securing one of the pendulums, that is by depriving it of one of the degrees of
freedom. In exactly the same way, as equations (3) and (4) demonstrate, our elastic pen-
dulum can be regarded as a pair of two interconnected linear oscillators, each of which
is isolated from the full system when one of its degrees of freedom is isolated: thus,
preventing the weight from straying from the vertical (that is, assuming that ¢ = 0) we
obtain a vertical oscillator oscillating in accordance with the linear equation

Z4+ —2z=0.
m

with an angular frequency a = 1/k/m; in preventing the pendulum from changing its
length, that is, by replacing the spring with a rigid shaft (in this case z = 0), we obtain
a horizontal oscillator oscillating in accordance with the linear equation

., 9
so—i-ggom{)

with an angular frequency § = »\/Eﬁ These vertical and horizontal oscillators are
component systems with component frequencies & and #. The coupling between the
component systems is nonlinear: this is shown by the nonlinear ‘coupling terms’ enclosed
in brackets in equations (3) and (4).

We know that the behaviour of weakly coupled linear oscillatory systems de-
pends essentially on the relationship between the component frequencies. If the latter
differ strongly from each other, the oscillation as a whole differs little from those os-
cillations which would have been produced by component systems in the absence of a
coupling; in the example of two pendulums connected by a weak spring, each pendulum
would oscillate approximately in the same way as if it were free. But the situation is
completely different when the component equations are equal to one another or, as we
say, when resonance sets in between the component systems. In this case energy is peri-
odically transferred from one pendulum to the other, and each pendulum thus performs
a modulated oscillation which may be represented by the sum of two sinusoidal oscilla-
tions with frequencies one of which is greater and the other smaller than the component
frequencies; it is as if, due to the coupling, the component frequency splits in two and
we observe a beating of these two frequencies. The stronger the coupling the more the
frequencies split up: that is, the faster the transfer of energy is produced.

In our case of nonlinearly coupled linear systems, when the oscillations are small
the nonlinear terms consist of small values of a high order and, generally speaking, they
are insignificant: the component systems have little influence on one another. We may
be sure that in some particular relationship of component frequencies, namely when
a = 28, a strong interaction between component frequencies should take place and we
may expect resonance phenomena somewhat analogous to those which arise in the case
of a linear coupling when component frequencies are equal.
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In practice:

1) We move the weight vertically from a position of equilibrium and we release
it, that is, we set up a vertical component oscillation

z=Acosat. (5)

As a result of this oscillation the length of our pendulum—its parameter—begins to
change periodically; when we substitute (5) into (4) we obtain for ¢ a linear equation
with periodic coeflicients

(1 + 24 cosat)p — 2asinat ¢ + (1 + Acoset)p = 0. (6)

Since a = 20, the parameter of the system changes with a frequency double its own
frequency. But it is known that in this case the phenomenon of parametric resonance
begins. The pendulum becomes unstable. The smallest disturbance or deflection is
enough for it to begin to undergo ever increasing horizontal swings. Thus, in the case of
a = 283, the vertical oscillations cause the pendulum to swing in a horizontal direction.

2) First deflecting the pendulum, without stretching it, we set up a horizontal

component oscillation
@ = Bcosft. (7)

The centrifugal force developing with this movement, reaching its maximum fwice in
each oscillation, will stretch the spring periodically. Substituting (7) in equation (3) we
obtain g2p?
4
that is, the oscillator equation, under the influence of an external force with a sinusoidal
component having the frequency 28. But as 28 = «, this force will act in resonance on
the vertical oscillator, and the latter will begin to perform oscillations of ever-increasing
amplitude. Thus, in the case 28 = a, the horizontal oscillations cause the weight to
oscillate in a vertical direction.

Fbolz= (1 — 3cos2Bt), (8)

It is clear that the systems of equations (5), (6) and (7), (8) preserve engergy
only at the start of the processes under consideration: each pair does not take into
account the reciprocal action of the ‘swinging’ oscillator on the oscillator ‘being swung’.
But the nature of this action arises directly from the fact that our system is conservative:
the energy of the ‘swinging oscillator’ can increase only at the expense of the weakening
of the oscillator ‘being swung’. Therefore in the case 1) the build-up of horizontal
oscillations should be accompanied by a decrease in vertical oscillations, and in case 2)
the build-up of vertical oscillations should take place at the expense of an attenuation of
the horizontal ones. In exactly the same way, in the case of linearly coupled pendulums,
the oscillations of the one build up at the same time as the oscillations of the other
die down. This gives rise to the problem: not limiting ourselves to the initial stages of
the movements, represented by equations (5), (6) and (7), (8), how to investigate the
movements fully for any and every initial condition and to characterise them; may there
not arise a periodic transfer of energy between the two degrees of freedom, analogous
to the one taking place in linearly coupled systems? Ignoring, in our case of a nonlinear
coupling, the reciprocal effect of the horizontal oscillation on the vertical one we obtain,
instead of a system of nonlinear equations (3), (4) not explicitly containing time, the
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linear equation (6) which clearly contains time: this is an equation of a linear system
with periodically changing parameters. Just as with a linear coupling, ignoring the
action of one partial system on the other one, we replace a system of linear equations
not explicitly containing time with a linear equation the right-hand side of which clearly
contains time, that is, with an equation of forced oscillations.? And just as the theory
of linearly coupled linear oscillatory systems is an extension of the theory of ordinary
resonance to the case where one must not ignore the reciprocal effect of a resonator on
the source of energy, the theory of our nonlinearly coupled systems may be viewed as an
extension of the theory of parametric resonance to the case where one must not ignore
the reciprocal effect of a parametrically created system on the source of energy which
modulates its parameters. For that reason it is appropriate to say that we are dealing
with parametrically coupled systems.

2. Periodic Solutions

Before we study the movements of our system in general we will satisfy ourselves that
equations (3), (4) possess solutions where z and ¢ are periodic functions—in the first
approximation, sinusoidal functions—of time and the initial conditions are such that
there is no transfer of energy between the component systems.

As we shall employ the pertubation method, we shall—to limit the order of
magnitude of the various values and in accordance with the assumption that z and ¢
are small—introduce the small parameter ¢ by means of the equations

z = ez,

w=€y.

Introducing variables , y in equations (3), (4), ignoring terms of order higher than the
first in € and assuming that +/k/m = 24/g/£ = 2/, we obtain

i +40% = e(5° — §6%°) , (3)

§+ By = e (Bay — 247) . (4)
When e = 0, these equations give us a periodic ‘unperturbed’ solution, in which 2 and
y are sinusoidal functions of time, whose frequency has the ratio 2:1. We will assume
that for € # 0 there is a periodic solution with ratio of frequencies 2:1, tending to this
solution when € = 0, and we shall find this periodic solution. We shall let w denote the
frequency of the horizontal oscillation in this ‘perturbed’ solution and we shall assume
that it is distinguished from the corresponding frequency of the unperturbed solution
by a magnitude of the order e. We have

w?=p%+ea

where @ is a certain finite value. Introducing w? in (3'), (4') and once more rejecting
terms of the order of €?, we obtain

&+ 4w’z = e (9 — LoPy? + daz) , (3"

2 For example, in the case of two coupled electric circuits, if it is possible to ignore the action of
the secondary circuit on the primary one, it is possible to consider that a sinusoidal emf (electro-motive
force) is set up in the secondary circuit.



i+ wly = e (wizy — 227 + ay) . (4}

We shall seek a solution in the form of series in powers of &
T =y tex;+...

Yy=yot+ey+...

Substituting these series in (3”), (4”) and equating the coefficients in equal powers of
€, we obtain

B + dwizg =0, (3a)

fo + 4w’y = 0, (4a)

#1 + 4w’z = g5 — 5wyl + dazo, (3b)

i1 +wiy = wizoye — 22070 + ayo - (4b)

We shall write the solution of equations (3a), (4a), selecting a determined origin of time,
in the form:
2o = A cos 2wt

Yo = By coswi + Bysinwt.

In order for zg, yo to be an approximately periodic solution of equations (3"), (4”), it
is necessary for the resonance terms to be reduced to zero when they are placed in the
right-hand side of equations (35), (4b); that is, in the right-hand side of (35) the terms
of frequency 2w and in the right-hand side of (4b) the terms of frequency w. These
conditions give the following system of equations for determining the amplitudes 4, B,

and By and the frequency w:
BBy, =0,

tad — 32(B — BY) = 0,
(a - %sz) B, =0,
(a + %sz) By =0.

This system permits a solution with three variants:

I) Bi=4v8A, By=0, w=w =g (1+3e4),
In B1=0, By=1vBA, w=wy=p(1~3ed),
III) By=By=0, a=0.

Case III is the vertical oscillation already considered in the introduction. As we know,
it is unstable.

The Lissajous figure corresponding to oscillations of the types I and II are il-
lustrated in Fig. 1 [Figs. 1 to 5 appear on page 15 below|. The ratio of frequencies of
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oscillation II (slower than the unperturbed) and oscillation I (faster than the unper-
turbed) is

— =1-2¢4. 9
e £ ()
When the oscillations are of types I and II, the coupling between the component systems
is effective only in that the frequency of their oscillation changes. No energy exchange
takes place between component systems.

3. Energy Transfer

We shall now pass on to a more general investigation of the motion of our systems.
Employing relations (1), (2), we shall introduce the momenta p; = §7'/8z, p» = 8T /3¢,
and the conjucate coordinates z, ¢, and we shall construct the Hamiltonian function:

1 g, oo, m, 549, oo 1 5 m 4 4
H =?m,(P1 +pa) + (a2 + B Z—Ezp2+_2“ﬁ zp*, (10)
Hy

where m/ = mé%. (As before, we shall ignore the higher powers of z.) The terms
designated together as Hy correspond to the uncoupled component systems; the other
terms correspond to the perturbation introduced by the coupling.

Using the standard [canonical] transform®

Ji. am'J;
z= > sin 2wy, p1 = cos 27un
Tam T
J2 . [Bm!J
= 2 sin 2mws , Py = pm'Js cos 2mws (11)
whAm! T

we shall transform to ‘angle variables’ wy, wy and ‘action variables’ Jy, Jo ( Winkel- und
Wirkungsvariabeln) of the unperturbed system, and the Hamiltonian function will be
written thus:

H= \_2—17?(.:2.]1 + ,BJg)/—I—W%Jg\/ Jy sin 2'rr'u,'1(sin2 Qmws — 2 cos’ 2rws).  (107)

Hy
We shall temporarily discard the supposition that o = 28; let a and 8 be arbitrary. We
know from general theory that two different cases can occur:

a) @ and § are not in a simple rational relationship; if the perturbation is
small ((H — Hp)/H « 1) then the frequencies and amplitudes slowly change around
their mean (unperturbed) values; the corresponding variations are of the same order as

(H — Ho)/H.

b) a and 3 are in a simple rational relationship (degeneracy); in this case even a
small perturbation can give rise to a large change in amplitude, that is, of the same order
of magnitude as the unperturbed values. Since, in the problem being studied here, 2z and

3 See, for example, M. Born, Atommechanik, p. 293.
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¢ are small values, the perturbation is small and consequently noticeable energy transfer
from one component system to the other may be expected only where degeneracy exists.
We shall proceed to its analysis, using the method of so-called ‘secular perturbations’.*

Let o = nyjw, B = now, where ny, no are whole numbers. We have
w

Hy =
0 2

(n1J1 + nada).

[INOTE: V&G write I instead of J here.] In our case of degeneracy we can, on the basis
of general theory, introduce the new angle and action variables v, vy, I3, I3, in such
a way that the Hamiltonian function of the unperturbed problem depends on one only
of the momenta, let us say I;. We achieve this, for example, by means of a canonical
transformation produced from the function

V = (?’L1J1 -} ’J’L2J2)’U1 -+ Jz‘vg .

It gives the transformation equations

ov
I = — =n1J1 +nads
61)1
v
Jo = — =
2= Bog J2
e = A
v
Wy = £ = n9v1 + Vo (12)

and we obtain

g=h g, el
2
S~

Hy

sin 27ny v; {sin” 2m(n2v;1 +v2) — 2 cos? 2(mav; + vy)} (10”)

where, for the sake of brevity, we set v = naw/(27r/Tn10m").

Hamilton’s equations for the unperturbed motion (H = Hj) are

% _ ___%1;0 — %r_’ whence vy = (w/2m)t
1

EZ;TZ = % =0, whence w3 = const.
2
% = “%EE =0, whence I; = const.
U1
% = —? = (0, whence Iy = const.
V2

The following reasoning is the basis for the method of secular perturbations. It
is assumed that, due to the perturbation, the value vs can become a function of time.

4 See M. Born, ibid, p. 123.



But, as the speed of its change dvy/dt — 0 as H — Hg, where values of (H — Hp)/ H are
sufficiently small, the speed of variation of vs should be small in comparison with the
speed of variation of v; (‘secular’ variation). In exactly the same way, when (H — Hy)/H
is small, I1 and Iy, if they are functions of time, can change only slowly. Later it
is assumed that in order to study the slow change of variables one can average the
Hamiltonian function with respect to the swiftly changing variable v; and, using the
averaged Hamiltonian function H, construct new Hamilton’s equations for the variables

Il, Ig v9.
= wIl Il —nQIQ =
H= o —|—'71-24\/ - f (13)

where f is the mean with respect to v; of the function

In our problem

f =sin2mnimn {sin2 2r(novy + v2) — 2 cos? 2m(ngv; + ‘Ug)}

= —-;— sin 2wnqv, — % cos 47rv2{sin 27(ny ~ 2ny)vy + sin 2w(ng -+ 2n3)v }

= % sin 471"02{(:05 2m(ny — 2ng )1 — cos 2m(ny + 2n2)wn } .

If ny = 2ny, and in this case only, f is different from zero and we have
f = Zsindmv,. (14)

We find, after simplifying, a secular perturbation of motion of our systems. (For other
rational relations between frequencies, the perturbation becomes noticeable only when
the oscillations are sufficiently strong for the terms higher than the third order, discarded
by us in the Hamiltonian function, to have reached a significant size; this observation
agrees with the fact that in ordinary parametric resonance the region of instability,
corresponding to a = 2( is very much stronger—it has a different order of magnitude—
than the other regions.)

And so we shall return to the case where @ = 2. Assuming that n; = 2n,, we
obtain (assuming, without loss of generality, that ny = 1, n; = 2 (i.e., that w = 8) it
follows from (12) that

Iy =21+ J5
In = Jy
w = 21)1
Wo = V] + V2 (12’)
On the basis of (13), (14) we shall write the averaged Hamiltonian function
_ I 3
H= %-7}1- + 7’@“712‘/11 — I sin 4y, (15)
eading to the canonical equations
lleading to the canonical equations]
dr H
d_tl = __.gu.__. =0, whence I; = a, an integration constant (16)
V1
dl. 8H 12
d—: = —6_'02 = E'yfgx/a - Iy cos 4mvg an
dvs OH 3

sin 47wy (18)

A chond ( a—I-——l—I;)
dt 8L, 8! S R
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[NOTE: Coefficient corrected in (18).] We shall introduce the designation

[NOTE: correction in denominator.] Our system is conservative: H = const; and,
because [y = a is also constant we have, in accordance with (15), (16):

H' = I1v/a — I sin 47vy = const. (19)

Denoting I = z for the sake of brevity, and eliminating vy from equations (17) and
(19), we obtain the differential equation

d
E? = /23 + az? — H? (20)
on which we shall base our discussion. [NOTE: the time variable has been re-scaled as
t' = (12v/+/8)t and the prime dropped; V&G omit mention of this.] We shall explain
beforehand the physical meaning of the variable z. On the basis of equataions (11) and
(12) we have

a—

CY— sin 47y

& .
@ = /ﬂ_ —sin 2m(v1 + v2) (11)

from which it follows that z is proportional o the square of the amplitude of the
horizontal oscillation, and (@ — ) is proportional to the square of the amplitude of the
vertical one. Equations (11') show that when the amplitude of the horizontal oscillation
increases, the amplitude of the vertical one decreases, and vice-versa.

The integral curves of the differential equation (20) are expressed by means of

the equation
Yy = 14/®(z) (20)

where y = dz/dt and ®(z) = —z% + az? — H'?. We shall introduce initial conditions:
when ¢ = 0, let 75> = b and sin 47wy = ¢; then

H =beva—5

¥(z) = —z® + az® — b2 (a — b).

Both z and ¢ are real valued; equations (11') show that, thanks to this, a can assume
only positive values, and b is confined to the range 0 < b < a. With these conditions
the function ®(z) has the following properties:

1) ®(z) has its minumum when z = 0:

3(0) = &(a) = —b*c*(a — b) < 0;

2) ®(z) becomes zero when b = 0 and when b = g;

9



3) ®(z) has its maximum when z = 24/3:

$(2a/3) = 55a® — b*c*(a — b) > 0;

4) ®(2a/3) becomes zero when b = 2a/3, ¢ = 1.

The form of the curves ®(z) is shown in Fig. 2 for a constant value of a and
for cases when ¢ = 1, for various values of b. For b = 0 or b = a we obtain curve I; for
b= 2a/3 we get curve I'V; and for the other values of b we get curves of the form of II,
I1L

Fig 3 shows the corresponding curves on the phase plane z, y. We have two
singular points—the saddle point (z = 0, ¥ = 0) and the centre (z = 2¢/3, y = 0). Al
the integral curves not passing through these singular points have the form of closed
cycles intersecting the z-axis at right angles (because

dy —3z? + 2az
dz = 2 &(xz)

becomes infinite when ®(z) = 0 and —3z2 + 2az # 0).

The centre corresponds to those motions in which the amplitudes of the hori-
zontal and vertical oscillations remain constant, i.e. periodic movements. It is not hard
to be convinced that the centre corresponds precisely to the periodic motions which we
calculated in §2. Furthermore, one or other of these oscillations occurs whichever sign

we select before 1/ ®(z).

With b slightly different from 2a/3, the representative point describes a small
cycle round the centre, and there takes place a small periodic transfer of energy from the
vertical oscillation to the horizontal and back: the amplitudes remain close to the values
corresponding to periodic solutions. From this it follows that the latter are stable. The
more accurately the initial conditions approximate b = 2a/3, ¢ = 1, the more accurately
can they, with experience, be realized.

The more strongly b differs from 2a/3, the larger the cyclic changes of amplitude
and the larger the energy transfer. With b/a < 1 or (¢ — b)/a < 1, we have an almost
total energy transfer from an angular oscillation to the vertical and vice-versa (curve II).
This transfer takes place periodically with a period of

dz

where the integral is taken along the corresponding closed cycle.

[21]

Finally, the saddle corresponds to a periodic movement in which z = 0, that is,
there are no horizontal oscillations nor, consequently, any transfer of energy. We see once
more that this movement is unstable; if there is the slightest change in initial conditions
the representative point begins to move along one of the cycles. When the initial
conditions correspond to curve I we have a critical solution: the representative point
approaches the origin after infinite time. With initial conditions closely corresponding
to curve I, there occurs a nearly total energy transfer from one oscillation to the next,
and this process takes an extraordinarily long time.

10



We obtain the following general result; the speed and extent of the transfer
of energy from one component system to another depend on the initial conditions. It
is possible to have initial conditions under which energy transfer is completely absent
(periodic solutions) and where component systems behave like uncoupled ones. It is
possible also to have initial conditions under which energy transfer takes place fully and
the ‘coupling’ of component systems is very great.® Finally, it is possible also to have
all the intemediate degrees of ‘coupling’, depending on the initial conditions. These
relationships are utterly alien to linearly coupled linear systems, where the extent and
speed of the transfer—and hence also its ‘coupling’—depend exclusively on the structure
of the system itself (on the ratio of the component frequencies and on the coeffient of
coupling). Translating this contrast into spectral language, we can say that, when we
have a linear coupling, the freqencies and relative intensities of the coupled system do
not depend on initial conditions; where the coupling is nonlinear, both the freqencies and
the relative intensities of the components are essentially determined by initial conditions.

A completely analogous treatment holds too in the case where a is not exactly
equal to 20, Introducing a new small parameter, the ‘frequency difference’ %, we have

a=28+n.

In this case the Hamiltonian function can be presented in the form

g nJ1
H=—(2J —
5 (21 + Ja) + o+
Here the ‘unperturbed’ Hamiltonian function is once more degenerate, and we can

employ transformation (12') and the method of secular perturbations.

There is one more remark to be made. For the application of the method of
secular pertubations to be valid, it is necessary for v; to be a slowly changing function
of time over the entire course of the motion. On the basis of equations (18) and (19)

we obtain 5
dvy , @ — iz

dt 7 aza—z’

from which it follows that this requirement breaks down around the points ¢ = 0 and
z = a, and it is possible therefore that a doubt may arise as to the correctness of our
judgments. But this doubt is easy to eliminate: in fact, the points z = 0 and z = «a
correspond, on the basis of (11’), to the conditions where there are respectively only a
vertical and only a horizontal oscillation. Around these points, therfore, the course of
the process can be traced perfectly strictly with the help of the linear equations (6) and
(8), which corroborate the results obtained above.

4. Experiments

All the results obtained here can be very easily verified and demonstrated in an exper-
iment. We used a good (weakly damped) steel spring, from which it was possible to

5  Here we employ, following L.I.Mandel'stam, the term ‘coupling’ for the characteristic of
interaction of partial systems, while the term ‘coeflicient of coupling’ describes only a mechanism
by means of which component systems can interact with each other. In linear terms, in particular,
‘coupling’ depends not only on the degree of interconnection but also on the ratio of the component
frequencies.
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suspend various weights. The spring was mounted on a stand. The periods of oscillation
were counted on a stop watch. With the use of an electric light, a shadow of the weight
and the spring was projected onto a screen. A grid of the polar coordinates was traced
on the screen, allowing us to assign the necessary values to z and ¢. (If the oscillations
of the spring take place in a plane parallel to the screen and if the vertical plane passing
through the lamp and the point where the spring is suspended is perpendicular to the
screen, then z and ¢ can be measured directly from the position of the shadow on the
coordinate grid.)

By varying the mass of the weight (by trial and error) the relation o = 28 was
achieved, in which, by drawing out the spring by any small amount we chose, it was
possible to observe the phenomenon of parametric resonance and the resuliing transfer
of energy. In accordance with theory, the complete energy transfer began to take place
after very small initial sideways displacements. Again, in accordance with the theory
of parametric resonance, when there was a frequency difference, energy transfer was
observed only where the initial stretching exceeded a certain minimum value. These
minimum values increased as the frequency difference increased.

We demonstrated, for the case o = 28, motions corresponding to the periodic
solutions found earlier. A random initial angular deviation was taken and the initial
values of z were calculated for the two corresponding periodic solutions (Fig. 1). The
weight was displaced in a plane parallel to the screen so that its shadow fell on the point
calculated, and was released without any initial velocity. It was possible to observe a
| j-shaped and a [}-shaped oscillation, depending on whether the initial z was positive
or negative. The stop-watch detected the difference in frequency of these oscillations,
and this could be compared with the one calculated from equation (9).

In the table below the calculated and observed values of the ratio wa/w; are
compared.

Table
®o wy /w1 wa /w1
(Degrees) Observed Calculated
3.75 0.99 0.97
7.5 0.95 0.93
15 0.85 0.86

A study of the transfer of energy was carried out in the following fashion: a series
of initial declinations o, 2o was assigned without any initial velocity, corresponding to
various values of b with the same value of integration constant o (see §3). The size of
the initial declination and the initial tension are coupled, with & and b constant and in
the absence of initial velocity, by the equation,

2 2
Yo 4z = ——
0 ° 7 rom/’

obtained from (11), (12') and (16).

In practice, complete energy transfer was observed, in accordance with theory,
with very small values of b, and also where b is close to a. With intermediate values of

12



b the energy transfer was not total, and when b = 2a/3, there was a complete absence
of energy transfer, that is, we encountered once more periodic movements.

The curve in Fig. 4 represents the measured dependence of the duration 7 of the
cycle of energy transfer on the size of b when « is unchanged. Where ¢ < 1.8°, we did
not obtain definite results, as the accuracy of the assignment of initial conditions was
then less than the size of chance deviations.

5. Conclusion

To conclude, we shall make a short comparison between the oscillations of linearly
coupled linear systems and the case analysed here of the oscillations of nonlinearly
coupled linear systems, and then we shall indicate the link between the the problems
considered here and other problems of physics.

In linearly coupled systems: In our example:

1) We have a generalization of the theory We have an analogous generalization
of normal resonance, where reciprocal of the theory of parametric resonance.
action should be taken into account.

2) A strong reciprocal action of the A strong reciprocal action of the
component systems occurs when their component systems is possible when
frequencies are close to one another. one of them has a frequency about

twice that of the other one.

3} The rate of the energy transfer does The rate of the energy transfer
not depend on the initial conditions depends on the initial conditions.

The present work may be of interest for the explanation and calculation of phe-
nomena taking place in more complex mechanical systems, and also in electromagnetic
circuits with a nonlinear coupling (a magnetic one through a transformer with iron, or
an electrical one, through a condensor with Seignette [or Rochelle] salt). It has already
arisen in connection with an examination of a model of the molecule CO3, the quantum
theory which Fermi recently provided.® This theory explains the structure of the lines
of Raman scattering in carbonic acid.

Optical and electrical data lead to the model of the molecule CO,, illustrated
in Fig. 5a. Spectral measurements and theoretical considerations lead to the conclusion
which, in terms of classical mechanics, can be formulated thus: in the molecule it is
possible for there to be ionic oscillations, whose form is shown in Fig. 5b, 5c, and the
frequency of the first oscillation is approximately equal to twice that of the second one.”
This model of the CO2 molecule is analogous to our elastic pendulum: the role of the
vertical oscillation is played by the oscillation in Fig. 5b, and the role of the horizontal
oscillation is played by the one in Fig. 5c. Transferring the results obtained by us to the
molecule CO3, we see that there is, according to classical mechanics, an energy transfer
from one oscillation to the other which likewise gives rise to a splitting of the lines of

6 B. Fermi, Z. fir Physik, 71, p. 250, 1931.
More accurately, these frequencies are respectively equal to 3.90 x 10~1% sec. and 2.02 x 1033
sec. There is also a third oscillation which has no role in the phenomena of interest to us. [Note: V&G
write 1013, not 10713].
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Raman scattering.® We obtain a sophisticated result, partially agreeing with the one
given by quantum mechanics.

Naturally, the only theory adequate for the phenomena taking place within
atoms and molecules is quantum mechanics. Nevertheless, in the area of those compar-
itively slow iomic oscillations which generate infrared radiation and Raman scattering,
classical mechanics can still give a certain good quality approximate representation of
the true relationships—a representation which has the advantage of being clear. From
the point of view of classical mechanics, the oscillation of ions in the molecule should be
viewed as an oscillation of linear oscillators coupled either linearly or nonlinearly. For
this reason, when the optics of molecules are given a classical interpretation, cases can
occur which are not only appropriate to the usnal model of linearly coupled systems,
but also analogous to the case which is being studied here.

The subject of the present work has been initiated and formulated by L. I. Man-
del’shtam. We are truly grateful to him for his valuable comments.

Moscow, Received by the editors
Scientific Research Institute of Physics, 8 October 1932.
Moscow State University, Oscillations Laboratory.

Figure Captions

Figs. I to 5 (opposite) are reproduced directly from the original Russian version.

Fig. 1: Lissajous figure of periodic motions.
Fig. 2: Family of curves ®(z) for various values of &.
Fig. 3: Family of curves in a phase plane.

Fig. 4: Dependence of the period of energy transfer on the
initial declination for constand values of a.

Fig. 5: Molecule of CO3 and its component oscillations.

8  The scattered light wave will not be modelled periodically, but by a near-periodic ionic

oscillation.
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HOXEBAHHA ¥YOPYTOIV MA?IJ.HIIBA BAH OPHMEP I\.QJIEBAHHII AB¥X
TAPAMETPIYECKH OBSABAHHEIX. JHEHEHHX CHCTEM

A. Bumm B I, [Nopeaun
1. Dpegennme I TOCTAHOBERL "-mga,qn

B sT10f CTATEE HCCIETYIOTCS MaJlke, honeéamm 0KOJ0 IIOJ0:REeBHA paB-
HOBECHES KOHCEPBATHBHON CHCTEMH ¢ 2 CTeUSHAME CBOOOMH, NpPHIEM 372 CH-
creMa TAyG0KO OTHHYIHA OT OGHTHO DAacCMAaTPHBaeMOH H XOPOINO H3BECTHON
Fruedmoll! Kome6arenbEON CHCTEMH ¢ 2 CcTemeHAME cBOoCOIH. OTNHYHE BH-
pa#aeTcd B TOM, ITO IPH CKONB YIOLHO MANHX KONe0anRHAX TIOBSEHHE
HHETepecyoiell Hac 35ech CACTeNH CYNIeCTBEHHO ONMPEAeNASTC HeJHEeH R MIL
IMEEAMH, BXOAAUIENMI B e ZudepeHIEANBELE ypaBHeHE{ﬁ o Bﬂpamammmm

- BA3h MERIY 00SHMH CTeleHAMN CBOGOIH,

B xageCTBe HPOCTOro MeXamIYeCKOro IPHMEpa T&KOH CHOTEME pacc\zor-
DIM ynpyrnﬁ MAATHEE, T. €. TPYs, BHCAMMUN Ha IOPYyXKEHe, BEePXHHH KOHEI
XOTOPOHl BakpeIlIeH, Mit fymes CYHTATh, 9T0 [BHHKEHHEe IPOUCIONHAT B 0J-
Holl OHpefeleHEOH BepTHKAABHOH Hnocxocm. OGosmawmM -gepes 7 MIHO-
BeHEOS BHAYEGHIS JIUHH ODYENEH, l,— IFAHY IDYMHEHEHH B 0TCYTCTBHE Ha-
TPY2RE, »—JroX OTENOEEHHA (MK chony GyaeM ero CUHTATSH. Mano# BeuHm-
TREOH), k —TOCTOAHEYHD YUPYTOCTH OPY:KHHE, ¢— YCKO-
pesHe TCIJReGTII. Jas KnEeTHYeckol H norremmamsaon BHEPIrHH waimedt cm-
‘CREMH MBI HNESM COOTBETCTBERHO:
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CocTasuy TeHepr, TOMsBydAch (1) m (2), JaPPAHKEBH YDaBHOHHA HNBY-.

RCHHESA
) -, . 1y
g oo m— (?-—‘!—5‘3——{:‘;3)£0, . (3)

R R (JL so--2is L 94 ) ==, {4)

OCHYEy®L NEHeHEYH CHOTEMY € 2 CTENEHAME CBOGONH 30REO pac-
CMaTDHBATE, 0COGEHHO UDPE oMal0H CBA3H, KAR COBOKYUHOCIDL IBYX NEMeHHO
CBABAHHHX MY C060H ,IAPIHAILHHI® CHGTEM C 0MHOH CTEHEHBIo CBOOOLRH.
Hamp., 2 MaATHEKA, cOeNUHEHHHeE caaboll ODY:RHHOH, ABARIOTCA OBYMS JH-
HeHEO CBA3QHHEINE MERAY COG0H MapHEaNpHHEMIT CHCTEMAME, KAMAAS H3
KOTOPHX 00nafaeT ¢BOeH ,DADIEANBHOR YACTOTOH® I MOKET GHITH BHIENeH)
H3 NMONHOH CHCYEMH 3akDEINIeNHeM ONHOTO 3 MASTHHKOB, T. . NHIIeHIEM €6
OIHOH m3 cTeneHeH cBoGomH., TOYHO TAK e, KAK TORABHIEAIOT ypaBEeEHA (3)
I (4), HAID YOPYIrH# MasTHHE MOMHO PAaCCMATDHBATE KaE COBOXYIIHOCTH IOBYX
CBASAHHHHX MemIy €060 JHHeHHHX OCLUNIATODOB, KARIHH H3 KOTOPMX
BHIENIeTCH N3 IOMHOY CHCTEMH, KOTNA NapaTI3yeTcs oaa HE 66 CTONEHEH OBO-
GOXH: TaK, BAIPETHB IDYSy YIANATHCSA OT BEPTURANHE (T. e, HDOJORUE o =0),
MH TONYYHEM BePTHEANSHEE OCUMIIATOD, -RONeGTOMAERCT - COTIACHO JHHeH-
HOMY YDaBHEHHID : : ’ :

TS ’ N .

€' ¥IAO0BOIT 9acToToH % — ;/_ Ty JAUPETHB Ke MAATHOERY H2MeHATH CROW
AIHEY, T. €. 3AMEHUB ODYWREHY RECTKEM CTeP:RHEM (ODH 9T0M 7==0), MH
NONyYEN TOPHBOHTANBHEE OCIILTIATOD, KOMeGIMIIHHCA COTJACHO IHHeit-
HOMY .¥paBHeHHIO : :

L N
ooy
n

=

=0

it

~—

! .o . o o - ] - 5
C FIVIOBOH YaCTOTOH ‘?fm——-;'/—'l;_ 3tH BEeDTHRAJBHEY H TOPHBOHTAJBHEH 0C-

UHIASTOPEL SRIANTCA NaPUH2NBUHMH CHCTeMAMH ¢ IADOEBIBHHME YacTO-
TaM¥ o« X £, UBASH MEMKIY TaDPIWANSHHMNE CHCTEMAMH He ARHeRHA: 570 IIORA3H-
BaWT 3AKNIOYCHANE B CKOCKH HeJuHeHHEE ,WICHE - CBASH® YpaBHEHAN (3), (%).
Hspecrdo, aTo IOBeeRNe Ciad0 JHHEHHO CBASAHEHY MUEEHHEHT Eoteba-
TRJIBHEIX CHCTEM CYIICCTBEHEO BABHCHT OT COOTHOMEHN S MADMNUANBHHEY TacTOT.
Bexw mocsenume cHABHO pasEarTes MBEIY COG0H, KoMeGaHusg B I[eJOM MaJI0
OTIHIADICH OT TeX KONefaHHH, KOTOpHE COBEPUILIHE 6H NapUwadabHBC CH-
+ CTEeMH TIDH OTCYTCTBHE CBASH; B IPHMEDE IBYX MagTHYUEOE, COSTHHEHEHX
‘Cradolt mpysrEEolN, RamIHA MAATHER KOKEGAICA i OPHOIANSINTENLHO TAX IRe,
RQK eCIH OH 0H Oun cBodojen. Mo copeey mHaYe ofcTOmY HnéJI0, KOTma map-
UHAIBHKEE YACTOTH PABHEH MEeRAY €000H, XIH, KAK TOBOPAT, KOIAa Ha-
CTYHAT Des0HAHC MEMXNY IADIHANBHHME CHCTeMaMy, B 3ToM ciywae BHED-
THA DepHOSHYeCKE TepPeKavYHBACTCA H3 OZHOIO MAATHUES B APYIOH, H Rasmasi
MRATHEBRE COBEpIIacT HMO3TOMY MONYJIHDPOBAHHOE KoOJeGaHIe, ROTODOE MORET
OETH HPEeICTABISHO HAK CyMMa 2 CUHYCOHTAJHHHI KoaeSammil ¢ YacToTalm,
0IES H3 KOTOPHX GOJLLNE, & ADYrasd — MeHBLIE IAPHEANBHEN 93CTOT; MORHO
CKa3aTh, 4T0 GNAT0N2PA CBASE MPOHCXOTHET DACU[EILIEHES uapnitaanol ya-
CTOTH HA J1Be W NH HaOI0XaeN OHeHHNT 9TEX 2 yacTor. YeM CEALHEEe CBI3R,
TEM §0JbINe PACIIEINTEHHE TACTOT, T. 6. TeM GHOCTpee NPOHCXOZHT IIepeRayra
SHepIuw, -
B gamey ciaygae HexmaedE0 CBR3ANBEX JHEeHHEY CHCTEeM, JIPH MaiHX
ROTeGaHYAX HeJHHEHHHE UISHH MBIANTCHS MAJHMA BeITURNAME BEGIION®
nOpANKA, ¥, BOOOINE rOBODY, OHE MAX0 CRA3KIBAIDTCH: apOualbHEeE CHCTEME

Eoagbawnua yppyrowo xazmniva - ' 295 .

+

MU0 BIHAIOT OZHA HA APpYryw. Ho MOERHO y6emuTnes, qTO IPHE HEKOTOPOM -
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296 A, Bumm u I. Dopeur

oIpejieIeEHOM COOTHOMIEHHH NAPUHANBGHEX TACTOT, & HMEHHO KOIZa a==27,
RONEKHEO HACTYNHUTH CHIBHOE BIAUMOJEHCTBEE MEERIY NAPIHAIBHHEMHE Koiela-
HusMEA H CIeAyeT OKHEIATH De30HAHCHHX ABJIEHHEH, IPelCTABISIOINEX HEKOTQ-
Py AHANOTHIO ¢ TeMH, KOTODHE HACTYIAlOT B Cilydae NHREHHOH CBASH mpnm
PABEHCTBE NAPUHAJBEEX TaCTOT.
Jle#cTBETEABHO: -

1) OTRIOEEM TDY3 OT MONOKEHES DABHOBECHS BIOJP BEDTHRANN H OTIY-
©THM ero, T. €. BOBOYLEM BEDPTHKQNLHOS NADLHAABHOS KONEOaHHE

g="dcosat. 8)

. Benemersue HTOT0 KONCGAHES IUMHA HANIETO MAATHAKA — €0 TapaMerp —
EaYHeT HEPHONHIECKE H3MEHATHhCA; IDPH MOJNCTAHOBEKE (5) B (4) MH TOIyIHM
LIS » ANHeHEOe YPABEEHHES ¢ NEePHONHYSCKANH KO(QPEIHEHTAME
(1-1-24cosat)p—2asinats+f2(1 4 4cosaf)o=0. (8
- Bemry ToTo, YT0 ¢ == 2 3, IapaMeTD CHCTEeMH H3MeHACTCA C 9a0TOT0oH, paBEOR
YABOGHHON €e COCCTBEHHOM YacTOTe. HO H3BECTHO, YTO B BTOM CIyTase HACLTY-
maeT SRNEHHE IAPAMETPHYECKOTO PE30HAHCA. MaaTHHK CTAHOBHTCH HEYCTOH-
yupmM. Jl0CTaTCYEO MaXeHiuero G0KOBOTO TONYKa HIE OTHAOHEHHI, qTo0H OH
HAYSJ] COBEPIIATEH HAPACTAIONIIE YOPHBOHTANBEES KoNne6anna. TakmM 06pasoy,
B cIyuae ¢==2f BepPTHKaJbHES KOJe(AHAA DackavalnT MAATHHE B IOPH30E-
TANBHOM HANPABIEHHH. :
2) OTRIOEEE CHAYAJIa MAATHHE, He KeQODPMHDPYH ero, Bos0yAHM TOPH3IOHE- |
TaNbHOE TApIHANbHOE KONefaHEe . ‘

@ =B cospt. . )

PaspEBaeMAS ODH HTOM [JBE/KEHEH IEHTpoGemHAd CHIEA, HOCTHIANN{AA
MAKCGHMyMa NBAENH 23 Rakzoe KodefaHHe, OyNeT IePHOARICORHE DACTATHBATL
npyxuEy. llofcraBnas (7) B ypasHeHde (3), NH HONYIHEM  ~

. a%7;2 : .

_ z—}-a’fz.m%(l —3 GO§?3t), . ®)
T. €. VPABHEHHE OCILHMIATODA, HAXOGAIIETrocH Iof AeHcTBHeN BEeWHeH el
& CHEYCOHOZaJbHOH KOMDOHEHTOHN, HMenmeH wacrToTy 28. A Tak Kax 28 ==uq,
aTa CEJa .6yHeT MeifiCTBOBATL B PESOHRHC Ha BEPTHHANLHHY OCHHIIATOD,
H NOCNeHFH HaYHET COBEPIIATH KOJeGAHHS BCe BO3PACTAIEH aMITHTYAH.
Taguy 06pa3oM, B cayyae 23 =« TOPHBOHTANSHEEE KONe(aHET PACKaYamT IPys
3 B BePTHKANBEOM HAODABIEHHH. _ )

Slemo, 4TO CHCTEMH YpaBHEHHH (5), (6) ¥ (7), (8) coXpaHAT CHAY AHIUb
¥ HagaJe DACCMOTDEHHHX NpPONECCOB: KakJad Ilapa He yUYHTHBaeT 06parT-
HOTO KeHCTBHI ,PacKadaBacMOol'o” OCHHIIATOPa HA ,,pacrcaqﬁaaromni‘t“.
A 970 Taroe JeiCTBHe CYLIeCTBYeT, BHTEKAET HEHNOCPEeHCTBEHHO M3 TOTO,
TT0. RAIIA CHCTEMA — KOHCEPBATHBHAA: SHEPIHA ,PACKATHBAEMOTO" KOXeGaRH
MOFeT HApacTalh JHIND 3a CY6T OCHAGIEHHS spackagmpaomero”. IloaToMy
B CIyYac 1) HapacTaEEe PODHBOETAIRHEX K0JeCaHUI HOIUREO .CONPOBOZAATECHE
y6uBAEHEM BEPTHKAJIRHHX, & B CIyYae 2) HADACTAHHG BEPTHHAJLHHX ROMC-
faEHll FOMKHO OPOECRONHTL 34 CYET 3ATYXAHHES TOPHBOHTANBHEX. (Togmo
TAKX JRE B Ciydae JUAEHHO CBASAHHHX MAJATHHK0B KONEGAHHA OFHOTO Hapa-
CT20T B TO BPeMd, ROPHa Koiefapda ZPyroro yOHBAIT.) ‘

OTcoma BHTERaeT 3afada: He OTPANZYNBASsCH HAYANBHHME CTAIHANMA
ABHKEHHY, OTOGPAKAEMHX YPABHeHHAMHE (5), (8) 1 (7), (8), mCcaenoBaTh ABH-
HEEEA TOJAEOCTH D IDE AOOHY HAUaNBHHX YCAOBHAX H B YACTHOCTH yCTaHU-
BATH, HE MOKET JH HACTYIETS IePHONNIeCKad MePeradna SHePIHE MeRLy obe-
NME CTHeHAME CBOGOJH, afalorirgHad ToH, KOTOPAS HMEET MECT0 B aaHelBO
CEASAHHEX CHCTEMAaX. : ' .

ITpeHeGperas B EATEM CIydyae HenmHeHHOH CBA3H 06paTHHM JeHCTBHEN
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¥

TOPR30OHTANBEOI0 KONEGGAHES Ha BEPTHKRIHHOE; MEL HOIyIaeN, BMECTO CHCTEME
genpHeHHHY ypapHEeHni (3), (4), He COMePE AN HX JBHO BPEMEEN, JHEC fi-

' goe ypaBHeHHE (6), COZepRalnee SBHO BPeMA: BTO eCTh yPaBHOHHE JIHHEH-

Holf CHCTEMH C HePEONUIecKHN H3MeHANNTHMHCA TapaMerpady. TOUHO TaR ke

IIpH JRHeHH0H CBASH, mpenedperas NeHcTBHEEM ONEOH mapoEadbHEON CHCTEMH HA

IpyryD, ME 3aMeHAeM CHCTeMY JHHEHHHX ypABHEHH, HE CONePIRATIHX ABHO
BpeMd, TRHeHHH M ypaBEeEAEM ¢ TPABOH I4CTHI, Ky A4 ABHO BXONHT BDEMA, T. &
ypaBEEHHSM BHEY®ICHENX LoneGamnit!  TOIHO Tak /e, KaR Te0pHd JNEEEHEO
CRO3AHHEHX JAEHeHEHY RoNeGaTelbHBIX CHCTeM HABIfAeTCA 060CIICHHEeM TEODHE
06HIHOTO Pe30HaHCA HA Ciydald, ROFHa OCpaTHHM LCHCTBHEM PE30HATODA Ha
HCTOYEAK DHEPIHH HeJNb3d Ipexedpedn, — TeoPHA HAINHX EeJADHeHdHO CBi-
RRHEHX CHCTEM MOEET PACCMATDPHBATHCA Kak 060CImienHe TEOPHH mapaMerT-
PHEYECREOTO PE30HAHCA HA CILy9Tall, XOTT2 HeAb3d npeEe6peraTs 06PATHHM

meHcTBHEM NADAMETDHIECKH BOBOYEGaeMoll CHCTEMH Ha HCTOYHHE JHEDIUH,

MOLyINpyOIMEH ee mapamerp. IloaToMy Ieseco00pasEo TOBODHTh, UTO MH
TMeeM JeJ0 ¢ HaPAMETDHYECKHE CBISAHHHEME CHCTEMAMHE

2, MeproandecEe DeImeENd

Tipe:xype d4eM HCCHe0BaATS, B OOO(eM BHOE [BHKeHHe HAMIeH CHCTEMH,
yoenaNcs, Yre ypaBHERHEL (3), (4) oGmamanT pemieEgAMHE, IPE KOTOPHX 2 X ¢
ABIAOTCA TePAOTUYECKEME — B TEPBOM NPHOMHKEHHM CHEYCOHNAJBHEME —
DYERUAIME BPeMEeHH ¥ IT0 TaKAM 06pa30M CyIecTBYNT HAJANBEEE yCIOBESA,
OpPHE KOTOPHX HET NEePeKaTrd SHEPrHE Meiky TapIUaBHEIME CIICTEMAMH.

Tag K2k MH GYAeM NOJB30BATHCA METONOM BOBMYDIeHHH, BBeHeM IS
OLeHKH LOPAARA PAAIHIHEX BENMYHH H B COOTBETCTBHH ¢ UDOAMONOMEHHEHM,
w70 £ H ¢ MalH, MaJH} IapaveTp e DOCDEACTBOM ypPaBHEHHH

(& ==gex,

P =€l
Beoxf mepeMeHuHe x, y B ypaBHerHEA (3), (4) IOpeHedperas YIAsEAME
TOpA/KA BHIIE 1-T0 OTHOCHTENBHO & H TONATAS V,-:‘?m 2}/_-9;= 28, mMeey
R U ' (3
Ly =eEoy —259). . @)

~

[pE 2==0 3TE YDPaBHeHHSA [ANT HaM IEDHOLAUYECKOe ,HEBO 3MyINeH-
H0e“ peleHme, B KOTOPOM  H Y ABIADTCH CHHYCOHIAILHHME DYEEOHAME
BPEMEHH, - 9ACTOTH KOTOPHX OTHOCATCH MERLY coGofi Kak 2 : 1. [IpeAnonomAN,
970 MpH e 7= 0 GYyISCTBYeT HePAOIXTECKOL DEIISHAE C OTHOMICHACA 9ageToT 2 ¢ 1,
CIHBADINEeCA IPH e=0 ¢ STEM HOXONHHM pelIeHWeM, H gafineM BTO IEPH-
omEdeckoe permenZe. O003HATNY Tepes @ TaCTOTY TOPHIOBTAIBHOTO RoJe6apEA
B 9TOM ,BOBMYIMEHHOM® DeMIeHHE H HDEfNONOXEM, 4T0 OHO OTIMIAeTCA OT
COOTBETCTBYIOINeH TACTOTH EEBO3MYIERHOI'C PeIIeHAR Ha BeIHINEY HOPAAKA e,
HMeeM ' ' '

w? == 2 - de,
The o — HEKOTOpas KOHEUHAA BeNHYEEA. Bsogd o? B (3"), (") m cHOBa OT-
GpacrmBai TACHHE HOPANKA e?; MOAydaey

.$-;— 46323323(?}2-‘.]—;;032;1]2—%—-403:), ) i : (3”)
Y -y =s(0y — 2x -+ ay). {¢")

1 Hamp., B ciiyiae 2 CRAoQHHLX 9IeKTPUYISCKEX KOHTYPOT, B TEX CAYHURAI, ROTHA MORBHD
TpomeSpeds ZOHCTSHOM BIOPHIHOIO KORTYDa Hi DePBETHHE, MOZHO CTHTATS, ¥I0 BO BTODHT-
Euft ROUTY]P BRINYSHA CHHYCOHJAIBHEE 2.C. ’
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259 s Bunon n I’ Topeaux .

= T e,

ByseM HCRaTh DelleEHe B BELe PAI0B U0 CTEHEHAN =:

T mm L= 8Ly L .

Y=Y =

Hoporapaag oTH PASH B (8”), (4%) H IpHPABHEBAK Ko3)pEIFenTH opH
OHHAKOBHX CTEIEHAX £, IOJIYUAEM: :

:-;"U -l delp, =0, . . 3.
.l; v wp=10, . . .. L
Sy iy = i — ety 4 dae, S (i)
Y g iy = ey — 28y + 6. (b

Pemenne ypaBHeHu# (3a), (42) EaUHIIes, BH6DAB OHPeJeNeBEHOE HAYA10
0TCYeTa BpeMeHH, B TAKOM BOfe: g

@y = Acos2wl,
‘ . ' o = B C0s wf — L, sin wf, T

Hng Toro, YTOGH &y, Yy OHAE IPHEGIHKEEH) IePHOTHIECKHN PeIIeHIe)y:
ypasHeHT (37), (47), HeoOX0MAMO, YTOOH NPA HX HOJCTAHOBKE B IPABHE TacTH
ypasuenmit (3b), (4b) ofpamaincs ¥ Hynab Pe3oHaHCHHe YIEHH, T. &. B IPaBOL
gacTH (8h) UJeHHM TACTOTH 2w, & B Ipapoil 9acTH (4b)— JacroTH o. OTH

7 : YyeaoBHA NaloT, ANA ONPeeNeEEg AMIHTY S 4, B,
{. . Bﬂﬁn TaCTOTH ©, CHEAYIOmMYW CHCTEMY ypaBHe-
HNH:

N = —

lf\/or\< 7 o BB, =0,
£ -
Fid

3
3

dad — "i"m'- (B2 — B4 =0,

(-

wo| cw

m'—’_—i)Bl =0,

Pue. 1. ®arypa JRcewkv e . . .
PHO, WMSCRHY | BILIRCHH, (a-—i——.,-m?.i)Be'z 0.

L)

JdTa cHCTeMa HOIIYCKaeT pelleHHe B 3 BADHAHTAX:

I) 'Bl.: ngA, ]}220, U}“:wl :3(1“}"%2-&)’ .

¥

II) Bi=0, By=£V 84, oa'moj:-z:.-'j( —-i—sA),

[l) By==2"B,=0, a=0. 370 eCTh ymMe PACCMOTPEHEOe BO BBeXeHAH DEpTH-

KanpHoe kogedomme. Hak MH 3HaeM, OHO.HeyCTOHUHBO. "
Ouryps IHCCAKY, cooTBETCTBynMEe KodeSammay THma I ® II, mpea-

cTaBieHH Ha pHe. 1, OrTHomeHme dTacToT wodefammsa Il (Gomee MemueHHOTO,

ueM HeBO3MYIIeRHOE} B kodeSanms I (6oxee GHCTPOTO, UM HEBOBMYMIEHHOE)
' _— 3 : .

—= e e 3 _I.. i)
1 52 )

“IIpnt roxe6ammax TEnA 1 B II ¢BAsh MesMIy DapHHANLEEMI CHCTEMAMIH
CXa3HBAETCH TONBKO HO MIMEHEHHW YACTOTH HX Kodebammil, O0MeHa SHEDPTHEH
MemIy HApHHaTbHHMH CHCTEMAaME HE HPOHCXONHT.

3. Ileperayna sEepruy

TlepefineM kK GOree 06MeMY HCCHE/0BAENI NEH:MEHHH HameH CHCTeMH.
BOCMONB30BABIMHECH  COOTHOmMEHRHSMR (1), (2), BBeHeM HMIFIbCH
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"= %{, Po= -E—, COTpAEeHEHE KOOPIHHATH 2, ¢, H HOCTPOMM IaMHENBTOHOBY
z - p .
GyHERIHIO:
1 a oy L M a . I LT .
He= 55 (02 0) - 3 (652 %% — i S (103

v HD - .
rge o’ =ml. (Kak § ope:fe, MH NpeHeOperaeM BHCIIAME CTEOEHAMI .}
UnerH, 00begEHeHHHe ol 0G03HaYeHHEM Hj, COOTBETCTBYHT HOCBAZAHHHM
NapURadBHEM CHCTEMAM; OCTAJbHHE UASHH COOTBETCIBYIOT BOBMYIICHHN,
BHOCHEMOMY CBASBIO. T

- -O6HYEHM IpecCpasoBagHeM !

N ',
s S0 2R, pyp== = eos 2y,
Ts -

. —— e R B
- da . ;'/_ sm'dy U
g == =7 sin 2mws,, Py== 1/- Tt eos 2rnry

MH TepeiimeM K ,yIJOBHM IeDeMEHHEM® ), ty N K ,TePeMeHHEN ZeliCTBIAM
Ji» Iy (Winkel- und Wirkungsvariabeln) HeBOsMyUIeHHOH CHCTEMH, H TaMITE-

TOHOBA (DYHRIOEA NePeHHIleTCs TaK: — .
H= 2—1_ (o, 4 813) == 2 Vﬁ——,— J, VT sin 2rw (sin? 2z, — 2 C0S22Rug).  (107)
* AxY wam - . .
. T Ho

QTGpocHM BpeMeHT0 NPeANON0KeR e, YT0 « = 23; IIYCTH « u §— mo6He. Ha
ofmelt TEOPHH HBBECTHO, 9T0 MOTYT NPeJCTABHTBCA 2 .DASNHIHEX CIyYdd:
a) « E { He HaXOQATCH B HPOCTOM PAIEOHANBHOM OTHOIUEHEH; eCaH
BOBMYINEHHE . MAJO0 (—H%}IQ << 1), TO YACTOTH B AMIOJHTYAH MeJNeHEO

H3MEAFOTCS OKON0 CEOHX CPEXHEX (HeBOSMYIEHHEY) 3HAUSHHH; OTHOCHTENE-
. ‘ I — K,
HEHE BEIHIHEH OTEJIOHEHHH — TOTO iRe HOpANKE, HUTO MFIE.

6) Mesmpy « ® § -CymecTByeT NpPOCTOe PAHHOHAIBHOE OTHOIIEHHE
(BHDOKZSHHE); B STOM CIydae yme MaJ0€ BOBMYIIEHHE MOMKeT BHBBATH
HaMeHeHHe AMONHETYZ B GONFIHH X Ipefenax, 7. 6. HaMEeHeHHA TOTO ke
TOPANKS BEJHYHHE, YTO B HEBOSMYIUSHHLIE 3HAYEHHA. ‘

Tak Kak B pACCMATDHBaeMOH 37eCh 344a4¢ & B ¢ Malie BeJHUHEEH, T

y

H. BO3MYIOeHHE Majae M, CJIeJ0BATEJbHO, 2aMOTHOH TePEKaYRE BHEPIrHA H3

OFHEOX OApHMEANBHOR CHCTeMH B ADYLY MOKHO OKHJATH JRIIL B CHYIRé
BHDOKIEHEEZ K ero, pas6opy Ms H Hepelimed, mpEdIeM OyAeM HOIb30BATHCA
METOZOM TR HA3HBAGMAHX. ,CERYIAPHHY BO3MYHISHHH®, ® ~ ) ‘

o Iyers a=n8, p=ngw, r0e %, n,— DeilkHe INCI2; HMeeM

~ ) . H@ 3'2%(?111—1"5—'?32'13‘).1

B HameM ciyyae BEDOSEIEERS ME MOXeM Ha OCHOB2HHE 0fm(eH TeopHL

BBECTH HOBHE YIVIOBM® NMepeMeHHHE H HePeMeHHHe JeHCTBRL ¥y, vy 1y, [p TRE,

YTOOH TaMIIBTOHOBZ DYHENNA HEBOSMYIIEHHOHN 2aMadil BaBHCENa TOJBRO OT
OZHOIO 3 MMIUYNBCOB, CcramedM—I,. ME HOOTHrHeM oTOK IeJH, HANp. IPE
HOMON[E KaEOHHTECKOTO NPe06pasoBamls, IIPOHIBOAMOTO 0T PYHRLHH

. V= (nJy 1 nap)eq -+ Jota,

! Cut., mamn., M. B orn, Atommechanik, 8. 298.-
% Ca. M. Born, tou me. S, 123,
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OHa 7aer ypaBHEEHS IPeo6pasoBANEA

al-
Il=a—yl=”'1‘]{-+ﬂ'-"'f'3'

ov '
=g = o

o
=gy, = Mt

¥
Wy = - = gy 1 v
¥ MHE HOXyILEM

, T, . o ‘
H= ;’—f-‘-.* m]/ l—n:za— 8in 2rn 0, {SI022w(n50; - vy) ~— 2008227 (ng9; 1 2,)}, (107)

[a—

H,
g

FAe AJA KPATROCTH MEH HONMEEAH —rrfemcee o=,
' 2wV mnjom’

CocTapiAA ypaBHeHHS ['AMHIBTOHA IS HEBO3MYINEHHOIO IBEKEHMS
(H == Hy), mveen:

dy 0H, w T o
dE= -Efl ==+ OTEYAA ¥ = §_nt
avy 2H, .
H= o, =’g§ " ¥, = consg
al; 0H,

't—z;z-——a"t:‘—=0, ” Iy == const .
% =— %% = 0, " I, = const.

B ocHOBe MeTona CeRYIAPHHX BOBMyIIIBHEﬁ JEERHT CAaeylonee pac-

cy#penne. IIpefnonarasTed, 910 6IarofapsA BOSMYIIEHHD BENHIHHA v, MOKET

cTaTh (pYHROEeH BPeMEHH, HO Tak KAK CKOPOCTH e¢ H3MEHeHHS %%3 — 0 opu

H->H,, T0 MPH TOCTATOYHO MANHX E:Eﬂ CKODOCTS E3MEHEHHS IEPeMeHHOH

¥, NOMRH2 GHTH Malla 10 CPABHEHHD CO CKOPOCTHI HMBMEHeHHS IepeMeHHOH
e, - - H"""' .
¥y (,CeRYNMAPHOE" HaMeHeHEe). TowHO Tak e I, m I, Upm ManoM -—Hﬂ, eciu

E ApAfnTcd (QYHRUUAMI BPeMeHH, TO MOIYT H3MEHATHCA JHINL OTEHDb
MegmerHo. Jaliee, mpefmosarasTcd, 9T0 IS HCCIEHOBAHES MeKISHHOIO H3-
MeHeHHS mepeMeHHX I;, I, v, MORHEO YyCpPONHHTh TAMEILTOHOBY (DYHKIED
mo OHOTPO H3MEHAOIIEHCT IepeMeHHOE 9, H COCTABUTH LPE IIOMOIEH

yopensEento ravanbTononoll Qymrumn H HoBHe raMHABPTOHOBH yDABHEHHS
'Jast wepeMenpHEX I, I, v,. :
B mamei# samave

""'_ UJII 1. Il—"'ﬂglg = '
=2l ]/———-_f, L),

iy

THe | ecTh cpefHee SHAUERHE N0 vy 0T PYHKIEE

f ==sin 3xny, {3in? 2n{ng; -+ vy) — 2 cos22r(mey, - 1)}

1. 3 y . '
= — 5 sin Imngwy — - cos drvy {sin 2rlny — 2 no)vy - sindnli; - 2 vr;

3 :
= 7 sin 2. {e03Br(n; — gy ~ cosIx{ny + 2rg)u ).
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Toaern Torma, KorHa n#, =2, fOTIEIEO OT HYIA, H ME HMeeM

f= %Sin 47Ty, (14)

TOMBRO B 3TOM CIYYae MH TONyYaeM, IPE CHENaNEHX HaMH Ipemebpe:xe-
HHIAX, CEKyNADHOe BO3MyMIeHWe IBIURCHNA Hamed cucrems. (IIpm Apyrex
DAUHOHAILUKY COOTHOIICHIAX MEKAY TACTOTAMH BOMYMEHHS MO0 O
CTaTb 3aMETHHIM JEOIL HPH KOJeGAHMAX, NOCTATOYHO CENBHHX UL TOTO,
YTOGH B FaMHABTOHOBOH (DYHRUHE OTGPOLIeHHES HAMY WISHH TIOPAJKOB BHINE
TPETLETO. AOCTIUTIN SHAYHTENBHON BEJWINEH; BTO 83aMEYaHHE COTNACYETCH
C TeM (PARTOM, TTO IpPH OGHYHOM TIapAMETPHIECKOM De30HAHCE O00JacTh
HEYCTOHYHBOCTH, COOTBeTCTBYNINAS «=— 28, TOpasgo CHIbHEe BHpPasReH2 —
OH3 HMeel HPYTOH IIODANOR BEeNMUHH, — ICM O0CTAIbEEE odxacTi.)

Hrar, pepHeMes K CIyYal, KOTAL a=2f, [onaras . n, = 2n,, uMeex,
HoJaras, Ge3 HAPY IR 00IMIHOCTH, #y = 1,7, = 2 (1. e. 0 = 2), Ha oCEOBawH (12),

Iy =25+ 7, )

Ty == 0, i} (12)
wy == 2%, i

Wy = vy |~ Vs r o o

ilmmren Ha ocHOBaHHM (13), (14) VepemEeHAYD TaMHABTOROBY (DYHRI[HI
H TaMIJIbTOHOBH YDPABHEHIHA: ) :

—pI 3 ———
H_;—_I_E_]/—%"{ 1'3']‘/.[1—-1'2511'!‘_@::1:2, (1%)
d:.rT_= _.'?;E_I. =0, oTrylta [; =a (16)
e oy {¢ — mocrogmaa neTerpauym), .
dl, dH _ 12 o |
2= — 2 = mrd —1, =V, 7
T e 11y ¥V & — 1, cos 4, o an
) dvy, OF _ 1 1 .
Pl ) i (']/a — I, —3;1'27;— T_?) sin 4wy, {18)
Breaesm o6osgavenue
= :
o — =" .
A=
1K

Hawa cuereMa EoHcepBaTHBEZ: H = consk; Tak Xak KpoMe TOTO I, =a
€0TL IIOCTOJHEAA BeJHYHHA, WMEeM, COTIacHO (15), (16): ) :

H' =LY a—1, sin 4=v,—const. . (19)

't OG03HAYHB IJS KpaThOCTH Jy=% ¥ HCKIOTIE v, H3 ypaBHeEHH (17)
1 (19), moaywaes NEG(EpPeRHAIbEOS ypaBHCHHeS '
dz ” ; 3 z
. @ =3 - —.53+q;c3~1i’-, . (20}
KOTODOe ME NOJOKEM B OCHOBY TRCKYCCHIL IlpensapaTe pEO BHACKNM (H3E-
YECKEL CMEON mepeMeHHOH 2. Ha ocHoBamEN (opMys (11) E (12) mMesM

&

::}/?—_»; sin 4=r,, ]

2ram "
— Ir (11")
— o @] oy L oy
P V;?ﬁm’ sin 2= (v + ”-2). s
JEypuaa vexurndecroft duanxm, 1. HI, Bain. ~2-3. ’ g
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308 ' A. Bumm u I". Popeaux

sy

OTEYfa cClefyeT, ITO 2z NPONOPNEOHANBHO XBafpDATy aMILIATYIA TOPH3IOH-
TANBHOrG KONEOAHHT, & a—x—KBalparTy aMIIETYIE BEPTHKATLHOTO. Pop-
uyas (117) DOKA3HBALT, 9T0 UPHE YBeAHYSHHH AMIIHTYAH TOPH30OBTAXBLEGTO
KoneG2HAA yMEHBIAELTCH aMINIHTYX2 BePTHKANEHOTO H HACGODOT.
HETerpansEHe KPHEHE AH(bOEPEETHAILHOT0 YPaBHEEHES (20) BEPAZA0TCH

YPaBHEEHEM .
y= £} 0(x), . (207)
rye
_ =z
Y= ap

. (D(x)=“$a+axg_“ﬂlg. i
. BsegeM HavaApHHE YCNOBHA: LYCTh, HpHE ==0, I p=b, SN 47y, =y
TOrga _ _ B .
H =peYag—b,
O(x) = — a3 -+ az? —b2%3(a —b).
Zz W o JAeHCTBHTEeNAbHHE BeIHTHEH; ypapHeEEA (11°) LORABHEBAWLT, YTo
(naromaps 3TOMY ¢ MO:KeT DDPEEHMATH ‘TOXBKO HOJOMHTEABHEE 3HATEHMS,

@k

Pre. 2. Cenetlcto kpusmx & (z) mpu Pue. 3. CedeficTBo RPHBHX pa dazo-
PasIEIALX b, BO# MTOCKOCTR.

a b— ToABKO BHAYCHHA 0==b=«. {Ipm 3TEX yChoBEAX PyEruEs P(z) ofna-
Iaer CAeRYIOIIMMHE CBOHCTBAME:
1) ©(x) uMeeT MEHEMYM NPH z =0, OpEIeM

B(0) = B(a) = — b(a— B) = 0:
2) ©(0) oGpaimaeres 8 0 IpH b=0 ¥ mpm b=aq;
© 8) ®(z) EMEeT MAKCHMY M TpH @ =25 ppmaey

(2a 4 2
(13(?)=:~ﬁa3—~b_—cﬂ(a-—b)go;
24 2a
4) @(—3—) obpamasTcs B 0 npH: b.n—-..-g, c==1.
BEp xpmeHx ®(x) morasamx ma PHC. 2 pOna DOCTOSHHODO 3HAYEHRHI &
B [ ¢=1, IPHE Pa3NTAIHEX BHaYeHHAX b. [Ipw b=0 mWiy b—=a noIyvaeM

2 = 4 anazdy
EpEByW I, Opm bz“,—;'-’-—chmyro IV, Opu OCTANLHHYE B3HATEHHAX & — RpH-
BHe BEpma JI, JI1.
- Ha pHe. 8 OorasaEH €oOTBETOTBYMINUE KpMEHe Ea (DR30BOI IIIOCKO-
et «, y. MH EMeeM-2 0COOHe TO4KH: cexao (rxr=0, y=0) E LIEETp
2a

%=7%, y==0). Bce @ETerpalbELe KDHBHe, e NPOXOAAIIHE TePes 3TH 0CO-
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6He TOYKI, HMeWT BHA 3AMKXEYTHX I HAKJIOB, IepPeCERANILUX 0Ch ¥
OOJ NPAMEM yJIAOM [TAR KaK .

dy 1 —3z?+f2ax

dz 3 Yo
ofpamaercd B oo OpH P(x)==0, — 3224 2ax = 0]. ,

IleRTp CcOOTBETCTBYST TaKHM JBHUKEHHAM, IODPH KOTODHX AMIITETYIH

TOPH30HTRJBHOMO H BePTHKAJILHOTO XK0JeO0aHHH 0CTanTCH LHOCTOSHEHME, T. €.
nepropgHEYeckEM IOBExeHHAM. 'He Tpyzuo y6enurpca, dwro IeHTD
COOTBETCTBYET HMEHHO TeM IIeDHONHYECKHM NBILKeHHSM, KOTOPHE MH BHYHC-
gy B § 2, OpHYeM TO HIE HPpYroe H3 3THX KOJeCaHHI HMONYIRETCH IIpH

.TOM HIH APYToM BHOOpe -3Eaka Iepex } O(z).

2a
Ilpm &, cerxa OTJIHIHOM OF 5y, H306DPARANUIAA TOUKA ONHCHBAET HEGOXE-

LI0H X{HKJT 0KOJIO IEHTPa, H NPOHCXONHT HeSonbliad IePHOAHUECKAS MepPERATR,
SHEPrEE H3 BepPTHRAJBLHONO KoXeGaBus B TOPH30HTAJNBHOE W O6PATHO: AMILIH-
TYRH MeZAeHHAO H3MEHSIOTCA B HeOOJBUINX ITpejesaX OKOJO B3HATEHHI, COOT-
BOTCTBYIOIMAY. IIEPUMOOHYECKENM pelleHusM. 3 9TOro BHTERAET, MTO IOCIEAHHE
ABIAKTC yCTOoORTHBRME, OHE NMOMYT OHTE OCYINECTBIEHH HA OIHTE
¢ TeM GONpIIel TOYHOCTEIO, Y&M TOYHES HAYANRHHE YCIOBHA YIOBAETBODRIT

2a
COOTHOMEHHEAM b=~ ¢=1.

2a .
Hear cEIBbHEe b OTIHYAETCH OT 3» TM B G4APMHEX Ipefdesax NPORCXO-
OET H3MEHeHHe aMIUIATYXE TOPE3OHTANBHOIO KOJE6aHHS, TeM INIyGMEe Iepe-

Kauka oHeprum. IIpm 72—<<1 o - :b.<<' 1, MH HMeeM NOITH TONHYI mepe-

Ka9Ry 9HepTEE ¥3 YIJI0BOTO KoNe(aHAA B BepTHRaNbHOe H  HA0G0DOT
(epmBas II). Ileperayka 9Ta NPOUCIONHT HEPHOAWYECKH, IPHUEM-6€ HEDHOL .
' . dx . '

Vé@’

Ijle HMHTeTPaJ B3ST BOOJE COOTBETCTBYIOINETO 3aMEHYTOTO IERIA. ,

Haxomenm, cemao’ COOTBETCTBYET NEPHOAHIECKONY IBHKEHHI0, OPH KOTO-
poM x=0,.T. e. HeT TIOPHBOHTAALEHX K0JeGaHHH, a, CACTOBATEJNBHO, HET
¥ HepeKaurs BHEDPruH. ME OIATH BUAHM, 9TO BTO JBH:KeHHe — HeyCTOHYHBOE;
UpE Malelimey E3MeWeHWH HAJAJBHHE YCIOBIH H306pamAwiNas TOUKS HATHE
DBUTATRCA WO OFHOMY ¥3 IHKI0B. _

Korpa madanpEme YCIOBES COOTBETCTBYIOT KPEBoL [, MH uMeeM JIHMH-
TALIMOHHOE ABH/KEHHE: H300PALKANIUAL TOUKA NPHAET B HATANO KOOPIHHAT
qepe3 GeckoHewHoe BpeMs. IIpH HaYaNpHHX YCIOBHAX, NU3KHX TeM, KOTODHe
COOTBETCTBYIOT KpPHEBOH I, NPOHCXOAUT HDOYTE TIONHAS NCPERATRA DHEPTHH
H3 OIHOI0 K0Ae(aHEA B APyroe, IPHYEM 3TOT Iporecc IAHTCA IpPe3BHYAHHO
J0IT0. .

MHE nomygaem cuenywowuEd o6mER pesyapTar: GHCTPOTA M TIyO@HA
[iEpeRaMKH BHEPTEH H3 OFHON IApPOHEANBHOM CHCTeMH B ADPYLY 3aBHCAT

<

" oT Ha9adsHHEX YCHOBHEIL. BosMosrHEE HavanbEHe YCIXOBHA, TPH KOTODHXI IIepe-

K29Ka HHEPTHH COBEDIIEHHO OTCYTCTBYeT (UeDHOLHUECkHe peEIIeHMA) H e
NapHuanbHEG CHCTEMH BeIYyT celf Kax HeCBASAHHEHE. DBO3MOKHH Takme
Takde HAYAJBHBE YJCIAOBEA, NDPHE KOTOPHXE IeperRadKa SHePIHE XPOHCXOJHT
CTONHA H ,CBA3AHHOCTH* ! IIADHHANBHHX CHCTEM — HAHGOIBIIAT. BOBMOXEH,

1 Mm szecn yooipeGxsed, meaed 3a J. H. MoEZearmTOaMOM, TePMAH ,CEI30H-
HOCTBE® J7AA XADERTePACTHRE B3aHMOUEfcTBHA HAPKHAMLHBIX CHETEM, B TC BpeM:A RAK TEpPMEH
nCTEIeHE CBAH®, ,CBI3L" XAPAKTEPNIYST JHME 10 YCTPOICTBO, NP NOMOIEE KOTOPOre Hap-
TALILEEHS CHOETEME . MOP'YT, BIAHMOI6HCTBOBATS MeixEy €000, B 9acTHOCTI B JREHEHERX
CUCTEMAX ,,CBAZAAHOCTE® 3ARHCAT He TOIBKO OT CTEEHN CBA3H, HO H OT COOTHOIERHA Iap-
HELIBHEIX TACTOT. ' , : -

oF
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HaKOHell, B 3aBHCHMOCTHE OT HAYaJThHEX YCIOBHH, BCe IpoOMe:kyToumEe cTe-
IeBN ,CBABAHHOCTE®. OTHE RAKOHOMEDHOGTH COBEDINCHHD YYKAN NHEHEHHO
CEABAHHEIM JIHHEHHEM CHCTeMaM, rme MTy6Aga M GHCTpOTA TMePEKATRIE —
.4 CIeOBATENBHO X ,,CBE3AHHOCTE® — 3aBHCAT BCRJIOIHTEALHO OT . CTPYETYDH
caMoif cmeTeME (oT COOTHOMIEHIST MAPUHANBEEX YACTOT II OT GTeNeH:H CBA3H).
Ilepesensa. 970 comocTaBmenMe Ha CHOEKTDANBHHY A3HEK, ME MOMEM CKA38TEL:
IpH AOHEHEOH CBASII YACTOTH I OTHOCHTEIbHEE HHTCHCHBHOCTHE JHHLH cBsA-
3aHHOL CHCTeMHl -He SaBHCAT 0T HATATLHAY YCIOBEH; IpH HeJHReKHOH CBasym
RaK T4ACTOTH, TAK H OTHOCHTeIHHHE HHTEHCHEHOCTH JHHHH CYIIeCTECHHO
CIPENeddloTCA HAYANLHEMI ycnonmaxa, o _
COBEPUIEHHO aHAJOTHYHOe DACCMOTDEEIe MOMET GHTD IPHBEIEHO I B TOM
CIy7ae, ROTIQ o He PABHO B TOYHOCTH 23. Bpexs wopHE Mammrit mapaxerp,
»PACCTDOHRY® +, HMee .
' @=23 4%

B asroy CRy9ag aMHABTOHOBY (DYHKRUHIO MOJKHO NPEACTABHTL B BHIe
j k : Wb
fl=2—:(2-fl—l—J_,)—f—I_:l,—.

33eCh ., HEBOBMYIIGHHAL" TAMEJILTOROEA (QYHKUEA CHOBA — BHPOKACHHEAL,
K MOKHO BOCHOJNB30BATECA INPEOSPa3OBARMENM (12') E MeTOmOM CeEyIADHHY
BOSMYIZEHRIT, .

- Heo6xoguyo cremate eme ommo saMevaHme. JIng Toro, wToSH IpEMeHe-
HIE METONa CeKYJSPHHX BOBMYLIEHEH GELIO 3AKOHHEM, HYMHO, IT06H B Tede-
HHE BCEr0 NBHMEHEA v, GHIA0 MeJIeHHO HaMeHaAWINeHes GyERIUEH Bpe-
MenE. Ha ocHoBawmRm ypasHeEmit (18) u (19) FMeeM oo

@ =
dy, :

—F= s,
dt 1 2V a—c

OTEyAa CJIe[yeT, YTO 510 TpeGOBAHEE HADYLIAETCA BONEZH TOTek x=20
B 2=a, d MOITOMY MOMET BOSHHKHYTH COMHEHHE B CIPpaBelJHBOCTH HAIIEX
Paccy:merall. Ho 370 CoOMHEHIE Jergo JCTpaEsaeTCA: HeHCTBHTENBLHO, TOYKH
2=0 Il ¥==a COOTBETCTBYWT, Ha& OCHOBAHEH (117), TeM coCTOSHHSM, KOTIA
CYIIECTBYIOT COOTBETCTBSHEO TONBKG BEPTHRANBHOS I TONLEO IOPH30HTAIBHOS
roxeGaEna, IloaroMy B6mEsE HTHX Touer X0 poecca MOKeT GHTB Ipo-
CJACHEH COBEPUICHHO CTPOI'0 NDPH IOMOVIH JIHEEHHEY ypabHeHEH (68) m (8),

" KOTODHE HOATBEPENAOT TOTYYeHHEe BEIIIE Pe3yIaBTaTH.

! . 4. Ommim

Beé momyvennme 3mecs DE3FALTATEL MOIYT OHTH 09eHbH JIETKO HPOREPEHH
I TIPOASMOHCTPHPOBAHH Ha OHETE. MH BOCHOILIOBAIHCEH Xopoure# (cmado
SaTyXanmmed) cragbHoE NpyRWHOH, E KOTOPOH MOMEO GHJIO IOLBEIOHBATH
PasAmYHEEe IPy3H. [Ipy/REE2 3aKkpennanach ma ITaTmpe. Hlepmons xoxeGammii
OTCIHTHBAANCH HO CeryHZoMepy. Ilpm momourm DICKTPHILCKOH JaMIHE Ha
SEDAH 0TGPaCHEBAJNACEH TEHEBAT NPOSKIAS I'Pysa H npymaws. Ha skpame Gria
HauepueHa CeTka IOJNAPEHX KOOPIHHAT, MOSBOLARINAL 320aBaTh. £ H © HYX-
HEE sHaveHnd. (KciH xome6amua mpy:REHEN DPOHCXONAT B IMIOCKOCTH Iapai-
I&IBHOR BRPAHY M 8CIH BEDTERANBEAL TUIOCKOCTS, HPOXONAITAA Jepes JaMiy
A TOURY -TONBeCA NDYKHHE, NePIeHAHEYNIPHA & BRDAHY, TO & ¥ 9 MOTYT
GHTB, B CHAY ImOAOGHS, OTCUMTAME HeIIOCDEeACTBeHHD II0 IONOMKEHAID TeHH Hj -
KOOpITEATHOHR CeTke.)
IfonGopos wmacem -rpysa OCYIIECTBIANOCE COOTHOMIEHME = « =23, mpI
ROTODPOM, OTTATHBAA UPYKUEY HA CHONL YLOLHO MAXYI0 BeJIHYHHY, MOXEO
OHI0 BA6MONATH sBIeHHe [apaMeTPHYECKOTO De30HAHCA H TOCHEHYHILYD
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IePerainy SHePrAd. B cOITacHy ¢ TeOPHed, NPUKTHIECKH HONHAS HEPERATRL
SHEPIHE HACTYHAJ2 IPH 0YeHb MAJHX HAYAJBLHHX GOROBHY CMEIHEHHAX,

B cormacmm Takike ¢ TeopHeH HapaMeTpHYeCKOr0 Pes0HAHCA, UpPH pac-
CTPOfiKe Nepekadka SHEPIHE HAGNIONANAChH. NP HPI HAJAJNbHHX DacTANe-
HIMX, IPEBOCXONHBIIAX HEKOTOPYI MEHHMAABHYI0 BeJNYHHY, DTH MHHAMAIb-
HHe BelXYnHE DOCIH C PacCTPOLHKOH.

My ocyuiecTBNSAH, FiA caywad «= 2P, IBH:KEHs, COOTBETCTBYIOINIe
HEallfleEHHM BHIOEe MePHORHYeCKHM pelleEHsAl. Bpaxoch Npon3BoAbHOE HAAb-
HOe YIJIOBOE OTKJIOHEHHe, X BHYECISNHCH HayalpHKE 3HATEHES - JIS COOT-
BeTCTRYIOINHX 2 mepHofdYeckux pemermil (puc. 2). I'pys cMeniaaca B INIOCKOCTH
TIapanyebEoR sKpady Tak, YTOGH €ro TEREDb NPUINIA B BHYECNEHHYIO TOURY,
H OTIIyCcRancd Ges HATANBHOH cropocTH. MoxHo Grto mabmiogaTe U-ofpasHoe

> .
g U-o0pasmoe KOZeGAHEHE, CMOTDA IO TOMY, HMEJO JIH HAYadbHOE & HOIVEHE-
TeJbHOE HJII OTPHUATeNbHOE 3HAgeHHE. CERYENOMep oGHApDYMRIBAD OTINYEE
B YaCTOTe STHX RONeG2HHH, KOTOPOE MO:XHO OHIO CPABEATH ¢ BHUMCIEHHEM
mo dopyyae (9).
B mmexecnenymwmert rabiHlle COHOCTABJIEHH BHYHCIEHHEeEe H Hala10IeH-

: N
HIle 3HAYEHHS OTHOLIGHDA ;)-*3
) 1
Heenenosaune HepeRasry QHEPTHE Be-

TABAHUA

_ . = JIOCh CHENYOIGHEM 00pasoM. SafaBaics 0es
[ , HAY9adhHOH CROPOCTI DAL HavalbHEIX OTRXO-
22 e HEHHH v, 75 COOTBETBETCTBYIOINHX pPasiny-
(B rpmy - 1‘{';;[”_ 'Pm;’ém"_ HHM 3H&YEHHAM b OO0 0ZHOMY X Tomy e
Gax) ; ,;éaiwe ! HOG 3HAYEHHI KOHCTRHTH HHTerpanuE a (ci. §3).
__ ; BexrwymEH Ha29alBROrO OTHIOHEHHS H “Ha-
- i . YAJALHOLO PACTIHKEHHES CBASAHH, TPE FCJI0-
%75 0,99 0,97 BHY I{0CTOAHCTEA ¢ ¥ 4 H OTCYTCTBES HAYAAD-

75 0,95 0,93 . HHIX cropocTeir ABHEHAHEM

15 l 0,85 0,86 P » VP
g @
: . 9yt 45t = ——,
wm

moAydaeMHEM HA ocHOBAHHM (11), (12) m (16). -
[IpakTAYeCKH IOJHAA NepeKadwKka HAGN0XATACD, )
B COTHACHE © TeopHell, IPH OdeHb MANLX BHaUe- |
HEyAx b, a Takxke UpH O OmuskoXEa. lpm npomexy- \
TOYHHX BHAYeHHAX U IlepeKayKa IO He J0 KOHIE, AN

' 2u . ¢ S ¥

4 OpE) = — DOAYYaN0Ch HOJHOE OTCYTCIBEE IEpe- §

KAaYKH, T.e. My I0NaJalH OHATH Ha nepno;umecme ‘ L

ABHREHHA. , &

o Ha rpEBOf pHe. 4 IIOKA3aHA H3MepeHHas 3a- \
BHCEMOCTE NPOAOMAHTENLHOCTE + LEKIA NEPeRayRE  © YT LA T LN

SEEPrHE OT BENEIHEH b NPHE EOHSMEHAOM a. Llpw : .
o < 1,8° MN He TONYTAIE ONDENSNEHHHX pe3yap- VUG 4 Bumuemiouis nepiuota
TATOB, TAR K4k TOTHOCTS 3AMAEEST HATANBHEIX Yo~ ohotttt S o -
BHH HPE '3T0"rI MeH:LOIE BEIHIBHH GJTy‘I&HHHX OTH Q- CTOMILHOM  SIOMCLEHE 4.

HEeHIH.

-, Fl

0. SaARJHnYeHIe

B saxanvenge NPOBEREM KDATEYH Hapainmend MeHAY ROJeCaHHAME
JHEERHO CBA3RHHHNX JHHEHHHX CHCTeM H DPa3o0paHEHM 37eCh ChayIaeM KoiIe-
Gamu#l menmaefino. CBI3AEEHX AMHeHHHX CHCTEM H 3aTeM YKameM Ha CBA3H
MERIY PACCMOTDEHHOH HaME 3aJavell'H NPYIMME BONDocaM¥E (HSHKH.
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Baunciligo cBASAHHBXCHET - B Hames npumepe:
’ Max: '

i) ME EMeeM ofolmeHHe Teopiu odbid- 1) x® uMeeM aHaJZOrEIHOS ododmenge
HOTO PE3OHAHCA Ba CIyTal, Koria TEODHHE HapaMeTPHISCROTO DPedoHamea.
ofpardoe NeficTBHe JOLKHO ORITE 2} Cunbmoe B3amMofelicTBUE NApOEAIL- -
IPUAATe BO BRIMAHIE. - HLIX CHCTEM ROSMOAHO TOTIL, RODIA

2) Cuasroe BlaimoFellcTie TAPUNAAL- . 03Na H3 HUX JMeer 43eTOTY NPRSIn-
HHEIX CHCTeM HACTYIAET TOrZa, KOTIA BHTEILHO BIBOS GORBIEYW, TeMApyrasd.
HX IRCTOTE! OAMBKH IPpyr E JIpyry. 3} BrcTpoTa USPERATRH SHEPTHR CyIme-

'3) BHCTPOTR NMEPeRAYKI BHEPLIN HE 3a- . CTBEHHO 3aBICAT OT HAYATILEBIX yCi0-
BHCHT OT HAYAJBUHX YCIOBIH. Baii.

Hacroamas pa6oTa MOKET IPEACTABHTD HHTEPEC A YHCHEHHS X pac-
9eTd ABIGHNH, NPOHCXOFAINAX B (oJee CHOMHHX MEXAHINYECKEX CHCTEMAX,
a TaK:Ee B BNIEKTPOMAFHATHHX KOHTYPAaX ¢ HelEHeHHOH CBASHH (MaCHHTHOL,
gepes TPaHC(HOPMATOP C Kene3oM, HAW BNEKTPHYeCKoH, Yepes ROBIEHCATOD
¢ CEerHETOBOH COMBN). BOSHHKNA :Ke OHA B CBASH -G PAsGOPOM MOIEIH MOJe-
ryast GOy, KBAHTOBAS TEOPHS KoTOPOH 6rT2 fana Henasmo DepyE. ! Dra TeopHa
OOBACHART CTPYRTYDPY JIHEHH HKOMOEHAIMOHHOTO DACCESHES B YIVICKHCIOTE.

- OnTHYeckye ¥ BIEKTPHIECKHE MAHHHE IPHBOAAT K MOZENH MOJERY.IH
CO,, msobpamennoii Ha puEC. 5, ¢. CIERTPANBHEE HANEPERIA I TEOPETHILCKES
ve o CO00PAsKEHHE NPHBOAAT K BHEBOLY, KOTODHI B TePMHHAX
~5 @~  RELCCHYECKOH MEXaHHKYE MOeT- GHTH cHOPMYIHDOBAH

€0 o -0 Tak: B MOJEKYJe BOBMOMHE HOHHEIE KOJe0anus, ¢opMma
20 . o~  HBOTODHX HOKa3aHd A PHC. 5,0,5,6, IPHIEM TACTOTA Hep-
@ & g  BOro XoJNeGauHA IPHONEIHTENLHO DABHA YABOGHHOH Tac-
S , [T0Teé BTOporo.2. Ora Mopmemd MoseRyIst CO, aHalOrHIHAZ
Pue. ”;Ia“lffl’g‘;‘l’;-‘*;{ge%%: HAENY YOPYTOMY MAaATHHKY, IIPHYEM DOINB BEPTHRAIE-
T eSamun. . HOTO KONeCAHUS MTPaer KoieGamHme PEC. 5,6, & PONb TODE-
L B0HTAJBHOI'0 — KOJTE0aHHE DYC. 5, 6. [lepeHocH NoNyIeHHEER
HAMH pe3yaprTaTH Ha oneryiry GO., MH BHIRM, 9TO H 10 KJIACCHYECROH Me-
xagEKe B Hed [osmHR, BOOGIMe TOBODA, NPOHCIOAATH IePEKATRS DHODPIHEE H3

" ORHOTO RONeGAHHAA B Ipyroe, KoTopafd H BE30BeT Pacliennenre JEHEH HoM-

CHERI[HOHHOTO PaccedHus:. . Mu moxyJaeM KavecTBeHEHH De3yNBTAT, TaCTHIHO
COBIANANITEH C TeM, KOTODHH HaeT KBAETOBAT MeXaHELa.

Pasymeercs, eNHHCTBeHH2H TEODHA, ANOKBATHAA SBICHEAM, HPOHCXOLH-
INHEM BEYTPH aTOMOB H MOJEKYJ, — 3T0 KBaHTOBad MeXaHHRa. Ter He MeHee,
B OSNACTH TeX CPABHHETENBHO MENJEHHHYS HOEHHY KONeCaHHH, ROTODHE- IIODOK-
JaloT HE(PAKPACHOE H3AYYeRNe M KOMOHHAIHOHHOE PACCESHES, KIACCHTECKAT
MEXaHERZ MOKET [ATh eme HeKOTOpoe KadecTBEHHOe NpPHOIMMEHHOE O0TOGpa-
#eHRe MCTHHHEIX COOTHOIIEHNIH — 0T00paicenwe, DIPEHEMYINECTBOM KOTODOro
SBIASTCA eT0 HaMAANHOCTE. C TOYKH B8DEHUSA KIACCHUSCKOH MEXAHEKN, Koie-
GaEps HOHOB B MONEKYJNC MONKHH DACCMAPABATHCA KAk KONeGAHESN CBABAH-
HEX — INHEHH0 HIH HeJwHeHH0 — MeXXY 6060 aureHHEX JCIEAIATOPOB. Ilo-
9TOMY [P KI2CCHICCKOH TPAKTOBKE ONTHER MOJER Y MOTYT BCTPEYATHCA Gy YaH,
He TOABKRO IMOIXONAIIEE HOL 00HYHYH B YaCT0 MPAMEHANIIYIDCA MOZlelb NHHeH-
HHX CBA3AHHHX CHCTEM, H0 ¥ aHAJOTHYHHE TOMY, KOTOPHHAMCCIAENOBAH BIeCH.

Tema macrosiilelr paGorsl BEABHHYTa E cdopumpopana JI. 'H, Masn-
DeasmraMoM. MH DpEEOCEM eMy CBOW KCKDEHEDD GXaTONapHOCTL 34
NeHHHE YRa3aHH4. : :

Mocxksa
Hayuno-ncciaeqoBareanckuit nHCTITYT TocrynEao 5 Peaaxnum
duaurn MIY, JabopaTopia Rodesanii . 8 oxradpa 1932 r.

LE,Fermi, Zs. fiir Phyaik, 71, 8. 250 1931. )

? Tosmee, 9TE YAGTOTH PABES! COOTBOTCTROHHO 8,90 u 2,02. 10! cex. Cyiiecrhyer euls
TpeTse KOJeGAHNe, KOTOPOS HE MIPAET PON XA WHTEPECYOL(NX HAG ABASHWIE. )

% PaccedHuan CBGTOBAA BOIHA OyoeT MOXYNUDOBATECR HE HEPHONNUSCEHM, & HOXTH
TePHOAHICCRIM HOHHEIM KOJeOaniieM.
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SCHWINGUNGEN EINES ELASTISCHEN PENDELS, ALS BEISPIEL FUR ZWEI
PARAMETRISCH GEBUNDENE LINEARE SCHWINGUNGSSYSTEME

A, Witt und G. Gorelik

b}

In der vorliegenden Arbeit werden die Schwingungen eines elastischen
Pendels untersucht. Es werden nur ebene Schwingungen betrachtet und
dementsprechend nur zwel Freiheitsgrade ins Auge genommen der. vertikale
und einer von den horizontalen. Die Untersuchung wird mit Hilfe der
Theorie der sekuliren Stirungen durchgefithrt. Eine besondere Interesse
bietet der Fall, wo die Frequenz der vertikalen Schwingungen zwel mal so
gross ist, als die der horizontalen; hier tritt die sogenannte Erscheinung der
parametrischen Resonanz ein, die in gekoppelten Systemen sich in einem
Energie-Umschaukeln von einem Partialsystem zom anderen und umgekehrt
dussert. Die Geschwindigkeit und Tiefe des Energieumschaukelns hingt
wesentlich von den Anfangswerfen ab. In #hnlichen Weise konnen auch
andere mechanische oder elektrische Systeme mit zwei Freiheitsgraden
behandelt werden, z. B. zwei durch einen Transformator mit Eisenkern gekop-
pelte Schwingungskreise. Die Ergebnisse der Theorie werden mit dem Expe-
riment vergleichen es wird ein voller Einklang festgestellt. Zum Sthuss
wird ein Zusammenhang zwischen den Schwingungen eines elastischen Pen-
dels und dem Model der CO,—Molekiil angedeutet, das vor kurzem wvon
Fermi.zur Erklirung der Linienstruktur der Kombinationstreung gegeben

witrde.
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